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Abstract. As students read textbooks, they often highlight the material
they deem to be most important. We analyze students’ highlights to pre-
dict their subsequent performance on quiz questions. Past research in this
area has encoded highlights in terms of where the highlights appear in the
stream of text—a positional representation. In this work, we construct
a semantic representation based on a state-of-the-art deep-learning sen-
tence embedding technique (SBERT) that captures the content-based
similarity between quiz questions and highlighted (as well as non-high-
lighted) sentences in the text. We construct regression models that in-
clude latent variables for student skill level and question difficulty and
augment the models with highlighting features. We find that highlighting
features reliably boost model performance. We conduct experiments that
validate models on held-out questions, students, and student-questions
and find strong generalization for the latter two but not for held-out
questions. Surprisingly, highlighting features improve models for ques-
tions at all levels of the Bloom taxonomy, from straightforward recall
questions to inferential synthesis/evaluation/creation questions.

Keywords: deep embeddings · natural language processing · student
modeling · textbook annotation

1 Introduction

As digital textbooks become increasingly common, researchers have the extraor-
dinary opportunity to observe students as they initially engage with unfamiliar
material. Eye gaze has been used as one measure of student behavior [8]. Our
interest is in using another source of information that students often provide as
they read textbooks: highlighting of the material deemed to be most important.

Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).
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From this manner of student engagement, our goal is to infer students’ com-
prehension and knowledge retention. To the degree that this is possible, early
interventions can be designed to steer students toward a deeper understanding
of the material.

Our team has engaged in several lines of research on this topic. Winchell et
al. [15] conducted a laboratory experiment with three passages from a biology
text. Participants were asked to read and highlight the material. Following initial
reading, they were given a brief opportunity to review the material along with
any highlights they chose to make and were then tested on factual questions that
spanned all three sections. Winchell et al. found that the pattern of highlights
yield small but reliable improvements in predicting a participant’s accuracy of
a specific quiz question. Moving to an authentic learning environment, Waters
et al. [14] and Kim et al. [5] modeled a data set of highlights obtained from
students in actual college-level courses using the OpenStax Tutor platform [12].
Waters et al. found that highlighting the sentence that contains the answer to a
question is predictive of performance on that question. Kim et al. extended these
results to utilize the entire pattern of highlights in a section of the textbook to
predict the overall accuracy of a quiz based on the content of the section.

This past research was limited in two important respects. First, models pre-
dicting quiz performance were based on a positional encoding of highlights. That
is, each section of the text was divided into segments—words, phrases, sentences,
or fixed length chunks—and a student’s highlighting pattern was represented by
a binary vector whose elements indicate whether or not each segment had some
highlighting. (Continuous encodings were also explored in which each vector
element indicated the proportion of words in that segment that had been high-
lighted.) Positional encodings contain no explicit information about the content
of material that has been highlighted; they only allow models to discover regu-
larities such as “if a student highlighted sentence 14 but not sentence 28, their
accuracy on question 2 should increase.” Such regularities will of course not gen-
eralize to other sections of text or to other questions from the same section. A
key contribution of the present work is to explore a semantic encoding of the
highlighted and non-highlighted textbook material. The results presented in this
paper show that model accuracy is higher with the semantic encoding than the
positional encoding.

The second limitation of past research concerns the nature of information that
highlights provide. Models based on only the highlighting pattern may succeed
because the highlights provide some general information about how skilled or
motivated a particular student is, not because they determine whether students
have understood the specific material. To address this possibility, our present
work uses a simple latent-variable model, the Rasch model [9], as a baseline. The
Rasch model assumes that each student has an ability (perhaps better charac-
terized as a skill level) and each question has a difficulty. Collaborative filtering
methods can be used to infer these latent parameters, from which predictions
can be made for new students, new questions, and for known students answering
known questions which were not part of the model-training corpus. With the
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Rasch model as a baseline, we explore whether highlights offer an orthogonal
source of information to student ability and question difficulty. We were sur-
prised and pleased to discover that highlights are indeed informative, even when
student ability and question difficulty are known.

2 Methodology

2.1 Data

We obtained data from the Openstax Tutor platform [12]. The data were col-
lected from January 1, 2019, through December 31, 2019—spanning two aca-
demic semesters—and consist of four different subjects: College Biology, College
Physics, Introduction to Sociology, and American History. It is essential to em-
phasize that these data were collected in a real-world setting, with no control
over how the Openstax Tutor platform was administered, and thus, how the data
was collected.

The data set consists of 11,134 students, 897 distinct sections, and 830,320
sessions, where a session consists of a particular student reading a particular sec-
tion. We have no further meta-information about the students since the process
was completely anonymous, thus we are unable to report or utilize the demo-
graphic information about the student sample. For the analysis, we used only
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Fig. 1: Sketch of our highlight-based model of student performance. On the left
side of the figure is a highlighted passage of text and a specific quiz question.
Each of the highlighted and non-highlighted sentences are fed one-at-a-time into
SBERT to produce an embedding which is compared with the embedding of the
question to determine a match score. The match scores are summarized and fed
into a regression model to predict a student’s correctness on the given question.
Not pictured are latent student-ability and question-difficulty parameters.
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the sessions that contain highlights which is 27,019 of the 830,320 sessions. Each
section is analyzed independently, and we report mean results across sections.
Because the textbooks were electronic, they were revised during the period in
which we obtained data. As a result, some sections have multiple versions. We
collapsed these revisions together since typically only a few words changed from
one version to the next, and it was trivial to align the highlighted fragments.

2.2 Model Design

To capture the semantics of text, we used a pre-trained neural network model:
BERT [4]. BERT is a transformer [13] that has produced state-of-the-art results
in various natural-language processing tasks. We specifically use Sentence-BERT
(SBERT): a modification of BERT that uses a Siamese network structure to
derive sentence-level embeddings that can be compared using cosine-similarity
[10]. As shown in Figure 1, we predict a student’s likelihood of answering a given
quiz question correctly by comparing the SBERT embeddings of both highlighted
and non-highlighted sentences to the embedding of the question.

In Figure 2, we illustrate the effectiveness of this framework in identifying
semantic similarities between sentences from the textbook and quiz questions.
The figure shows a sample question from a biology section entitled “The Science
of Biology” along with the correct answer to the question. Following the question
and answer are the five sentences from the section deemed to be most similar
to the question by SBERT. The cosine-similarity score between each sentence
and the question is shown in parentheses. In this example, the question is about
the definition of peer review. The most related sentence identified by SBERT
is a paraphrased definition. The other sentences with high similarity scores are
either related to peer review or contain the phrase within the sentence.

Fig. 2: A sample question from a biology section, the correct answer to the ques-
tion, and the five sentences from the section deemed to be most similar to the
question by SBERT.



Semantics of Textbook Highlights 5

Representing the semantic similarity between highlights and quiz ques-
tions. Here we address several methodological decisions needed to fully specify
a predictive model with semantic features. First, we have decided to partition
the textbook into sentences [6] and group the sentences in a section into those
that have one or more characters highlighted and those that contain no high-
lights. For each sentence, s, of the section, we obtain an SBERT match score (i.e.,
cosine similarity) to question q; we denote this match score B(s, q). Since this
similarity score would be in the range of [−1, 1], for mathematical convenience
and interpretability of model parameters, we rescale this score to the range [0, 2]
by adding 1. We thus obtain a set of match scores for highlighted content and a
set of match scores for non-highlighted content.

Because the number of sentences—and match scores—in each set varies from
student-to-student and section-to-section, we need to recast the two sets of scores
into a fixed length vector. A simple approach is to compute the max of the
highlighted and non-highlighted sets, resulting in a two-element vector. The
maximum score would reflect whether or not the student highlighted the most
relevant sentences for a given question. However, the feature is biased in cases
where a student highlights excessively. One could instead use the mean score,
which would combat over-highlighting, but it’s not clear that highlighting mate-
rial unrelated to the question should make it less likely the student can answer
the question. Rather than choosing either the mean or the maximum, we de-
vised a scheme that interpolates between them, and chose a fixed-length vector
containing statistics that span the entire range.

If x is a vector of n match scores, and ||x||p denotes the Lp norm, then 1
n ||x||1

is the arithmetic mean and ||x||∞ is the maximum. We can define a continuum
of norms based on the following relationship:

||x||r ≤ n
1
r−

1
p ||x||p.

If we apply this inequality with p = r + 1 for all r = 1, 2, ..., we obtain the
following relation:

n−1||x||1 ≤ n−
1
2 ||x||2 ≤ n−

1
3 ||x||3 ≤ ... ≤ ||x||∞.

For a given p, we obtain the following definition of a highlight match score or
HMS :

HMSp,q,i =

 1

nh

∑
s∈Sh

i

B(s, q)p

1/p

,

where Sh
i is the set of nh sentences that contain one or more highlights from

student i. Because well-matching, non-highlighted sentences might provide ad-
ditional information, we also construct a score for all the non-highlighted sen-
tences, which we refer to as the non-highlighted match score or NHMS :

NHMSp,q,i =

 1

nnh

∑
s∈Snh

i

B(s, q)p

1/p

,
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Fig. 3: Expected HMSp,q,i as a func-
tion of p. Vectors of match scores from
simulated student i are randomly-
sampled with each element, B(s, q),
selected from a uniform distribution,
U(0, 2). Each vector has nH = 104 el-
ements, as that matches the average
number of sentences in each section of
the text.

where Snh
i is the set of nnh non-highlighted sentences from student i.

As mentioned above, instead of selecting a single value of p to compute HMS
and NHMS, we use multiple values. To assist with selecting the values of p, we
ran a simulation where we randomly-sampled vectors of match scores, where
each match score was selected from a uniform distribution, U(0, 2). We then
computed the expected HMS for various values of p ∈ [1, 125]. The results of
the simulation are shown in Figure 3. As expected, p = 1 is exactly the mean
and p → ∞ approaches the maximum. To approximately span the range, we
manually selected {1, 5, 10, 100} as the values of p for computing both HMS and
NHMS.

Combining the match scores for highlighted and non-highlighted sentences
over various values of p, we obtain a parameterized linear model for the overall
match:

OverallMatchi,q =
∑
j

αq,j HMSpj ,q,i +
∑
j

βq,j NHMSpj ,q,i,

where j is an index over a set of norm values p ∈ {1, 5, 10, 100} and αq,j and
βq,j are free parameters fit to data.

Prediction model. Our prediction model is an extension of the Rasch model
[9], a specific instantiation of the classic item-response theory model for students.
To formalize the Rasch model, let yi,q = 1 if the response from student i to
question q is correct. Model predictions are computed as follows:

P (yi,q = 1) = logistic(θi − γq)

where θi denotes the latent ability of student i and γq denotes the latent difficulty
of question q. We refer to the standard Rasch model as a+d since it uses latent
parameters for both student ability (a) and question difficulty (d). Our model
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extends the Rasch model with highlighting features (h), hereafter a+d+h:

P (yi,q = 1) = logistic(θi − γq + OverallMatchi,q).

For completeness, we compare a+d and a+d+h to four ablated models: (1) a,
(2) d, (3) a+h, and (4) d+h.

We perform hierarchical Bayesian inference by placing priors on the param-
eter vectors θ and γ, as well as the parameter matrices α and β. The priors are
as follows:

θi ∼ N(0, σ2
θ) , γq ∼ N(0, σ2

γ), αq,j ∼ N(0, σ2
α) , βq,j ∼ N(0, σ2

β)

where σθ, σγ , σα, σβ ∼ N(0, 2.5). All of the models were fit using STAN [2].
We sample four Markov chain Monte Carlo (MCMC) chains each with 4000
samples, and from each chain we remove the first half of samples as burn-in.
The remaining samples are then averaged together across the four chains to
obtain the estimated parameters, which are then used to compute predictions.
We chose hierarchical Bayesian models over a simple maximum likelihood fit to
the parameters in order to support principled prediction for new students and
to new questions.

We use two performance measures to evaluate models: area under the receiver-
operating-characteristic curve (AUC) and the area under the precision-recall
curve (PRC). We choose to report PRC in addition to AUC due to an imbalance
between correct and incorrect responses to questions in the data. AUC mea-
sures a trade-off between sensitivity (or recall) and specificity, neither of which
depend on the base rates for each class (i.e., the number of questions correctly
answered versus incorrectly answered). PRC, in contrast, computes precision in-
stead of specificity which is sensitive to the base rate of the positive class. In
settings where there are many fewer instances of the positive class, PRC assigns
more credit to models that successfully classify positive instances (i.e., true pos-
itives) [3,11]. We found that our results are consistent with respect to AUC and
PRC, but report both for completeness.

3 Results

3.1 Performance within cross-validation settings

We conduct three cross-validation analyses: (1) held-out student-questions where
the validation set is a random selection of {student, question} pairs, (2) held-out
students where the validation set contains all questions from a random selection
of students, and (3) held-out questions where the validation set contains all
students from a random selection of questions. In all three cases, we perform
five-fold cross validation within each section. The five performance values within
each section are averaged, resulting in a single performance metric per section.
We then report the mean and standard-error across sections.
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Held-out student-questions. In this analysis, the training set typically pro-
vides some information about each student and some information about each
question. However, it excludes some particular students answering some particu-
lar questions. As shown in Figure 4, the three models with highlighting features
outperform the corresponding models without highlighting, and the a+d+h
model with all features performs the best. Thus, the highlighting features pro-
vide distinguishable information from ability and difficulty. We observe that a
alone provides the least amount of information, but this is expected since the
portion of the training set that constrains each student’s ability is far smaller
than the portion of the training set that constrains each question’s difficulty.
Although performance of a+h about matches performance of d, one might sup-
pose that there is redundancy between the two sets of features; however, the
superiority of a+d+h over all other models rules out this possibility.

Held-out students. Our next analysis performs cross-validation on students,
removing a portion of students from the training set each fold and using them
to evaluate the model. This procedure removes any explanatory power of the
student ability parameter since at test only the prior distribution is available.
As expected (Figure 5), a alone can do no better than chance, yielding an AUC
of 0.5, and the models that include ability (purple bars) perform no better than
the corresponding models that exclude ability (blue bars). Just as with held-out
student-questions, the d+h model outperforms d alone. It is thus reasonable to
conclude that the highlighting features provide additional information that can
be distinguished from question difficulty.
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Fig. 4: Results for held-out student-questions with ability, difficulty, and both
ability and difficulty features. The darker-colored bars indicate the use of high-
lighting features in addition to the features listed along the abscissa. Each bar
indicates the mean AUC (left) and PRC (right) across sections; error bars reflect
±1 standard-error of the mean, corrected to remove variance due to the random
factor [7].
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Fig. 5: Results for held-out student models. The plots have identical layout as
those in Figure 4. See the caption of Figure 4 for details.

Held-out questions. We performed cross-validation on questions, removing a
portion of questions from the training set for each fold and using them to evalu-
ate the model. This procedure removes any explanatory power of the question-
difficulty parameter because at test only the prior distribution is available. As
expected (Figure 6), d alone can do no better than chance, yielding an AUC
around 0.5, and the models that include difficulty (purple bars) perform no bet-
ter than the corresponding models that exclude difficulty (red bars). The a alone
models offers some degree of discrimination; however, none of the models reliably
improve when highlighting features are incorporated. This finding is consistent
with the laboratory study of Winchell et al. [15] where it was found that with
held-out questions, highlighting features did not boost model performance rela-
tive to the baseline model (and in fact did somewhat worse due to overfitting).
A possible reason for the failure to generalize to new questions is that we train
models for each section separately, and each section has relatively few questions.
As a result, the model may overfit to the set of questions in the section’s training
set. We speculate that better generalization to new questions might be obtained
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Fig. 6: Results for held-out question models. The plots have identical layout as
those in Figure 4. See the caption of Figure 4 for details.
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if a single model were trained for all sections rather than using section-specific
models. Ongoing simulations are addressing this issue.

While it is disappointing that the current models do not generalize to new
questions in a section, this finding does not seriously impact the potential to
leverage highlights. When textbooks are designed, the author knows at that
point what knowledge should be acquired and correspondingly, what questions
should be asked of students. It would be of far greater a concern if models did
not generalize to new students; fortunately, our models do this well (Figure 5).

3.2 Performance across levels of conceptual difficulty

In addition to exploring various cross-validation settings, we investigated the
performance of both the a+d and a+d+h models across varying levels of con-
ceptual difficulty distinguished by the six levels of the Bloom taxonomy [1]. The
taxonomy reflects a continuum from concrete factual questions to abstract rea-
soning questions; the Bloom levels are: (1) recall, (2) understand, (3) apply, (4)
synthesize, (5) evaluate, and (6) create. Waters et al. [14] found that highlights
had predictive value only for recall (i.e., Bloom level 1) questions. However, their
predictions were based on identifying whether or not a specific critical sentence
in the text was highlighted; the information required for questions at higher lev-
els of the Bloom taxonomy are likely to be more diffuse in the text. Thus, the
previously used positional encoding of highlights may not have been sufficiently
powerful to capture subtle information that the highlights provide.

Because Openstax Tutor had fewer questions at the higher Bloom levels,
we clustered Bloom levels. Figure 7 compares a+d models (faint purple) to
a+d+h models (dark purple) for three clusters: Bloom level 1, {2,3}, and
{4,5,6}. Adding highlighting features improves model performance across all
clusters of the Bloom taxonomy. Interestingly, the middle cluster—understand
and apply questions—obtains the biggest boost from highlighting features. A
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Fig. 7: Held-out student-question results for a+d (lighter-colored bars) and
a+d+h (darker-colored bars) across increasing levels of conceptual difficulty,
along the abscissa, determined by the Bloom taxonomy. Each bar indicates the
mean AUC (left) and PRC (right) across sections; error bars reflect ±1 standard-
error of the mean, corrected to remove variance due to the random factor [7].
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possible explanation for that is recall questions are so straightforward they do
not depend on the complex pattern and semantics of highlights; consequently,
the highlighting representation may provide less value. For the third cluster—
synthesize, evaluate, and create questions—which require holistic comprehen-
sion, our semantic highlighting representation should also be valuable. The pre-
dictive power of our models tends to drop for higher levels of the Bloom taxon-
omy, which we were expecting considering that at higher levels, the complexity of
the questions implies that many more factors can come into play in determining
student correctness.

3.3 Comparing positional and semantic representations of highlights

In previous work [5,15], we used a positional encoding of highlights. Essentially,
we constructed a vector whose elements indicate whether a particular segment of
text has been highlighted. We found that providing this high-dimensional vector
directly into regression models produced overfitting due to the large number of
free parameters. As an alternative, we performed principal-components-analysis
(PCA) on the highlighting representation and chose the top k principal com-
ponents for the highlighting representation. We, in fact, discovered that k = 1
worked best generically across sections of text. The previous work is not directly
comparable to the present work because it used smaller data sets and Kim et
al. [5] evaluated on overall quiz accuracy not individual question accuracy.

We compared the positional highlighting encoding with the encoding devel-
oped in this paper and evaluated on individual questions using the current, large
data set. As Figure 8 shows, both highlighting representations improve model
performance over the baseline a+d model, but augmenting the baseline model
with the semantic encoding is superior to augmenting with the positional en-
coding. We have yet to explore the obvious question of whether augmenting the
baseline model with both feature sets would further improve model performance.
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Fig. 8: Comparison of three predictive models with latent ability and difficulty
parameters, and optionally using positional or semantic highlighting features,
hpos and hsem, respectively. Error bars reflect +/− 1 SEM, corrected to remove
variance due to the random factor [7]

.
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4 Conclusions and Future Research

We explored the relationship between student highlighting patterns and question-
answering performance using an encoding of highlights based on deep neural
network embeddings of text and question content. We found that augmenting
a baseline model with this semantic highlighting representation improved pre-
dictions of whether a student would answer a specific question correctly. The
baseline model is conditioned on latent factors representing student skill level
and question difficulty. Our results suggest that highlights provide a source of
information that complements these other factors, which may not be surprising
in retrospect given that the highlight encoding we used is based on how the
particular student interacts with the textbook content that is relevant for the
specific question. What is surprising is how effective the SBERT model is in
producing embeddings that can be used to judge the similarity of highlighted
content to individual questions. We obtained several other key results, includ-
ing: (1) our models predict well for new students, but not for new questions;
(2) our models predict well for all levels of the Bloom taxonomy; and (3) our
models that use semantic highlight encodings predict better than models using
positional highlight encodings.

From here, there are several potential paths we intend to investigate. First,
we should more systematically explore several methodological decisions that we
made; in our past work [5], these decisions matter. The assumptions we might
question include: whether the correct decomposition of highlights is at the level
of complete sentences and not smaller or larger segments; whether a segment of
text should be considered highlighted if any portion is highlighted, as opposed
to explicitly representing the fraction of the segment highlighted; whether the
summary statistics (i.e., values of p) we selected best capture the distribution of
highlighted and non-highlighted match scores.

Second, we modeled each section apart from each other section. However,
in principle, semantic-highlighting models could apply across multiple sections.
Constructing a multi-section model might improve predictions—particularly for
held-out questions—because the model would be trained on more data, but it
might harm predictions because the weighting of semantic information may vary
across sections.

Third, the ultimate goal of our work is not just to predict student perfor-
mance, but to leverage the predictions to boost student comprehension and re-
tention. Once our investigation of predictive models is complete, the true value
of these models to improve student learning can begin.
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