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Abstract 

With the trend of increasing the capacity of the spacecraft, it will be subjected to severe shock vibration 

when landing on Earth with a certain velocity. To ensure the safety of the internal astronauts and protect 

scientific equipment from damage, it is necessary to adopt the airbag landing system (ALS) for impact 

attenuation [1-3]. As shown in Fig. 1, multiple airbag assemblies are installed under the bottom of the 

CM to form the cushion system, each of which consists of a main venting airbag and a non-venting anti-

bottom airbag. The impact response characteristic of most concern is the acceleration time history, 

especially the acceleration peak. However, variable initial landing conditions and the complicated 

system configuration make impact response prediction difficult and time-consuming. With the 

development of artificial neural networks, deep learning can be utilized to create the surrogate model 

with limited training examples obtained through simulations [4]. This study proposes simulation-based 

deep learning models for fast predicting the impact accelerations of the spacecraft during soft landing on 

the complex airbag system.  

The finite element model is constructed to generate the dataset with multiple inputs and outputs by 

using the commercial software LS-DYNA. The vertical impact velocity yv , the horizontal impact 

velocity xv , the initial pressure mp  of main airbags, the initial pressure abp  of anti-bottom airbags, and 

the overload threshold vg  for venting are selected as input features of the dataset. A total of 100 

simulations are performed by randomly selecting values from the input space (one case terminated early 

for computation divergence). The simulation time is 0.3s. Each simulation gives 3 local impact 

acceleration time histories of the spacecraft: the local y-axis acceleration,  the local x-axis acceleration, 

and the local z-axis angular acceleration. Then we filtered these acceleration curves and sampled 100 

data points uniformly for each curve. 

We first trained separate MLP models for different impact accelerations (Fig. 2).  All the data points are 

shuffled and no longer arranged in a time series. Then the dataset is split into training, validation, and 

testing sets with a 90%, 5%, and 5% proportion, respectively. After training and hyperparameter 

identification, we evaluated the deep learning models on independent curves from the dataset. The 

relative errors between the predicted and experimental values of the maximum localized y-axis 

acceleration are within 10%. 

       

Figure 1: The configuration of the complex airbag landing system for the spacecraft 



 

Figure 2: The architecture of multi-layer perceptron 

 

Figure 3: The convolutional neural network with time-stepping 

To output all three types of impact response simultaneously in a more compact manner, we proposed 

another deep learning model under the framework of the convolutional neural network (Fig.3). 8 one-

by-one convolution filters are used to form basic features. Each row of features contains information 

only for the current time step. Zero padding is then conducted only at the top of features, and 16 two-by-

two convolution filters are applied to create higher-level features. The new features will contain the 

lower-level features and temporal information from the previous time step. Multiple filters are set to 

learn the different combinations of information in a time-stepping way. After repeating the operation of 

zero padding and two-by-two convolution, only one feature is formed in each channel. One-by-one 

convolution is then used again to create the final acceleration outputs. At the present work, we set 100 

timesteps, which means learning one curve at a time. 99 complete curves were split into 90 training 

curves, 5 validation curves, and 4 testing curves. After training, the relative errors between the predicted 

and experimental values of the maximum localized y-axis acceleration are around 10%. 

All models have good predictive performance in simulation time. By comparing predictions on longer 

time series, the CNN model demonstrates better extrapolation than the MLP model. The results indicate 

that deep learning models can improve the efficiency of system design optimization and real-time 

prediction.  

 
Figure 4: The comparison of extrapolation ability between MLP (left) and CNN models (right) 
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