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Abstract. While computer simulations typically store data at the
highest available spatial resolution, it is often infeasible to do so for
the temporal dimension. Instead, the common practice is to store data
at regular intervals, the frequency of which is strictly limited by the
available storage and I/O bandwidth. However, this manner of temporal
subsampling can cause significant errors in subsequent analysis steps.
More importantly, since the intermediate data is lost, there is no direct
way of measuring this error after the fact. One particularly important use
case that is affected is the analysis of unsteady flows using pathlines, as it
depends on an accurate interpolation across time. Although the potential
problem with temporal undersampling is widely acknowledged, there
currently does not exist a practical way to estimate the potential impact.
This paper presents a simple-to-implement yet powerful technique to
estimate the error in pathlines due to temporal subsampling. Given an
unsteady flow, we compute pathlines at the given temporal resolution as
well as subsamples thereof. We then compute the error induced due to
various levels of subsampling and use it to estimate the error between
the given resolution and the unknown ground truth. Using two turbulent
flows, we demonstrate that our approach, for the first time, provides an
accurate, a posteriori error estimate for pathline computations. This
estimate will enable scientists to better understand the uncertainties
involved in pathline-based analysis techniques and can lead to new
uncertainty visualization approaches using the predicted errors.

Keywords: Unsteady flow · Sampling errors · Temporal resolution ·
Uncertainty visualization

1 Introduction

Unsteady flows describe many natural and artificial phenomena and form the
core of a large number of science and engineering applications [6,23,34]. In many
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cases, the primary focus is on understanding the transport of material in the
flow, typically represented using pathlines — paths of massless particles advected
by the time-varying flow (see Equation 1). However, as pathlines are typically
computed using iterative, numerical integration, they are susceptible to errors
due to a number of sources.

In practice, errors due to insufficient temporal sampling of data are often
considered to be most challenging for two main reasons: (1) the lack of data can
be severe, and (2) the corresponding error cannot be easily computed. Virtually
no large-scale simulation can afford to also store all available time-steps as this
would increase simulation time by orders of magnitude and create unmanageable
amounts of data. Instead, the data is subsampled in time, and often only every
500th or 1000th snapshot is available for analysis [12]. Since all intermediate data
is lost, the error resulting from the subsampling cannot be directly computed and
is often accepted as an inevitable consequence of the storage and I/O limitations.
However, especially for the large-scale, turbulent simulations of greatest interest,
the unknown error may dramatically impact computed pathlines.

Motivating Case Study. We consider a large-scale combustion simulation
of a lifted jet flame [34,35] performed using S3D [13]. Such flows are used
to study direct-injection spark ignition engines for commercial boilers as well
as fundamental combustion phenomena. The simulation uses a 2025 × 1600 ×
400 rectilinear grid and captures several observables, such as velocities and
temperature, resulting in about 280 GB of data per time-step. S3D uses an
explicit Runge-Kutta (RK) integration scheme with a step size of 4×10−9 units.
However, due to the to large I/O overheads and storage limitations, only every
500th snapshot is stored. It is important to note that the scientists consider this
temporal resolution, i.e., 2×10−6 units, exceptionally high for this type of study.

What make this simulation of particular interest for this paper is that it also
includes a set of tracer particles computed in situ, which offers an opportunity
to study errors introduced through temporal subsampling. Specifically, a total
of 54,935 particles were tagged and traced alongside the simulation and stored
at a step size of 2 × 10−7. Particles are available for a total of 299 time-steps
uniformly distributed in the time-range [1.7, 1.7598]× 10−3, effectively defining
a set of highly-accurate pathlines. To compare these in situ pathlines with the
ones computed in post-processing, we consider pathlines computed from the
saved data covering the same range with the identical starting position. Since
the data is spatially over-resolved, we use trilinear interpolation in space and the
traditional linear interpolation in time with a conservative step-size of 2× 10−8.

Fig. 1 provides a visual comparison between the in situ (particles) and the
post hoc pathlines to highlight the differences, e.g., how the pathlines on the
right fail to capture the clear separation of the flow between the top and bottom
layers in the flame. Fig. 2 shows the distribution of point-wise errors between
the two sets of pathlines (computed using Equation 2) in spherical coordinates
and conveys that most pathlines differ from the corresponding in situ particle
paths by about 16 grid cells, and a substantial number of pathlines deviate
by up to 50 grid cells. Similarly, the distribution of the azimuthal angle, ϕ,
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Fig. 1. A visual comparison of in situ (left) and post hoc (right) pathlines illustrates
that the latter can misrepresent flow behavior, as they are affected by temporal
subsampling errors. Pathlines are colored blue-to-red on time [1.7, 1.7598]× 10−3.
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Fig. 2. Top: Distributions of point-wise differences between the two set of pathlines
indicate high variance in error. Bottom: Spatial mapping of the polar angles of the
difference to the corresponding seed points highlights that the errors appear to be
distributed randomly, which may cause substantial artifacts in subsequent analysis.

also has high variance and highlights that the computed pathlines are almost
equally likely to be “ahead of” (faster than) the in situ particles (|ϕ| < 90◦) or
“behind” (slower than) them (|ϕ| > 90◦). Fig. 2 also maps the polar angle of
the differences to the seed points of corresponding pathlines showing that they
appear to be randomly distributed in space. This error behavior is of concern
as one of the main uses of pathlines is the computation of derived quantities,
such as the finite-time Lyapunov exponent (FTLE) [19]. The FTLE is defined
through a spatial derivative of the particle positions and the random errors
shown in Fig. 2 would be expected to cause substantial artifacts in the results.
Nevertheless, without the in situ particles for verification, which only a few
simulations provide, it is challenging to determine the expected accuracy of post
hoc pathlines and conveying the resulting uncertainty.

Given that the sampling rate for this flow is considered exceptionally high,
post hoc pathlines would likely have been accepted as a reliable approximation of
the ground truth. However, the comparatively large and random errors discussed
above raise significant concerns on the reliability of any pathline-based analysis.
Although one would expect similar problems in other types of large-scale
simulations of unsteady flows as well, without an understanding of the extent of
inherent errors, scientists must currently choose between disregarding interesting
results, because they cannot be validated, or accepting post hoc pathlines as best
available information, potentially arriving at incorrect conclusions.
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Contributions. To address this challenge, we present a data-driven approach
to model subsampling errors in pathlines. Our a posteriori error estimate
provides users with insights into the likely effects of temporal subsampling
without access to the ground truth data. In particular, we compute pathlines
at the given resolution as well as at successively coarser subsampled resolutions.
Using two turbulent flows, we show that, in general, the differences between
pathlines of successively-coarser resolutions can be modeled using a simple,
supervised regression model that allows predicting the differences between the
finest available resolution and the unknown ground truth. Our approach requires
no additional implementation beyond the existing pathline computation and
comparison, yet provides a reliable a posteriori error estimate for pathlines.

2 Related Work

Analyzing pathlines of unsteady flows is among the most fundamental ways of
understanding its dynamic behavior [24]. Pathlines represent the path taken
by a massless particle as it is advected by the flow. They have been used to
compute the topological segmentation of 2D flows [30]; constructs similar to
streak surfaces have been used for the topological analysis of 3D flows [15,22,31].
The notion of pathlines has also been extended to inertial particles to address
more realistic physical phenomena [9,18]. Pathlines are often used to compute
the FTLE [19] or the finite-space Lyapunov exponent (FSLE) [28], which are
defined using the spatial derivative of the positions of neighboring seed particles
after a given amount of time or distance, respectively. The FTLE and FSLE are
believed to highlight the Lagrangian coherent structures (LCS) in the flow [20],
such as material boundaries. However, dependent upon derivatives, the FTLE,
the FSLE, and, hence, the LCS are highly sensitive to the errors in pathlines.

To date, the potential problems regarding uncertainty in pathlines remain
largely unaddressed, despite their importance in the analysis of unsteady flows.
In practice, pathlines are computed through numerical schemes, such as RK
integration [7] with a high-order interpolation in space and a linear interpolation
in time. It is well known that numerical integration is prone to compounding
errors [14], especially if the source data is noisy or under-sampled. Almost all
error studies in this context have focused on either the steady (time-independent)
case or the analysis of uncertain data or errors in the integration. For example,
there exist uncertainty visualization techniques for enhanced glyphs [27,33]
to represent fields, and thick tubes [21,32] or streamwaves [3,4] to represent
uncertainty in streamlines. Otto et al. [26,25] simulate uncertainty in data
stochastically, but disregard uncertainty due to the computation of streamlines.
For pathlines, Teitzel et al. [29] study the error resulting from numerical
integration and compare different RK techniques with an additional focus on
performance and Darmofal and Haimes [14] provide detailed analysis of different
integration schemes. Chen et al. [11] addressed the problem of integration
uncertainty in sampled data by modeling the errors with Gaussian distributions.
Nevertheless, no techniques exist that estimate and visualize subsampling
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uncertainty in unsteady flows, and, the potential errors from a lack of temporal
resolution have largely been ignored.

Recently, new Lagrangian representations have been proposed to alleviate the
dependence of conventional representations on temporal resolution. Specifically,
Agranovsky et al. [1] propose to compute and save a set of basis pathlines in situ
with high accuracy and use those to compute any pathline in the post-processing.
Along the same lines, Chandler et al. [10] utilize densely sampled in-situ particles
to compute pathlines, thus reducing the numerical integration of pathlines to
geometric interpolation. These representations alleviate some of the challenges
of low temporal resolution at the cost of new errors when remapping particles
between in situ pathlines. Nevertheless, assuming a sufficiently dense set of in
situ pathlines, the remapping errors appear significantly smaller than the errors
due to temporal subsampling. Unfortunately, very few simulations will natively
compute in situ particles, and there exist a number of related challenges, such
as, automatically computing good seed points. As a result, the applicability of
these ideas is currently limited, and it remains important to find better ways to
understand temporal subsampling errors in the current analysis pipeline.

3 Temporal Subsampling Errors in Pathlines

We consider the flow computed at the time-step of the simulation to be the
ground truth and denote it as ~V1(x, t). Although ~V1(x, t) typically contains
modeling and simulation errors and, therefore, in principle, may not be “correct”
compared to the physical phenomenon under consideration, the analysis cannot
be more accurate than the initial simulation itself, making this a reasonable
assumption. The question we aim to answer is: given a (temporally) subsampled

flow ~Vk(x, t), which contains timesteps only at some (temporal) resolution k > 1,
and a given algorithm to compute pathlines, how much is a pathline computed in
~Vk(x, t) expected to differ from its counterpart computed for ~V1(x, t)?

Computing pathlines and measuring errors. Pathlines represent paths of
massless particles advected in the flow, given by the solution of the following
integration of an ordinary differential equation.

p(t) = p0 +

∫ t

t0

~V (p(τ), τ) dτ, (1)

with p0 = p(t0). To explore sampling errors in pathlines, we use standard ways
to interpolate flows and compute pathlines, keeping all parameters constant,
varying only the temporal resolution. Specifically, we use a RK 4-5 integrator [7]
with trilinear interpolation in space and linear interpolation in time.

Given two pathlines p(t) and q(t) with the same seed position p0 = q0, but
computed at different temporal resolutions, we measure the error between them
in terms of their maximal pointwise distances, i.e.,

ε(p,q) = max
0≤τ≤t

‖p(τ)− q(τ)‖. (2)
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We choose the maximal error as one typically wants to understand the worst
case impact on any downstream analysis. Note that since p(t) and q(t) are
computed using different temporal resolutions, care must be taken that the
points corresponding to the same value of time are compared.

3.1 Temporal Subsampling of Simulated Unsteady Flows

Let ~V∆(x, t) represent a flow sampled at temporal resolution ∆ ≥ 1. As discussed
above, ∆ = 1 denotes the simulation time-step (the ground truth) and ∆ = k
the given sampling rate, i.e., the flow stored at every kth timestep. For a pathline
computed at ∆ = k, the goal is to estimate the error introduced by temporal
subsampling with respect to the ground truth. We denote this error as ε(k,1).

In order to estimate this error without requiring the ground truth, we further
subsample the given data to resolutions 2k, 3k, ..., nk, and study the resulting
errors between the corresponding pathlines at successive levels of subsampling,
i.e., ε(2k,k), ε(3k,2k), ..., ε(nk,(n−1)k). Specifically, we compute pathlines at these
resolutions and analyze how coarser resolutions are related to the finer ones. Each
successive subsampling is likely to introduce additional errors, and we expect
them to be proportional to their magnitude, i.e., pathlines with high ε(2k,k)
are expected to show high ε(3k,2k). Therefore, we assume that the relationship
between errors introduced at every level of subsampling can be modeled as

ε((n+1)k,nk) = mnk ε(nk,(n−1)k), (3)

where mnk is a resolution-dependent constant that quantifies the loss of
information between the two subsampling steps.

We note that mnk is not just influenced by the effective resolution nk but
also by the “type” of pathline under consideration. A low mnk indicates that the
additional subsampling did not cause any significant increase in error. Typically,
we expect a low mnk for pathlines that are mostly laminar and, hence, can be
accurately computed at lower resolutions, or pathlines, which at nk, already
contain such a large error that further subsampling does not have a significant
effect. On the other hand, for turbulent pathlines still containing meaningful
information, one would expect mnk to change significantly for different n, as
a substantial amount of information may be lost at each level of subsampling.
Furthermore, for most turbulent flows, we expect the value of mnk to decay with
subsampling, as most of the information is lost during the initial subsampling,
whereas a relatively-smaller loss of information is incurred at later stages.

A similar technique to estimate sampling errors by upsampling and
downsampling in the context of high-definition images was described by Berger
et al. [2]. Whereas they used a spine-tube interpolant to predict error for spatial
subsampling, our goal is to estimate errors due to temporal subsampling.

3.2 Data-Driven Modeling of Errors

Consider the generalization of Equation 3 as

ε(k,1) = f(ε(2k,k), ε(3k,2k), . . . , ε(nk,(n−1)k)), (4)
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which parameterizes the error ε(k,1) as a function of errors occuring at lower
sampling resolutions. If f(·) is linear, Equation 4 generalizes Equation 3 by
including more than a single error with a nonzero weight. Recall that given n−1
subsampling errors for a pathline, ε(2k,k), ε(3k,2k), . . . , ε(nk,(n−1)k), the goal is
to predict ε(k,1). However, in most practical cases, the ground truth data is not
available to validate our prediction; instead, we validate our model by predicting
ε(2k,k) having observed the errors for subsequent resolutions.

The function f(·) can be estimated on a per pathline basis; however, it is
conceivable that such an approach may fail due to a few reasons: (1) learning
a unique f(·) for each pathline can easily result in over-fitting due to the
small number of features available, and (2) such an approach fails to take into
account any inherent spatial similarity in the error behavior, which can be useful
information. Therefore, we train a single model for all pathlines in the flow and
exploit a larger set of statistics for a better-fitting error model.

Error prediction using supervised linear regression. The data can be
represented as a p× (n− 1) matrix, where errors for n− 1 successive resolutions
are given for p pathlines: each row in the matrix represents errors for a single
pathline, and the column j represents the error ε(j+1,j). The goal is to predict
the first column, ε(2k,k). Since we cannot use the same data for training and
validation, and since availing additional data, either in terms of more pathlines
or errors at more resolutions, is not possible, we instead train the model on
columns [3, 4, . . . , n−1] to predict column two (ε(3k,2k)). Next, we use the trained
model, and predict on columns [2, 3, . . . , n−2], which we validate against the first
column, ε(2k,k). The underlying hypothesis is that the regression model is able to
capture the functional relationship between errors across temporal resolutions,
which generalizes well to unseen data. In a realistic scenario, one would train
the model using columns [2, 3, . . . , n− 2] and predict the error ε(k,1)

As argued already, we expect the errors for successive sampling to follow an
exponential-decay trend. This intuition is supported by our observation that
the model gives a better fit in log10 space. Nevertheless, after the first few
subsampling steps, (especially the turbulent) pathlines may become significantly
erroneous, and a low signal-to-noise ratio may preclude any information from
being meaningful. Therefore, we are restricted to a small number of columns
(in our experiments, we used n ≤ 10). In order to improve the (linear)
model, we increase the number of features (columns) by including polynomial
combinations of existing features, up to degree 2. For example, if [a, b] was the
original set of features, we transform them to [1, a, b, a2, b2, ab]. This standard
pre-processing step tends to improve regression performance for machine learning
algorithms, as the non-linearity enables the algorithm to approximate more
complex relationships similar to the kernel trick [5]. As a result, the size of the
feature set becomes 36 (for n=7), upon which we perform training and testing.

Furthermore, since we are changing the columns for testing, we control the
difference on the value ranges between the training and test data by normalizing
them to [0, 1] through min/max scaling. This scaling controls the variance of
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the data, and allows the model to be applied to a different set of columns. The
dependent variables for training (ε(3,2)) and testing (ε(2,1)) are not scaled.

Finally, we fit a linear regression model to the training data, and predict
with the test data. The linear model is chosen for its ease of interpretation, and
scalability for large-scale data.

Model evaluation. To evaluate the performance of the model, we use two
metrics: (1) the Spearman correlation, which describes how strongly two series
of values are correlated, (≈ 1.0 indicates strong correlation), and (2) the R2

statistic, or the coefficient of determination, which is the proportion of variance
in the predicted value that can be explained from the true value, and takes a
maximum value of 1.0 to indicate reliable prediction.

4 Validation and Results

Here we use two turbulent flows, one 2D and one 3D, to validate the error
estimates discussed above. Using especially-high resolutions, or in the case of
the lifted flame, in situ pathlines, we demonstrate that our model is able to
predict the error due to temporal subsampling reasonably well.

4.1 2D Flow Past a Cylinder

Our first test data is a 2D flow past a cylinder, which was simulated using
Nektar++ [8] on a 1300×600 regular grid, with a simulation time-step 0.01 (∆ =
1) and Reynolds number 300. To obtain accurate data for experimentation and
validation, snapshots of the flow were saved at an unusually-high frequency: every
10th simulation time-step, i.e., ∆ = k = 10. Even for this moderately-sized data,
the total size of storing only 600 snapshots of the simulated flow at the chosen
resolution amounts to about 3.5 GB, highlighting the challenges in storing finer
resolutions. To model subsampling errors, we compute a dense set of pathlines,
seeded at every grid point and integrated until they exit the domain. Pathlines
with same seed points are computed for subsampled flows, ~Vnk(x, t), for 1 ≤ n ≤
10, and errors between pairs of pathlines are computed at successive resolutions.

Model validation. Since true pathlines (∆ = 1) are not known, we consider
∆ = k as ground truth, and use the model described in the previous section to
estimate ε(2k,k), using data of resolutions 2k and coarser only. Fig. 3 shows the
density scatter plot of the predicted ε(2k,k) plotted against the true ε(2k,k). It
indicates a good fit around the ideal 45◦ line with a slight trend to over-predict for
larger errors, as also determined by high values of R2 and Spearman coefficient.
Note that the figure uses a logarithmic color map and highlights that the vast
majority of pathlines are predicted well and contain errors less than 5 grid cells.
Note that this figure provides a zoomed-in view to highlight the details and
capture ≈ 99.2% samples.

Error prediction for the given resolution, ∆ = k. Finally, we use the model
as we would in practice, i.e., to predict the unknown error ε(k,1), and show the
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Fig. 3. Left: Validation of our error model for the 2D flow past a cylinder. The model
produces good prediction of subsampling errors as shown by the density visualization
of correlation between predicted and observed errors. Right: Predicted errors for the
2D flow past a cylinder sampled at the given resolution every 10th time-step. The
distribution of predicted error shows that a non-negligible number of pathlines contain
large errors, even at this unusually-high sampling.

Fig. 4. Uncertainty visualization for the pathlines in the 2D flow past a cylinder. The
figures show pathlines as thick tubes by mapping the point-wise error as radii, and
time as color. The visualization in (a) shows intersections in these tubes, implying
that subsequent FTLE-based analysis may contain arbitrary errors. (b) shows fewer
pathlines from a different view point.

resulting histogram in Fig. 3. As seen in the figure, for the vast majority of
pathlines, the predicted error is clustered around 0 (note the spike even on a
logarithmic scale) as we would expect from the comparatively high temporal
resolution. Nevertheless, there exist a relatively-small but not negligible set
of pathlines with a predicted error of about 100 grid cells. Even considering
the tendency to over-predict, this indicates that despite the high temporal
resolution, the stored data contains regions of concern. Imagining, e.g., an FTLE
computation with random pathline errors at the scale of multiple grid cells. These
types of errors at hundreds of pathlines could create noticeable artifacts.

Uncertainty visualization. We can use these estimations to visualize
uncertainty in pathlines. By mapping point-wise errors to radii, we can display
pathlines as thick tubes to understand the spatial manifestation of errors in
the vicinity of other pathlines. Fig. 4 show such visualizations for selected
pathlines, where color represents time and thickness represents estimated error.
In particular, the figure shows pathlines seeded from adjacent grid points in a
5× 5 neighborhood, which show tubes corresponding to neighboring seed points
intersecting. Here, we use the predicted error for a pathline to indicate the final
thickness and vary it linearly along the pathline.
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4.2 3D Lifted Ethylene Jet Flame

We next study the data presented in Section 1 to evaluate the given sampling
rate. As discussed earlier, for the lifted flame, true particle paths are available
at a 10× higher frequency than the velocity fields, providing a rare opportunity
to validate our technique with highly-accurate simulation data. Nevertheless,
since the pathlines errors are already large (see Fig. 2), and the given temporal
resolution is already substantially lower, we subsample the data only upto n = 3.
While this provides much-fewer data for the model, any further subsampling led
to substantial artifacts and no longer reasonably approximated the flow.

Comparing the predicted errors for the pathlines at ∆ = k, with the
computed errors (with respect to the in situ particles) leads to the scatter plot
in Fig. 5, which shows that the densest parts of the scatterplot lie on the 45◦

line corroborating that, on an average, our metric estimates the error reasonably
well. While the differences between our estimation and the true error has a high
variance, as one would expect in such a complex flow, errors in most pathlines
are estimated within about 100 grid points at an average error of around 20
grid cells. Even conservatively, one would, therefore, expect a random error in
pathlines of about 20 grid cells which would raise significant concerns about
the reliability of the underlying pathlines. Fig. 5 shows the residual plot and
highlights, once again, that whereas our model relatively over-predicts the error,
most pathlines lie near the origin suggesting a good prediction overall.

By mapping the point-wise errors to radii, we show pathlines as thick tubes
to visualize how the error evolves along the length of the pathline. As before,
the final width of the tubes are as large as the predicted per-pathline error with
the width scaled linearly along the length. Fig. 6 shows large errors accumulated
near the end of pathlines highlighting the potentially substantial errors in the
given resolution and its implication on any subsequent analysis.

5 Conclusion

This paper presents a new a posteriori estimate for errors in computation of
pathlines due to temporal subsampling of unsteady flows. Whereas the existing
error studies for pathline tracing either address other more-amenable sources
of errors or require the knowledge of the ground truth and/or the expected
time-scales of features in the flow, our technique estimates the error without
requiring any prior knowledge about a given flow. Instead, our model directly
analyzes relationships between error and temporal resolution for artificially
subsampled data to derive error estimates.

Although we do not make any assumptions about the underlying flow and
expect this technique to be generally applicable, it is important to better
understand how other factors, such as other classes of flow and different
integrators, would impact the model. We also assume that the given data is
reasonably sampled and, therefore, expect that further subsampling creates a
tractable loss of information. In cases where the initial data is already too sparse
for meaningful results, further subsampling may not provide useful insights.
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Fig. 5. Prediction of error in the pathlines of lifted flame. The figures correlate the
predicted error with the computed error (using insitu-particles) as scatter and residual
plots, showing that the prediction has low bias suggesting a good model fit, but contains
high variance due to fewer available pathlines and resolutions.

Fig. 6. Visualization of pathlines as tubes with radii mapped to point-wise error
describes the evolution of error along the pathline, as well has enables understanding
the sources of incorrect analysis in nearby pathlines.

For the lifted flame data, only a small number of pathlines (54,935) are
available, all of which are turbulent, and the errors are distributed rather
randomly (see Fig. 2). As a result, the relationship between the errors at
successive resolutions and the relationship between errors of different pathlines
are difficult to capture and the model shows high variance, resulting in
suboptimal predictions. In comparison, a much-larger set of pathlines is available
for training the model for the 2D flow past a cylinder (780,000). Furthermore,
many of these pathlines show coherent behavior, e.g., many pathlines are laminar
in a similar way, whereas, others produce similar turbulence. Therefore, we see
low variance in the prediction. Unsurprisingly, the model produces more-accurate
predictions when the training data set is large and coherent, whereas, in other
cases, the predictions are less accurate. Moreover, a majority of the pathlines are
relatively simple and, therefore, show less error. As a result, the regression model
is biased towards seeing such samples. With less training on complex pathlines,
the model tends to over-predict. On the other hand, almost all pathlines are
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turbulent and contain large errors in which case the model provides unbiased
results. The problems with creating biased prediction is a known limitations
of such a simple model and more advanced regression techniques could likely
improve the predictions. However, the results would be less interpretable and
more challenging to reproduce. Furthermore, the goal is not necessarily to
develop an accurate per-pathline prediction, which, given the chaotic nature of
turbulence, is likely an unrealistic goal. Instead, our approach aims to highlight
the overall trends to allow a qualitative assessment on which pathlines are likely
to reliably represent an underlying flow. The overarching challenge remains in
obtaining data that is sampled sufficiently finely, such that, a meaningful model
can be constructed through temporal subsampling. Another potential direction
of future work could be to reformulate the model as a classification task, where
one could predict the error as being one of three classes — low, medium or
high. This makes the learning problem more regularized, especially with respect
to the extremely-turbulent pathlines. In addition, an added constraint could be
to employ a loss function such as the Wasserstein loss [17], or use an ordinal
classification framework [16], which enforces the natural ordering of classes (low
error < medium error < high error) into the loss.

Discussion and Outlook. The analysis presented above raises serious concerns
about the reliability of post-hoc pathlines and their subsequent analysis. Notice
that even at impractically high temporal resolutions, the cylinder model suggests
that there exist hundreds or even thousands of pathlines with errors beyond five
grid cells. Considering that one of the primary reason to compute pathlines is
to derive FTLE fields, unstructured errors of this magnitude and beyond are
likely to cause severe artifacts. Clearly, the exact impact of such artifacts will
depend on the specific uses case, the nature of the flow, as well as a host of other
factors. However, this study suggests that evaluating the impact of temporal
subsampling should be an integral part of any pathline-based analysis to better
understand the inherent uncertainties and potential errors.

Approaches like the one presented here open a number of interesting
research directions and provide opportunities to re-engage the broader scientific
community with new explicitly validated approaches and reliable error
predictions. Furthermore, this work highlights the need to develop better
interpolation schemes to reduce the errors or new representations like the
Lagrangian one [1] to completely avoid temporal subsampling. In this context,
the simple model proposed above represents only a first step in developing more
general diagnostics for pathline-based analysis approaches.
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