
EasyChair Preprint
№ 3192

A Combinator-Based Superposition Calculus for
Higher-Order Logic (Technical Report)

Ahmed Bhayat and Giles Reger

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 18, 2020

A Combinator-Based Superposition Calculus for
Higher-Order Logic (Technical Report)

Ahmed Bhayat[0000−0002−1343−5084] and Giles Reger[0000−0001−6353−952X]

University of Manchester, Manchester, UK

Abstract. We present a refutationally complete superposition calculus for a ver-
sion of higher-order logic based on the combinatory calculus. We also introduce
a novel method of dealing with extensionality. The calculus was implemented in
the Vampire theorem prover and we test its performance against other leading
higher-order provers. The results suggest that the method is competitive.

1 Introduction

First-order superposition provers are often used to reason about problems in extensional
higher-order logic (HOL) [18,26]. Commonly, this is achieved by translating the higher-
order problem to first-order logic (FOL) using combinators. Such a strategy is sub-
optimal as translations generally sacrifice completeness and at times even soundness.
In this paper, we provide a modification of first-order superposition that is sound and
complete for a combinatory version of HOL. Moreover, it is graceful in the sense of
that it coincides with standard superposition on purely first-order problems.

The work is complementary to the clausal λ-superposition calculus of Bentkamp et
al. [4]. Our approach appears to offer two clear differences. Firstly, as our calculus is
based on the combinatory logic and first-order unification, it is far closer to standard
first-order superposition. Therefore, it should be easier to implement in state-of-the-
art first-order provers. Secondly, the >ski ordering that we propose to parameterise our
calculus with can compare more terms than can be compared by the ordering presented
in [4]. On the other hand, we suspect that for problems requiring complex unifiers, our
approach will not be competitive with clausal λ-superposition.

Developing a complete and efficient superposition calculus for a combinatory ver-
sion of HOL poses some difficulties. When working with a monomorphic logic it is
impossible to select a finite set of typed combinator axioms that can guarantee com-
pleteness for a particular problem [10]. Secondly, using existing orderings, combinator
axioms can superpose among themselves, leading to a huge number of consequences
of the axioms. If the problem is first-order, these consequences can never interact with
non-combinator clauses and are therefore useless.

We deal with both issues in the current work. To circumvent the first issue, we
base our calculus on a polymorphic rather than monomorphic first-order logic. The
second issue can be dealt with by an ordering that orients combinator axioms left-to-
right. Consider the S-combinator axiom Sx y z ≈ x z (y z). Assume that there exists
a simplification ordering � such that Sx y z � x z (y z). Then, since superposition
is only carried out on the larger side of literals and not at variables, there can be no

inferences between the S-axiom and any other combinator axiom. Indeed, in this case
the axioms can be removed from the clause set altogether and replaced by an inference
rule (Section 8).

No ground-total simplification ordering is known that is capable of orienting all ax-
ioms for a complete set of combinators.1 The authors suspect that no such simplification
ordering exists. Consider a KBO-like ordering. Since the variable x appears twice on
the right-hand side of the S-axiom and only once on the left-hand side, the ordering
would not be able to orient it. The same is the case for any other combinator which
duplicates its arguments.

In other, as yet unpublished, work [9], we have developed an ordering that enjoys
most of the properties of a simplification ordering, but lacks full compatibility with
contexts. In particular, the ordering is not compatible with what we call unstable con-
texts. We propose using such an ordering to parameterise the superposition calculus.
In the standard proof of the completeness of superposition, compatibility with contexts
is used to rule out the need for superposition at or beneath variables. As the ordering
doesn’t enjoy full compatibility with contexts, limited superposition at and below vari-
ables needs to be carried out. This is dealt with by the addition of an extra inference
rule to the standard rules of superposition, which we call SUBVARSUP (Section 3).

By turning combinator axioms into rewrite rules, the calculus represents a folding
of higher-order unification into the superposition calculus itself. Whilst not as goal-
directed as a dedicated higher-order unification algorithm, it is still far more goal-
directed than using SK-style combinators in superposition provers along with standard
orderings. Consider the conjecture ∃z.∀xy. z x y ≈ f y x. Bentkamp et al. ran an ex-
periment and found that the E prover [24] running on this conjecture supplemented
with the S- and K-combinator axioms had to perform 3756 inferences in order to find
a refutation [4]. Our calculus reduces this number to 427 inferences. With the addition
of rewrite rules for C-, B- and I-combinators, the required inferences reduces to 18.

We consider likely that for problems requiring ‘simple’ unifiers, folding unification
into superposition will be competitive with higher-order unification whilst providing the
advantages that data structures and algorithms developed for first-order superposition
can be re-used unchanged. The results of the empirical evaluation of our method can be
found in Section 9.

2 The Logic

The logic we use is polymorphic applicative first-order logic otherwise known as λ-free
(clausal) higher-order logic.

Syntax Let Vty be a set of type variables and Σty be a set of type constructors with
fixed arities. It is assumed that a binary type constructor→ is present in Σty which is
written infix. The set of types is defined:

Polymorphic Types τ ::= κ(τn) |α | τ → τ where α ∈ Vty and κ ∈ Σty

1 A complete set of combinators is a set of combinators whose members can be composed to
form a term extensionally equivalent to any given λ-term.

The notation tn is used to denote a tuple or list of types or terms depending on
the context. A type declaration is of the form Παn . σ where σ is a type and all type
variables in σ appear in α . Let Σ be a set of typed function symbols and V a set of
variables with associated types. It is assumed that Σ contains the following function
symbols, known as basic combinators:

S : Πατγ. (α→ τ → γ)→ (α→ τ)→ α→ γ

C : Πατγ. (α→ τ → γ)→ τ → α→ γ

B : Πατγ. (α→ γ)→ (τ → α)→ τ → γ

K : Παγ. α→ γ → α

I : Πα. α→ α

The set of terms over Σ and V is defined below. In what follows, type subscripts
are generally omitted.

Terms T ::= x | f〈 τn 〉 | tτ ′→τ t
′
τ ′ where f : Παn . σ ∈ Σ, x ∈ V and t, t′ ∈ T

The type of the term f〈 τn 〉 is σ{αn → τn }. Terms of the form t1 t2 are called
applications. Non-application terms are called heads. A term can uniquely be decom-
posed into a head and n arguments. Let t = ζ t′n . Then head(t) = ζ where ζ could
be a variable or constant applied to possibly zero type arguments. The symbol Cany de-
notes an arbitrary combinator, whilst C3 denotes a member of {S,C,B}. The S-, C- or
B-combinators are fully applied if they have 3 or more arguments. The K-combinator
is fully applied if it has 2 or more arguments and the I is fully applied if it has any argu-
ments. The symbols Cany and C3 are only used if the symbols they represent are fully
applied. Thus, in C3 tn , n ≥ 3 is assumed. The symbols x, y, z . . . are reserved for
variables, c, d, f . . . for non-combinator constants and ζ, ξ range over arbitrary function
symbols and variables and, by an abuse of notation, at times even terms. A head symbol
that is not a combinator applied to type arguments or a variable is called first-order.

Positions over terms: for a term t, if t ∈ V or t = f〈 τ 〉, then pos(t) = {ε} (type
arguments have no position). If t = t1 t2 then pos(t) = {ε} ∪ {i.p | 1 ≤ i ≤ 2, p ∈
pos(ti)}. Subterms at positions of the form p.1 are called prefix subterms. We define
first-order subterms inductively as follows. For any term t, t is a first-order subterm
of itself. If t = ζ tn , where ζ is not a fully applied combinator, then the first-order
subterms of each ti are also first-order subterms of t. The notation s〈u〉 is to be read
as u is a first-order subterm of s. Note that this defintion is subtly different to that
in [9] since subterms underneath a fully applied combinator are not considered to be
first-order.

Stable subterms: let LPP(t, p) be a partial function that takes a term t, a position p
and returns the longest proper prefix p′ of p such that head(t|p′) is not a partially applied
combinator if such a position exists. For a position p ∈ pos(t), p is a stable position
in t if p is not a prefix position and either LPP(t, p) is not defined or head(t|LPP(t,p))
is not a variable or combinator. A stable subterm is a subterm occurring at a stable
position. For example, the subterm a is not stable in f (S a b c), S (S a) b c (in both cases,
head(t|LPP(t,p)) = S) and a c (a is in a prefix position), but is in g a b and f (S a) b. A
subterm that is not stable is known as an unstable subterm.

The notation t[u] denotes an arbitrary subterm u of t. The notation t[u1, . . . , un]n,
at times given as t[u]n denotes that the the term t contains n non-overlapping subterms
u1 to un. By u[]n, we refer to a context with n non-overlapping holes.

Weak reduction: each combinator is defined by its characteristic equaaxiomtion;
Sx y z = x z (y z), Cx y z = x z y, Bx y z = x (y z), Kx y = x and Ix = x. A term t
weak-reduces to a term t′ in one step (denoted t −→w t

′) if t = u[s]p and there exists a
combinator axiom l = r and substitution σ such that lσ = s and t′ = u[rσ]p. The term
lσ in t is called a weak redex or just redex. By −→∗w, the reflexive transitive closure
of −→w is denoted. Weak-reduction is terminating and confluent as proved in [13]. By
(t)↓w, we denote the term formed from t by contracting its leftmost redex.

Literals and clauses: an equation s ≈ t is an unordered pair of terms and a literal
is an equation or the negation of an equation represented s 6≈ t. Let ax = l ≈ r
be a combinator axiom and xn be a tuple of variables not appearing in ax. Then ax
and l xn ≈ r xn for all n are known as extended combinator axioms. For example,
Ix1 x2 ≈ x1 x2 is an extended combinator axiom. A clause is a multiset of literals
represented L1 ∨ · · · ∨ Ln where each Li is a literal.

Semantics We follow Bentkamp et al. [6] closely in specifying the semantics. An
interpretation is a triple (U , E ,J) where U is a ground-type indexed family of non-
empty sets called universes and E is a family of functions Eτ,v : Uτ→v → (Uτ → Uv).
A type valuation ξ is a substitution that maps type variables to ground types and whose
domain is the set of all type variables. A type valuation ξ is extended to a valuation by
setting ξ(xτ) to be a member of U(τξ). An interpretation function J maps a function
symbol f : Παn . σ and a tuple of ground types τn to a member of U(σ{αi→τi}). An
interpretation is extensional if Eτ,v is injective for all τ, v and is standard if Eτ,v is
bijective for all τ, v.

For an interpretation I = (U , E ,J) and a valuation ξ, a term is denoted as follows:
JxKξI = ξ(x), Jf〈 τ 〉KξI = J (f, J τ Kξ) and JstKξI = E(JsKξI)(JtK

ξ
I). An equation s ≈ t

is true in an interpretation I with valuation function ξ if JsKξI and JtKξI are the same
object and is false otherwise. A disequation s 6≈ t is true if s ≈ t is false. A clause is
true if one of its literals is true and a clause set is true if every clause in the set is true.
An interpretation I models a clause set N , written I |= N , if N is true in I for all
valuation functions ξ.

As Bentkamp et al. point out in [4] there is a subtlety relating to higher-order mod-
els and choice. If, as is the case here, attention is not restricted to models that satisfy
the axiom of choice, naive skolemisation is unsound. One solution would be to imple-
ment skolemisation with mandatory arguments as explained in [20]. However, the in-
troduction of mandatory arguments considerably complicates both the calculus and the
implementation. Therefore, we resort to the same ‘trick’ as Bentkamp et al., namely,
claiming completeness for our calculus with respect to models as described above. This
holds since we assume problems to be clausified. Soundness is claimed for the imple-
mentation with respect to models that satisfy the axiom of choice and completeness can
be claimed if the axiom of choice is added to the clause set.

3 The Calculus

The calculus is closely modeled after Bentkamp et al.’s intensional non-purifying cal-
culus [6]. The extensionality axiom can be added if extensionality is required. The
main difference between our calculus and that of [6] is that superposition inferences are
not allowed beneath fully applied combinators and an extra inference rule is added to
deal with superposition beneath variables. We name the calculus clausal combinatory-
superposition. The word ‘clausal’ indicates that the calculus does not support boolean
reasoning.

Term Ordering We also demand that clausal combinatory-superposition is parame-
terised by a partial ordering � that is well-founded, total on ground terms, stable under
substitutions and has the subterm property and which orients all instances of combinator
axioms left-to-right. It is an open problem whether a simplification ordering enjoying
this last property exists, but it appears unlikely. However, for completeness, compati-
bility with stable contexts suffices. The >ski ordering introduced in [9] orients all in-
stances of combinator axioms left-to-right and is compatible with stable contexts. It is
not compatible with arbitrary contexts. For terms t1 and t2 such that t1 >ski t2, it is not
necessarily the case that t1 u >ski t2 u or that S t1 a b >ski S t2 a b. We show that by
not superposing underneath fully applied combinators and carrying out some restricted
superposition beneath variables, this lack of compatibility with arbitrary contexts can
be circumvented and does not lead to a loss of completeness. In a number of places in
the completeness proof, we assume the following conditions on the ordering (satisfied
by the >ski ordering). It may be possible to relax the conditions at the expense of an
increased number of inferences.

P1 For terms t, t′ such that t −→w t
′, then t � t′

P2 For terms t, t′ such that t � t′ and head(t′) is first-order, u[t] � u[t′]

The ordering � is extended to literals and clauses using the multiset extension as
explained in [21].

Inference Rules Clausal combinatory-superposition is further parameterised by a se-
lection function that maps a clause to a subset of its negative literals. Due to the require-
ments of the completeness proof, if a term t = x sn>0 is a maximal term in a clause
C, then a literal containing x as a first-order subterm may not be selected. A literal L
is called eligible if it is selected or there are no selected literals in the clause and it is
maximal. In the latter case, it is strictly eligible if it is strictly maximal. A variable x has
a bad occurrence in a clause C if it occurs in C at an unstable position. Occurrences of
x in C at stable positions are good.

Conventions: Often a clause is written with a single distinguished literal such as C ′ ∨
t ≈ t′. In this case:
1. The distinguished literal is always eligible.
2. The name of the clause is assumed to be the name of the remainder without the

dash.
3. If the clause is involved in an inference, the distinguished literal is the literal that

takes part.

Positive and negative superposition:

D′ ∨ t ≈ t′ C ′ ∨ [¬]s〈u〉 ≈ s′
SUP

(C ′ ∨D′ ∨ [¬]s〈t′〉 ≈ s′)σ
with the following side conditions:
1. The variable condition (below) holds
2. C is not an extended combinator ax-

iom;
3. σ = mgu(t, u);
4. tσ 6� t′σ;
5. s〈u〉σ 6� s′σ;

6. Cσ 6� Dσ or D is an extended com-
binator axiom;

7. (t ≈ t′)σ is strictly eligible in Dσ;

8. ([¬] s〈u〉 ≈ s′)σ is eligible in Cσ,
and strictly eligible if it is positive.

Definition 1. Let l = Cany xn and l ≈ r be an extended combinator axiom. A term
v um is compatible with l ≈ r if Cany = I and m = n or if Cany = K and m ≥ n− 1
or if Cany ∈ {B,C,S} and m ≥ n− 2.

Variable condition: u /∈ V . If u = x sn and D is an extended combinator axiom, then
D and u must be compatible.

Because the term ordering � is not compatible with unstable contexts, there are
instances when superposition beneath variables must be carried out. The SUBVARSUP
rule deals with this.

D′ ∨ t ≈ t′ C ′ ∨ [¬]s〈y un 〉 ≈ s′
SUBVARSUP

(C ′ ∨D′ ∨ [¬]s〈zt′ un 〉 ≈ s′)σ

with the following side conditions in addition to conditions 3 – 8 of SUP:

1. y has another occurrence bad in C;
2. z is a fresh variable;
3. σ = {y → z t};
4. t′ has a variable or combinator head;

5. n ≤ 1;

6. D is not an extended combinator ax-
iom.

The EQRES and EQFACT inferences:

C ′ ∨ u 6≈ u′
EQRES

C ′σ

C ′ ∨ u′ ≈ v′ ∨ u ≈ v EQFACT
(C ′ ∨ v 6≈ v′ ∨ u ≈ v′)σ

For both inferences σ = mgu(u, u′). For EQRES, (u 6≈ u′)σ is eligible in the premise.
For EQFACT, u′σ 6� v′σ, uσ 6� vσ, and (u ≈ v)σ is eligible in the premise.

In essence, the ARGCONG inference allows superposition to take place at prefix
positions by ‘growing’ equalities to the necessary size.

C ′ ∨ s ≈ s′ ARGCONG
C ′σ ∨ (sσ)x ≈ (s′σ)x

C ′σ ∨ (sσ)x2 ≈ (s′σ)x2

C ′σ ∨ (sσ)x3 ≈ (s′σ)x3

...

The literal sσ ≈ s′σ must be eligible in Cσ. Let s and s′ be of type α1 → · · · →
αm → β. If β is not a type variable, then σ is the identity substitution and the infer-
ence has m conclusions. Otherwise, if β is a type variable, the inference has an infinite
number of conclusions. In conclusions where n > m, σ is the substitution that maps β
to type τ1 → · · · → τn−m → β′ where β′ and each τi are fresh type variables. In each
conclusion, the xis are variables fresh for C. Note that an ARGCONG inference on a
combinator axiom results in an extended combinator axiom.

3.1 Extensionality

clausal combinatory-superposition can be either intensional or extensional. If a conjec-
ture is proved by the intensional version of the calculus, it means that the conjecture
holds in all models of the axioms. On the other hand, if a conjecture is proved by the
extensional version, it means that the conjecture holds in all extensional models (as
defined above). Practically, some domains naturally lend themselves to intensional rea-
soning whilst other to extensional. For example, when reasoning about programs, we
may expect to treat different programs as different entities even if they always produce
the same output when provided the same input. For the calculus to be extensional, we
provide two possibilities. The first is to add a polymorphic extensionality axiom. Let
diff be a polymorphic symbol of type Πτ1, τ2. (τ1 → τ2)→ (τ1 → τ2)→ τ1. Then the
extensionality axiom can be given as:

x (diff〈τ1, τ2〉 x y) 6≈ y (diff〈τ1, τ2〉 x y) ∨ x ≈ y
However, adding the extensionality axiom to a clause set can be explosive and is

not graceful. By any common ordering, the negative literal will be the larger literal and
therefore the literal involved in inferences. As it is not of functional type it can unify
with terms of atomic type including first-order terms.

In order to circumvent this issue, we developed another method of dealing with
extensionality. Unification is replaced by unification with abstraction. During the uni-
fication procedure, no attempt is made to unify pairs consisting of terms of functional
or variable type. Instead, if the remaining unification pairs can be solved successfully,
such pairs are added to the resulting clause as negative constraint literals. This process
works in conjunction with the negative extensionality rule presented below.

C ′ ∨ s 6≈ s′
NEGEXT

(C ′ ∨ s (sk〈α 〉 x) 6≈ s′ (sk〈α 〉 x))σ

where s 6≈ s′ is eligible in the premise, α and x are the free type and term variable of
the literal s 6≈ s′ and σ is the most general type unifier that ensures the well-typedness
of the conclusion.

We motivate this second approach to extensionality with an example. Consider the
clause set:

g x ≈ f x h g 6≈ h f

equality resolution with abstraction on the second clause produces the clause g 6≈ f.
A NEGEXT inference on this clause results in g sk 6≈ f sk which can superpose with
g x ≈ f x to produce ⊥.

Algorithm 1 Unification algorithm with constraints
function mguAbs(l, r)

let P be a set of unification pairs; P := {〈l, r〉} , D be a set of disequalities; D := ∅
let θ be a substitution; θ := {}
loop

if P is empty then return (θ,D), where D is the disjunction of literals in D
Select a pair 〈s, t〉 in P and remove it from P
if s coincides with t then do nothing
else if s is a variable and s does not occur in t then θ := θ ◦{s 7→ t}; P := P{s 7→ t}
else if s is a variable and s occurs in t then fail
else if t is a variable then P := P ∪ {〈t, s〉}
else if s and t have functional or variable type then D := D ∪ {s 6≈ t}
else if s and t have different head symbols then fail
else if s = f s1 . . . sn and t = f t1 . . . tn for some f then
P := P ∪ {〈s1, t1〉, . . . , 〈sn, tn〉}

The unification with abstraction procedure used here is very similar to that intro-
duced in [23]. Pseudocode for the algorithm can be found in Algorithm 1. The inference
rules other than ARGCONG and SUBVARSUP must be modified to utilise unification
with abstraction rather than standard unification. We show the updated superposition
rule. The remaining rules can be modified along similar lines.

C1 ∨ t ≈ t′ C2 ∨ [¬]s〈u〉 ≈ s′
SUP-WA

(C1 ∨ C2 ∨D ∨ [¬]s〈t′〉 ≈ s′)σ

where D is the possibly empty set of negative literals returned by unification. SUP-
WA shares all the side conditions of SUP given above. This method of dealing with
extensionality is not complete as shown in Appendix A.

4 Examples

We provide some examples of how the calculus works. Some of the examples utilised
come from Bentkamp et al.’s paper [4] in order to allow a comparison of the two meth-
ods. In all examples, it is assumed that the clause set has been enriched with the com-
binator axioms.

Example 1. Consider the unsatisfiable clause:

x a b 6≈ x b a

Superposing onto the left-hand side with the extended K axiom Kx1 x2 x3 ≈ x1 x3
results in the clause x1 b 6≈ x1 a. Superposing onto the left-hand side of this clause, this
time with the standard K axiom adds the clause x 6≈ x from which ⊥ is derived by an
EQRES inference.

Example 2. Consider the unsatisfiable clause set where f a � c:

f a ≈ c h (y b)(y a) 6≈ h (g(f b))(g c)

A SUP inference between the B axiom and the subterm y b of the second clause
adds the clause h(x1(x2 b))(x1(x2 a)) 6≈ h(g(f b))(g c) to the set. By superposing
onto the subterm x2 a of this clause with the equation f a ≈ c, we derive the clause
h(x1(f b))(x1 c) 6≈ h(g(f b))(g c) from which ⊥ can be derived by an EQRES infer-
ence.

Example 3. Consider the unsatisfiable clause set where f a � c. This example is the
combinatory equivalent of Bentkamp et al.’s Example 6.

f a ≈ c h (y (B g f) a) y 6≈ h (g c) I

A SUP inference between the extended I axiom Ix1 x2 ≈ x1 x2 and the subterm
y (B g f) a of the second clause adds the clause h (B g f a) I 6≈ h (g c) I to the set. Su-
perposing onto the subterm B g f a of this clause with the B axiom results in the clause
h (g (f a)) I 6≈ h (g c) I. Superposition onto the subterm f a with the first clause of the
original set gives h (g c)) I 6≈ h (g c) I from which ⊥ can be derived via EQRES.

Note that in Examples 2 and 3, no use is made of SUBVARSUP even though the
analogous FLUIDSUP rule in required in Bentkamp et al.’s calculus. We have been
unable to develop an example that requires the SUBVARSUP rule even though it is
required for the completeness result in Section 6.

5 Redundancy Criterion

In Section 6, we prove that the calculus is refutationally complete. The proof follows
that of Bachmair and Ganzinger’s original proof of the completeness of superposition
[2], but is presented in the style of Bentkamp et al. [6] and Waldmann [31]. As is normal
with such proofs, it utilises the concept of redundancy to reduce the number of clauses
that must be considered in the induction step during the model construction process
(view Section 6, Lemma 12, part (ii)).

We define a weaker logic by an encoding b c of ground terms into non-applicative
first-order terms with d e as its inverse. The encoding works by indexing each symbol
with its type arguments and argument number. For example, bfc = f0, bf〈 τ 〉ac =
f τ1 (a0). Terms with fully applied combinators as their head symbols are translated to
constants such that syntactically identical terms are translated to the same constant. For
example, bS t1 t2 t3c = s0. The weaker logic is known as the floor logic whilst the
original logic is called the ceiling logic. The encoding can be extended to literals and
clauses in the obvious manner as detailed in [5]. The function de is used to compare
floor terms. More precisely, for floor logic terms t and t′, t � t′ if dte � dt′e. It is
straightforward to show that the order � on floor terms is compatible with all contexts,
well-founded, total on ground terms and has the subterm property.

The encoding serves a dual purpose. Firstly, as redundancy is defined with respect
to the floor logic, it prevents the conclusion of all ARGCONG from being redundant.

Secondly, subterms in the floor logic correspond to first-order subterms in the ceiling
logic. This is of critical importance in the completeness proof.

An inference is the ground instance of an inference I if it is equal to I after the
application of some grounding substitution θ to the premise(s) and conclusion of I and
the result is still an inference.

A ground ceiling clause C is redundant with respect to a set of ground ceiling
clauses N if bCc is entailed by clauses in bNc smaller than itself and the floor of
ground instances of extended combinator axioms in bNc. An arbitrary ceiling clause C
is redundant to a set of ceiling clauses N if all its ground instances are redundant with
respect to GΣ(N), the set of all ground instances of clauses in N . Red(N) is the set of
all clauses redundant with respect to N .

For ground inferences other than ARGCONG, an inference with right premise C
and conclusion E is redundant with respect to a set of clauses N if bEc is entailed by
clauses in bGΣ(N)c smaller than bCc. A non-ground inference is redundant if all its
ground instances are redundant.

An ARGCONG inference from a combinator axiom is redundant with respect to
a set of clauses N if its conclusion is in N . For any other ARGCONG inference, it is
redundant with respectN if its premise is redundant with respect toN , or its conclusion
is in N or redundant with respect to N . A set N is saturated up to redundancy if every
inference with premises in N is redundant with respect to N .

6 Refutational Completeness

The completeness proof is presented in the style of Bentkamp et al. Let N be a set of
clauses containing the five combinator axioms and saturated up to redundancy by the
above set of inferences. Let GΣ(N) be the set of all ground instances of N . By the
fact that N is saturated up to redundancy and by the definition of inference redundancy
for ARGCONG inferences on combinator axioms, it follows that the following extended
combinator axioms are in N for all n ∈ N.

Ixx′n = x x′n

Kx y x′n = x x′n

Bx y z x′n = x (y z)x′n

Cx y z x′n = x z y x′n

Sx y z x′n = x z (y z)x′n

Thus, there exists an infinite set ECA ⊆ N consisting of all extended combinator
axioms. The set of all ground instances of clauses in ECA is denoted by GΣ(ECA)
and GΣ(ECA) ⊆ GΣ(N). As per [6] we build a model for bGΣ(N)c which can then
be lifted to a model of GΣ(N) and N . We define a term-rewriting system R∞ and use
it to construct an interpretation of bGΣ(N)c. We then use induction to prove that this
interpretation is a model of bGΣ(N)c.

Candidate Interpretation We define the set of rewrite rules RECA as {l → r | l ≈ r
∈ bGΣ(ECA)c and l � r}. By the condition that the term order orient all instances of
combinator axioms left-to-right, we have thatRECA is the set of all combinator axioms
turned into left-to-right rewrite rules.

Lemma 1. Let RECA = R′ECA ∪ {l → r}. Then, l is not reducible by any rule in
R′ECA.

Proof. Let l = bCany tn c and l′ = bCany t′n c be the left hand side of two difference
members of bGΣ(ECA)c. By the definition of the floor translation bc we have that
bCany tn c and bCany t′n c are both constants and bCany tn c 6= bCany t′n c proving the
lemma.

For every clause C ∈ bGΣ(N)c, induction on � is used to define sets of rewrite
rules EC and RC . Assume that ED has been defined for all clauses D ∈ bGΣ(N)c
such that D ≺ C. Then RC is defined as RECA ∪ (

⋃
D≺C ED). The set EC contains

the rewrite rule s→ t if the following conditions are met. Otherwise EC = ∅.
(a) C = C ′ ∨ s ≈ t
(b) s ≈ t is strictly maximal in C
(c) s � t
(d) C is false in RC
(e) C ′ is false in RC ∪ {s→ t}
(f) s is not reducible by any rule in RC

In this case C is called productive. R∞ is defined as RECA ∪ (
⋃
C∈bGΣ(N)cEC).

Note that due to the definition ofRC and condition (d) an extended combinator axiom is
never productive. We define a first-order interpretation TΣ(∅)/R from a rewrite system
R as follows. For an equation t ≈ t′, TΣ(∅)/R |= t ≈ t′ if and only if t ↔∗R t′. By
an abuse of notation, we use R to refer to both the rewrite system and the interpretation
that it induces.

Lemma 2. The rewrite systems RC and R∞ are confluent and terminating.

Proof. Condition (c) ensures that for every rule s→ t in RC or R∞ we have s � t. By
the well-foundedness of � we have that RC and R∞ must be terminating.

By Lemma 1 there are no critical pairs between rules in RECA. Using this fact and
condition (f), we have that there are no critical pairs between rules in RC and R∞.
Absence of critical pairs implies local confluence. Local confluence and termination
implies confluence.

Lemma 3. If a clause D is true in RD then it is true in RC for all C � D and in R∞.

Proof. As per Waldmann’s proof [31].

Lemma 4. If a clause D = D′ ∨ s ≈ t is productive then D′ is false and s ≈ t is true
in RC and R∞ for all C � D.

Proof. As per Waldmann’s proof [31].

Lemma 5. Every member of bGΣ(ECA)c is true in RC for all C ∈ bGΣ(N)c and in
R∞.

Proof. By construction of RECA, all members of bGΣ(ECA)c are true in RECA.
Thus, by definition of RC all members of bGΣ(ECA)c are true in RC .

Lemma 6 (Lifting non-SUP inferences). Let Cθ ∈ GΣ(N), such that the selected
literals in Cθ match those in C. Then, every EQRES, EQFACT and ground instance of
an ARGCONG inference from Cθ is the ground instance of a corresponding inference
from C.

Proof. The proof is identical to that in [6] ignoring purification.

Definition 2. A ground SUP inference between clauses Dθ = D′θ ∨ tθ ≈ t′θ and Cθ
is liftable in three cases:
1. The superposed subterm in Cθ is not at or below a variable in C and the variable

conditions holds between C and D
2. The superposed subterm inCθ is at a variable y inC which has another occurrence

bad in C, head(t′θ) is a combinator, and D is not a combinator axiom.
3. The superposed subterm in Cθ is below a variable y in C which has another oc-

currence bad in C, head(yθ) and head(t′θ) are combinators and D is not a com-
binator axiom.

Next, we link liftable SUP inference to non-ground SUP or SUBVARSUP inferences.
One of the tricky aspects of the proof is to show that if the inference occurs beneath a
variable, the z variable of the SUBVARSUP inference can be used to create a context
that weak reduces to an arbitrary conext surrounding a term t. To this end, the function
L M from λ-terms to combinatory terms is defined:

Lλx.xM = I

Lλx.tM = KLtM, x doesn’t occur in t
Lλx.tt′M = BLtMLλx.t′M, x only occurs free in t′

Lλx.tt′M = CLλx.tMLt′M, x only occurs free in t
Lλx.tt′M = SLλx.tMLλx.t′M, x occurs free in t and t′

The function enjoys the easy to prove property that for λ-free terms t1 and t2,
Lλx.t1M t2 −→w t1{x→ t2}.

Lemma 7 (Lifting SUP inferences). Let Dθ and Cθ be members of GΣ(N) where θ
is a substitution and the selected literals of D,C ∈ N correspond to those of Dθ and
Cθ. Then for every liftable SUP inference between Cθ and Dθ, there exists a ground
substitution θ′ such that Cθ = Cθ′, Dθ = Dθ′ and the conclusion of the inference
between Cθ and Dθ is combinatory congruent to the conclusion of the θ′ instance of a
SUP or SUBVARSUP inference between C and D.

Proof. We assume that D = D′ ∨ t ≈ t′ and that C = C ′ ∨ [¬]s ≈ s′ and that the
inference has the form:

D′θ ∨ tθ ≈ t′θ C ′θ ∨ [¬]sθ〈tθ〉|p ≈ s′θ
SUP

C ′θ ∨D′θ ∨ [¬]sθ〈t′θ〉|p ≈ s′θ

where tθ ≈ t′θ is strictly eligible, [¬]sθ ≈ s′θ is strictly eligible if positive and eligible
if negative, Cθ 6- Dθ, tθ 6- t′θ and sθ 6- s′θ. The proof is broken into two cases.
Case 1: tθ is not at or beneath a variable in C. In this case, p must be a position of
s. Let u = s|p. We have that θ is a unifier of u and t and therefore, there must exist
an idempotent mgu σ of t and u. The inference conditions can be lifted. Cθ 6- Dθ
implies C 6- D, tθ 6- t′θ implies t 6- t′ and sθ 6- s′θ implies s 6- s′. Moreover
tθ ≈ t′θ being strictly eligible in Dθ implies that t ≈ t′ is strictly eligible in D and
[¬]sθ ≈ s′θ being (strictly) eligible in Cθ implies that [¬]s ≈ s′ is (strictly) eligible in
C. By liftability, we have that the variable condition holds betweenD and C. Therefore
there is the following SUP inference between D and C:

D′ ∨ t ≈ t′ C ′ ∨ [¬]sθ〈t〉|p ≈ s′
SUP

(C ′ ∨D′ ∨ [¬]s〈t′〉|p ≈ s′)σ

We have (C ′ ∨D′ ∨ [¬]s〈t′〉|p ≈ s′)σθ = (C ′ ∨D′ ∨ [¬]s〈t′〉|p ≈ s′)θ = C ′θ ∨D′θ
∨[¬]sθ〈t′θ〉|p ≈ s′θ by the idempotency of σ proving that the conclusion of the ground
inference is the θ-ground instance of the conclusion of the non-ground inference and
we can take θ′ = θ.
Case 2: tθ is at or beneath a variable in C which has another instance bad in C. In
this case, there must exist positions p′ and p′′ such that p = p′.p′′ and s|p′ = y un .
Let u = s|p′ . As per case 1, (strict) eligibility of the ground literals implies (strict)
eligibility of the non-ground literals. Further t′θ having a combinator head implies that
t′ has a variable or combinator head.

If the inference is beneath a variable in C, then by liftability, yθ = Cany vm>0 . If
u = y un>1 , then uθ = Cany vm (un)θ. Thus, tθ which is a proper subterm of uθ
would be beneath a fully applied combinator which is impossible. Therefore, we have
that n ≤ 1. If the inference is at a variable in C, then we must have n = 0 otherwise
yθ = tθ would not be a first-order subterm.

Thus in both cases n ≤ 1 and there is a SUBVARSUP inference between C and D:

D′ ∨ t ≈ t′ C ′ ∨ [¬]sθ〈y un 〉|p′ ≈ s′
SUBVARSUP

(C ′ ∨D′ ∨ [¬]s〈zt′ un 〉|p′ ≈ s′){y → zt}

where z is a fresh variable. Define the substitution θ′ that maps z to Lλx.(yθ)〈x〉|p′′M and
all other variablesw towθ. Since z is fresh,Cθ = Cθ′ andDθ = Dθ′. Further, we have
that (zt′)θ′ = Lλx.(yθ)〈x〉|p′′Mt′θ →∗w yθ〈t′θ〉|p′′ and (zt)θ′ →∗w yθ〈tθ〉|p′′ = yθ.
Therefore:

(C ′ ∨D′ ∨ [¬]s〈zt′ un 〉|p′ ≈ s′){y → zt}θ′

= (C ′ ∨D′ ∨ [¬]s〈Lλx.(yθ)〈x〉|p′′Mt′ un 〉 ≈ s′)θ[y → zθ′tθ]

→∗w C ′θ ∨D′θ ∨ [¬]sθ〈t′θ〉|p ≈ s′θ

proving that the conclusion of the ground inference is combinatory congruent to the
θ′-instance of the conclusion of the non-ground inference.

Model Construction

In this section the candidate interpretation R∞ developed in the previous section is
shown to be a model of bGΣ(N)c. As per the standard proof, this is done by induction
on the clause order�. For some fixed clause bCθc ∈ bGΣ(N)c, by Lemma 5, we have
that all members of bGΣ(ECA)c are true in RbCθc. By the induction hypothesis, we
have that for all clauses bDθc ∈ bGΣ(N)c smaller than Cθ are true in RbCθc. In the
induction step, it is shown that this implies that bCθc is true in RbCθc.

Lemma 8 proves that the conclusion of liftable inferences are entailed by clauses
smaller than the larger premise along with clauses in bGΣ(ECA)c. Its proof is simi-
lar to that of its first-order counterpart with the added complication of having to deal
with the fact that the conclusion of the ground inference is not necessarily an instance
of the conclusion of the non-ground inference. Lemma 11 is about non-liftable SUP
inferences. The purpose of the lemma is to show that if there is a non-liftable SUP in-
ference onto a ground clause C, then C must be true in any interpretation that shares
the properties of RbCc.

The lemma identifies the various ways in which a ground inference may not be
liftable and then shows that for each, C is entailed by clauses smaller than itself in
bGΣ(N)c, clauses in bGΣ(ECA)c and ¬bD′θc where Dθ is the minor premise. The
general proof strategy is to show that there exists another clause C ′ in GΣ(N) such that
C � C ′. By assumption C ′ is true. To show that this implies Cθ is true, it needs to be
proven that bCc can be rewritten to bC ′c by equations assumed to be true inRbCc. This
is difficult, because in the floor logic, rewriting cannot take place beneath a combinator.
This is where the assumption that all equalities in bGΣ(ECA)c are true comes into use.
Lemmas 9 and 10 are crucial in this stage of the proof. The conclusion of Lemma 9 is
stronger than that of Lemma 10, but it has stronger assumptions as well.

Lemma 8. Let Cθ,Dθ ∈ GΣ(N) where the selected literals of C,D ∈ N correspond
with those of Cθ and Dθ. Let E be the conclusion of a liftable SUP inference from Cθ
and Dθ or an EQRES or EQFACT inference from Cθ. Assume that Cθ and Dθ are
not redundant with respect to GΣ(N). Then, bEc is entailed by clauses in bGΣ(N)c
smaller than bCθc along with clauses in bGΣ(ECA)c.

Proof. By Lemmas 6 and 7, we have that the conclusion of a SUP inference form Cθ
and Dθ or an EQRES or EQFACT inference from Cθ is combinatory congruent to the
conclusion of the θ′-ground instance of an inference from C and D (or just C as the
case may be) where θ′ is a ground substitution such that Dθ′ = Dθ and Cθ′ = Cθ.
Let E′ be the conclusion of the inference between C and D, we have that E′θ′ →∗w E.
Because N is saturated up to redundancy, the inference is redundant with respect to N .
Thus, the θ′ ground instance of the inference is redundant with respect to GΣ(N). By
the definition of inference redundancy, this means that bE′θ′c is entailed by clauses in
bGΣ(N)c smaller than bCθ′c = bCθc . Using this and the fact that E′θ′ →∗w E, we
have that bEc is entailed by clauses in bGΣ(N)c smaller than bCθc along with clauses
in bGΣ(ECA)c.

Next, terminology is defined that is used in the following couple of Lemmas and the
rest of the paper. Let R be an interpretation and t and t′ be ground ceiling terms. Then,

t ∼R t′ stands for R |= btc ≈ bt′c. Where the interpretation is obvious, the subscript
is omitted.

Lemma 9. Let R be an interpretation such that every member of bGΣ(ECA)c holds
in R. Let u and u′ be ground terms such that u s ∼R u′ s for every type correct tuple
of ground terms s . Then for ground terms s and s′ such that s and s′ only differ at
positions where s contains u and s′ contains u′, we have s ∼R s′.

Proof. The proof proceeds by showing how equations that are true in R can be used to
rewrite s into s′. SinceR is a model of bGΣ(ECA)c all ground instances of combinator
and extended combinator axioms are true in R.

Let s0 = bsc and s̃0 = bs′c. Terms s1, s2, s3, . . . are defined inductively as fol-
lows: si+1 is formed from si by rewriting all subterms of the form bu v c in si to
bu′ v c and then reducing the outermost leftmost weak-redex in the resulting term.
Terms s̃1, s̃2, s̃3, . . . are also defined inductively: s̃i+1 is formed from s̃i by reducing
the left-most outermost weak-redex in s̃i.

The algorithm maintains the invariant that for all i, dsie and ds̃ie are identical other
than at positions where dsie contains a u and ds̃ie contains a u′. Let s̃∗ be the final
term in the s̃n series. Such a term must exist as weak reduction is terminating. Let s∗
be the equivalent term in sn series. We show that s∗ = s̃∗.

Assume that s∗ 6= s̃∗. Consider the outermost position at which ds∗e and ds̃∗e
differ. If this position is not beneath a fully applied combinator in ds∗e, then s∗ and s̃∗
must contain bu v c and bu′ v′ c at the corresponding positions. But this is impossible
since bu v c would have been rewritten to bu′ v′ c at the previous step of the algorithm.
Therefore, assume that the outermost position at which ds∗e and ds̃∗e differ is beneath
a fully applied combinator in ds∗e. Since we are considering the outermost position,
this combinator cannot be a part of u. Thus, we must have that the same combinator
occurs fully applied in ds̃∗e. This contradicts the fact that s̃∗ is in weak normal form.
Therefore the original assumption is false and s∗ = s̃∗.

Lemma 10. Let R be an interpretation such that every member of bGΣ(ECA)c holds
in R. Let u and u′ be ground terms such that u ∼R u′. Let s[]n be a ground context
with n holes at stable positions. Then s[u]n ∼R s[u′]n.

Proof. The proof proceeds by induction on ‖s[]n‖. In the base case ‖s[]n‖ = 0 and
no instance of u occurs beneath a fully applied combinator. By the definition of stable
positions, no instance of u occurs with arguments. Thus, bs[u]nc can be rewritten to
bs[u′]nc directly using the equation bu ≈ u′c.

For the inductive case, we have that ‖s[]n‖ > 0. This splits into two cases depending
on whether any of the holes are underneath the leftmost fully applied combinator or not.

Case 1: There are no holes underneath the leftmost fully applied combinator. Consider
the context s′[]n formed by reducing the leftmost fully applied combinator in s. Because
bGΣ(ECA)c holds in R, we have s[u]n ∼R s′[u]n. By the induction hypothesis we
have s′[u]n ∼R s′[u′]n and then using the relevant member of bGΣ(ECA)c, we have
s′[u′]n ∼R s[u′]n. By the transitivity of ∼R, we have s[u]n ∼R s[u′]n.

Case 2: The leftmost fully applied combinator is of the form Cany tk where at least
one ti has a hole as a proper subterm. Note that by the definition of stable subterms,
none of the tis can be a hole. Consider the context s′[]m formed by replacing Cany tk
with (Cany tk) ↓w in s. Because any holes occurring as subterms of Cany tk occur at
stable positions, any holes occurring in (Cany tk) ↓w also occur at stable positions.
Thus all holes in s′[]m occur at stable positions. Because bGΣ(ECA)c holds in R, we
have s[u]n ∼R s′[u]m. By the induction hypothesis we have s′[u]m ∼R s′[u′]m and
then using the relevant member of bGΣ(ECA)c, we have s′[u′]m ∼R s[u′]n. By the
transitivity of ∼R, we have s[u]n ∼R s[u′]n.

Lemma 11. Let Cθ,Dθ ∈ GΣ(N), where the selected literals of Cθ = C ′θ ∨ [¬]sθ ≈
s′θ and Dθ = D′θ ∨ tθ ≈ t′θ match those of C,D ∈ N . Consider a non-liftable SUP
inference between Cθ and Dθ. Assume that Cθ and Dθ are not redundant with respect
to GΣ(N). Then bCθc is entailed by clauses in bGΣ(N)c smaller than it, clauses in
bGΣ(ECA)c and ¬bD′θc.

Proof. Assume that the sθ � s′θ and tθ � t′θ. Let R be an interpretation such that
clauses in bGΣ(N)c smaller than bCθc and all members of bGΣ(ECA)c are true in
R whilst bD′θc is false. By the SUP conditions, we have that either Cθ � Dθ or
Dθ ∈ GΣ(ECA) and in both cases R |= btθ ≈ t′θc. We need to show that this implies
R |= bCθc.

The inference can be non-liftable for one of the following reasons:
1. The variable condition not holding between C and D;
2. It is at or below a variable in C all of whose other occurrences are good in C;
3. It is below a variable x in C and xθ has a first-order head;
4. It is at or below a variable in C and t′θ has a first-order head;
5. It is at or below a variable in C and D is an extended combinator axiom.

We fix some terminology common to cases 2–5. Let x be the variable at or beneath
which the inference takes place. Then tθ is a first-order subterm of xθ. Let v be the
result of replacing tθ by t′θ in xθ at the relevant position. Let C ′ = Cθ[x→ v].

Case 1: The variable condition fails to hold because D is an extended combinator
axiom not compatible with u By the definition of compatibility, u = x sm and t =
Cany xn ≈ t′ and Cany xn−m is a fully applied combinator. Thus, xθ = (Cany xn−m)θ
is also a fully applied combinator. Let C ′′ = C{x 7→ ((Cany xn−m)θ) ↓w}. Because
the maximal weak reduction from the largest term in Cθ is greater than the maximal
weak reduction from the largest term inC ′′θ, we haveCθ � C ′′θ and thusR |= bC ′′θc.
But then, as Cθ −→w C ′′θ and all members of bGΣ(ECA)c are true in R, we have
R |= bCθc by congruence.
Case 2: The superposed subterm tθ is at or beneath a variable x inC all of whose other
occurences are good in C. From the existence of the inference between Cθ and Dθ, it
follows that tθ must occur at a first-order and thus stable position in xθ. Likewise, the
existence of the inference implies that the xθ involved in the inference occurs at a stable
position within sθ. For all other instances of xθ, the fact that x is good in C implies
that xθ is stable in Cθ. Thus, by compatibility with stable contexts and the fact that
tθ � t′θ, we have that Cθ � C ′ and thus by assumption on R, R |= bC ′c. Since Cθ
and C ′ only differ at stable positions where one contains tθ and the other t′θ, Lemma

10 can be used to show that every literal of Cθ is equivalent in R to the corresponding
literal of C ′. This implies R |= bCθc by congruence.
Case 3: The superposed subterm tθ is beneath a variable x in C and xθ has a first order
head. We have that xθ = (f sn)〈tθ〉 and v = (f sn)〈t′θ〉. Thus, xθ � v follows from
the ordering’s compatibility with stable context. As v has a first order head and C ′ is
formed from Cθ by replacing xθ with v, Cθ � C ′ follows from property P2 of the
ordering. Hence, R |= bC ′c and R |= bCθc via Lemma 9 and congruence.
Case 4: The superposed subterm tθ is at or beneath a variable x in C and t′θ has a
first order head. We have tθ � t′θ and C ′ can be formed from Cθ by replacing all
occurrences of t with t′. Thus, Cθ � C ′ follows from property P2 of the ordering.
Hence, R |= bC ′c.

We perform a case analysis depending on whether [¬]sθ ≈ s′θ is a maximal or
selected literal in Cθ. First though, note that for all type correct tuple of ground terms
u , if tθ u and t′θ u are smaller than the maximal term of Cθ then

R |= btθ u ≈ t′θ u c (1)

This can be shown exactly as Bentkamp et al. do [5]. If [¬]sθ ≈ s′θ is the maximal
literal in Cθ, consider the clause C ′′ formed by rewriting btθc to bt′θc wherever pos-
sible in bCθc. As tθ is a first-order subterm of the maximal term of Cθ, sθ, we have
that every term of C ′′ is smaller than the maximal term of bCθc. Further, we have that
dC ′′e and C ′ differ only at positions where dC ′′e contains a tθ and C ′ contains a t′θ.
We prove thatC ′′ can be rewritten to bC ′c using equalities true inR. HenceR |= bCθc
via congruence.

Let l ≈ r be an arbitrary literal of C ′′ and l′ ≈ r′ be the corresponding literal in
bC ′c. Then, since dC ′′e and C ′ only differ where dC ′′e contains a tθ and C ′ contains
a t′θ, we have that l = bk[tθn]c and l′ = bk[t′θn]c for some context k. We provide
an algorithm for rewriting l into l′ using equalities true in R. The same can be done for
r and r′ proving that the literal l ≈ r can be rewritten to the literal l′ ≈ r′. Since the
literal was chosen arbitrarily, this proves that every literal of C ′′ can be rewritten to the
corresponding literal of bC ′c in R.

The algorithm is the same as that in Lemma 9. It is repeated here for clarity. Let
l0 = blc and l̃0 = bl′c. Terms l1, l2, l3, . . . are defined inductively as follows: li+1 is
formed from li by rewriting all subterms of the form btθ u c in li to bt′θ u c and then
reducing the outermost leftmost weak-redex in the resulting term. Terms l̃1, l̃2, l̃3, . . .
are also defined inductively: l̃i+1 is formed from l̃i by reducing the left-most outermost
weak-redex in l̃i.

The argument that the algorithm terminates and that l∗ and l̃∗ are syntactically iden-
tical is the same as for Lemma 9. The reason Lemma 9 cannot be invoked here is that
using Lemma 9 would require that R |= btθ w ≈ t′θ w c for every type correct tuple
of terms w . In the current context, this does not hold. It therefore remains to justify
the rewrites from each li to li+1 in the above algorithm. Both l0 and l̃0 are smaller
than bsθc. Reducing a leftmost redex of a term results in a smaller term. Likewise, by
property P2 of the ordering, rewriting a term of the form btθ u c to one of the form
bt′θ u c results in a smaller term. Therefore, for all i > 0, li ≺ li−1 ≺ . . . ≺ l0 ≺ bsθc
justifying the use of Equation 1.

If [¬]sθ ≈ s′θ is a selected literal, then by the selection criteria x cannot be the
head of the maximal term of C. Therefore, the algorithm provided above can be used
to rewrite C ′′ into bC ′c proving that R |= Cθ by congruence.
Case 5: The superposed subterm tθ is at or beneath a variable x in C and tθ ≈ t′θ is
a member of GΣ(ECA). In this case Cθ −→w C ′ and thus Cθ � C ′ by property P1
of the ordering. Hence, R |= bC ′c. Since all members of bGΣ(ECA)c are true in R,
every side of a literal in Cθ is equal in R to the equivalent term in C ′ and R |= Cθ
follows by congruence.

Lemma 12 (R∞ is a model). Let bCθc ∈ bGΣ(N)c, then

(i) EbCθc = ∅ if and only if RbCθc |= Cθ;
(ii) if Cθ is redundant with respect to GΣ(N) then bCθc is true in RbCθc;
(iii) bCθc holds in R∞ and RD for all D ∈ bGΣ(N)c, D � Cθ;
(iv) if Cθ has selected literals, then RbCθc |= bCθc;
(v) if Cθ is a member of GΣ(ECA), then RbCθc |= bCθc.

Proof. The proof proceeds by induction on ground clauses of the floor logic. We assume
that (i) to (v) are satisfied by all clauses D ∈ bGΣ(N)c such that bCθc � D. We prove
that (i) to (v) hold for Cθ. The ⇒ direction of (i) follows from the construction. Part
(iii) follows from (i) by Lemmas 3 and 4. Part (v) is a straightforward extension of
Lemma 5. Therefore, it remains to prove the⇐ direction of (i) and (ii) and (iv) for the
case where Cθ /∈ GΣ(ECA). We assume that the selected literals of Cθ match those
of C ∈ N .

Case 1: Cθ is redundant with respect to bGΣ(N)c. Then bCθc is entailed by clauses
in bGΣ(N)c that are smaller than it and by members of bGΣ(ECA)c. By parts (iii) and
(v) of the induction hypothesis, these clauses are true in RbCθc and therefore bCθc is
true in RbCθc.

Case 2: Cθ = C ′θ ∨ sθ 6≈ s′θ and Cθ is not redundant with respect to GΣ(N).

Case 2.1: sθ = s′θ. In this case, there is an EQRES inference from Cθ:

C ′θ ∨ sθ 6≈ s′θ
EQRES

C ′θ

by Lemma 8, we have that bC ′θc is entailed by clauses in bGΣ(N)c smaller than bCθc.
By part (iii) of the induction hypothesis, these clauses are true in RbCθc. Therefore,
bC ′θc and thus bCθc are true in RbCθc.

Case 2.2: sθ � s′θ. If RbCθc |= bsθ 6≈ s′θc then the lemma follows. Therefore,
assume that it doesn’t hold and bsθc ↓RbCθc bs′θc. There must exist some rule in
RbCθc which reduces sθ. Such a rule must have been produced by some clause bDθc =
bD′θ∨tθ ≈ t′θc. Without loss of generality, it is assumed that theC andD are variable
disjoint, so that the same substitution θ can be used. It is also assumed that the selected
literals of Dθ match those of D. Then there exists the following SUP inference:

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ〈tθ〉 6≈ s′θ
SUP

C ′θ ∨ D′θ ∨ sθ〈t′θ〉 6≈ s′θ

by Lemma 11, if the inference is non-liftable then bCθc is entailed by clauses in
bGΣ(N)c that are smaller than it, by ¬bD′θc and by clauses in bGΣ(ECA)c. By
part (iii) of the induction hypothesis, clauses in bGΣ(N)c smaller than Cθ are true in
RbCθc. By Lemma 5 all members of bGΣ(ECA)c are true in RbCθc. By Lemma 4
¬bD′θc is true in RbCθc. Therefore Cθ is true in RbCθc.

If the inference is liftable then by Lemma 8, we have that bC ′θ ∨ D′θ ∨ sθ〈t′θ〉 6≈ s′θc
is entailed by clauses in bGΣ(N)c smaller than bCθc along with clauses in bGΣ(ECA)c.
By part (iii) of the induction hypothesis and Lemma 5, all these clauses are true in
RbCθc. Therefore, bC ′θ ∨ D′θ ∨ sθ〈t′θ〉 6≈ s′θc holds in RbCθc. Since bD′θc is
false in RbCθc, either RbCθc |= bC ′θc or RbCθc |= bsθ〈t′θ〉 6≈ s′θc. In the latter
case, RbCθc |= bsθ〈tθ〉 6≈ s′θc because btθc → bt′θc ∈ RbCθc. Thus, in both cases
RbCθc |= bCθc.

Case 3: Cθ is not redundant and contains no negative literals. In this case Cθ = C ′θ ∨
sθ ≈ s′θ. If EbCθc = {bsθc → bs′θc} or RbCθc |= C ′θ or sθ = s′θ then RbCθc |=
Cθ. Therefore, assume EbCθc = ∅, sθ 6= s′θ and C ′θ is false in RbCθc.

Case 3.1: bsθ ≈ s′θc is not strictly maximal in Cθ. In this case, Cθ can be written as
C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ where tθ = sθ and t′θ = s′θ. Then there is an EQFACT
inference from Cθ:

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ EQFACT
C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

by Lemma 8 the conclusion of the inference is entailed by clauses in bGΣ(N)c smaller
than bCθc and therefore by part (iii) of the induction hypothesis true in RbCθc. Since
t′θ = s′θ, bt′θ 6≈ s′θc is false in RbCθc. Therefore btθ ≈ t′θc is true in RbCθc and
hence bCθc is true in RbCθc.

Case 3.2: The literal sθ ≈ s′θ is strictly maximal and bsθc is reducible by some rule in
RbCθc. This rule must be produced by a clause bDθc = bD′θ ∨ tθ ≈ t′θc. Without loss
of generality, we assume thatD and C are variable disjoint so that the same substitution
θ can be used. We also assume that the selected literals of D match those of Dθ. then
there is an SUP inference:

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ〈tθ〉 ≈ s′θ
SUP

C ′θ ∨ D′θ ∨ sθ〈t′θ〉 ≈ s′θ
by Lemma 11, if the inference is non-liftable then bCθc is entailed by clauses in
bGΣ(N)c that are smaller than it, by ¬bD′θc and by clauses in bGΣ(ECA)c. By
part (iii) of the induction hypothesis, clauses in bGΣ(N)c smaller than Cθ are true in
RbCθc. By Lemma 5 all members of bGΣ(ECA)c are true in RbCθc. By Lemma 4
¬bD′θc is true in RbCθc. Therefore Cθ is true in RbCθc.

If the inference is liftable then by Lemma 8, we have that bC ′θ ∨ D′θ ∨ sθ〈t′θ〉 ≈ s′θc
is entailed by clauses in bGΣ(N)c smaller than bCθc along with clauses in bGΣ(ECA)c.
By part (iii) of the induction hypothesis and Lemma 5, all these clauses are true in
RbCθc. Therefore, bC ′θ ∨ D′θ ∨ sθ〈t′θ〉 ≈ s′θc holds in RbCθc. Since bD′θc is
false in RbCθc, either RbCθc |= bC ′θc or RbCθc |= bsθ〈t′θ〉 ≈ s′θc. In the latter
case, RbCθc |= bsθ〈tθ〉 ≈ s′θc because btθc → bt′θc ∈ RbCθc. Thus, in both cases
RbCθc |= bCθc.

Case 3.3: sθ ≈ s′θ is strictly maximal and bsθc is not reducible by any rule in RbCθc.
By assumption we have that EbCθc = ∅. Assume that bCθc is false in RbCθc. By the
construction of EbCθc, it must be the case that C ′θ is true in RbCθc∪{bsθc→ bs′θc}.
Thus C ′θ must have the form C ′′θ ∨ tθ ≈ t′θ where the literal btθ ≈ t′θc is true
in RbCθc ∪ {bsθc → bs′θc}, but not in RbCθc. By the confluence of RbCθc, this
is equivalent to saying btθc ↓RbCθc∪{bsθc→bs′θc} bt′θc, but not btθc ↓RbCθc bt′θc.
Therefore, the rule bsθc→ bs′θc must be used at least once in rewriting either tθ or t′θ
to a normal form. As sθ � s′θ, tθ � t′θ and sθ ≈ s′θ � tθ ≈ t′θ, we have that sθ � t′θ
and sθ � tθ. But the fact that bsθc → bs′θc is used in the rewrite proof implies that
sθ = tθ and that the rewrite proof looks like this: btθc → bs′θc →∗ u ∗← bt′θc.
Hence, we have that RbCθc |= bs′θ ≈ t′θc. Now consider the following EQFACT
inference from Cθ:

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ EQFACT
C ′′θ ∨ t′θ 6≈ s′θ ∨ tθ ≈ t′θ

by Lemma 8 the conclusion of the inference is entailed by clauses in bGΣ(N)c smaller
than bCθc and therefore by part (iii) of the induction hypothesis true in RbCθc. Since
bt′θ 6≈ s′θc is false in RbCθc, btθ ≈ t′θc is true in RbCθc and hence bCθc is true in
RbCθc contradicting our assumption.

7 Construction of Higher-order Model

In this section we lift the model R∞ of bGΣ(N)c to an interpretation R↑∞. We then
show that R↑∞ is a model of GΣ(N). We use the notation t ∼ t′ as a shorthand for
t ∼R∞ t′ which, as explained, is equivalent to R∞ |= bt ≈ t′c.

Lemma 13. Let t and t′ be ground ceiling terms such that btc→ bt′c is a rule in R∞.
Then, for all type correct tuple of terms u , t u ∼ t′ u .

Proof. The rule btc → bt′c must stem from a productive clause of the form bCθc ≈
bC ′θ∨ t1θ ≈ t2θc where t1θ ≈ t and t2θ ≈ t′. By the definition of a productive clause
and part (iv) of Lemma 12, t ≈ t′ is strictly eligible in Cθ and therefore t1 ≈ t2 is
strictly eligible in C. Further, t and t′ are of functional type, so t1 and t2 must be of
functional or polymorphic type. Thus, there is an ARGCONG inference from C with
conclusions (C ′ ∨ t1 xn ≈ t2 xn)σ for all possible n. Let these conclusions be called
E1 . . . En.

By part (ii) of Lemma 12, Cθ is not redundant and therefore C is not redundant.
ThusEi is either inN orRed(N) for i ≤ i ≤ n. The ground instance of bEic for some
i, bC ′θ ∨ t ui ≈ t′ ui c is thus either in bGΣ(N)c or entailed by clauses in bGΣ(N)c.
Therefore it is true in R∞. By Lemma 4, we have that bC ′θc is false in R∞ which
implies that bt ui ≈ t′ ui c must be true.

Lemma 14. Let t and t′ be ground ceiling terms such that t ∼ t′ in a single step, but
neither btc → bt′c nor bt′c → btc is a rule of R∞. Let u be a ceiling ground term of
the relevant type. Then, t u ∼ t′ u.

Proof. It must be the case that there is a single position at which btc and bt′c differ. Let
v be the subterm in t at this position and and v′ be the subterm in t′ at the same position.
It must also be the case that bvc→ bv′c or bv′c→ bvc is a rule inR∞. Without loss of
generality, assume that it is the first. By Lemma 13, we have that v u ∼ v′ u for every
type-correct tuple of terms u. Now, Lemma 9 can be invoked to show that t u ∼ t′ u
since t u and t′ u only differ at a position where one contains v and the other v′.

Lemma 15. For ground ceiling terms, t, t′ and u, if t ∼ t′ then t u ∼ t′ u.

Proof. The proof proceeds by induction on the number of rewrite steps between btc
and bt′c. If t = t′ then the Lemma follows trivially. Let the number of rewrite steps
between btc and bt′c be n. Let t′′ be the term such that bt′c rewrites to bt′′c in n − 1
steps and bt′′c rewrites to btc in a single step. By the induction hypothesis we have
that t′ u ∼ t′′ u. Thus, if it can be shown that t′′ u ∼ t u the Lemma follows by the
transitivity of∼. t′′ u ∼ t u follows from either Lemma 13 or 14 depending on whether
the rewrite between t′′ and t takes place at the top level or not completing the proof.

Lemma 16. For ground ceiling terms t, t′, u, u′, if t ∼ t′ and u ∼ u′, then t u ∼ t′ u′

if neither t nor t′ is of the form C3 sn>1 , K sn>0 or I sn .

Proof. By Lemma 15, we have that t′ u′ ∼ t u′, so if it can be shown that t u′ ∼ t u
the Lemma follows immediately by the transitivity of ∼. We have that btc = ζn(sn).
By the condition on the form of t and t′, t u′ cannot have a fully applied combinator as
its head symbol. Therefore, bt u′c = ζn+1(sn , u

′). It is obvious that any rewrite steps
from bu′c can be carried out from bt u′c and therefore t u′ ∼ t u.

Lemma 17. For ground ceiling terms u and u′ such that u ∼ u′, C3 t1 t2 u ∼ C3 t1 t2 u
′

and K t u ∼ K t u′ and Iu ∼ Iu′.

Proof. By multiple applications of Lemma 15, we have that bu t c ≈ bu′ t c holds in
R∞ for all type correct tuple of terms t . We also have that every member of bGΣ(ECA)c
holds in R∞. Thus, the lemma follows by an appeal to Lemma 9 with R = R∞.

Lemma 18. For all ground ceiling terms t, t′, u and u′, if t ∼ t′ and u ∼ u′, then
t u ∼ t′ u′.

Proof. Proof is by induction on ‖t‖+ ‖u‖+ ‖t′‖+ ‖u′‖. the base case splits into two
cases.

Case 1: Neither t nor t′ is of the form C3 t1 t2, K t or I. Then the proof follows by an
application of Lemma 16.
Case 2: One or both of t and t′ are of the form C3 t1 t2, K t or I. Without loss of
generality, assume that t is of the form C3 t1 t2. By Lemma 16, t′ u′ ∼ t u′. Thus, if
it can be proven that t u′ = C3 t1 t2 u

′ ∼ C3 t1 t2 u = t u, the theorem follows by the
transitivity of ∼. By Lemma 17, C3 t1 t2 u

′ ∼ C3 t1 t2 u completing the base case.

For the inductive case, one or more of ‖t‖, ‖u‖, ‖t′‖ or ‖u′‖ is greater than 0. We
show that the theorem holds for the first two cases. The latter two can be proved in a
like manner.

Case 1: ‖t‖ > 0. Let t′′ = (t) ↓w. Since R∞ is a model of bGΣ(N)c, the floors of
the ground instances of all combinator and extended combinator axioms must be true
in R∞. Thus, t ∼ t′′ and by Lemma 15, t u ∼ t′′ u. Since ‖t′′‖ < ‖t‖, the induction
hypothesis can be used to conclude that t′′ u ∼ t′ u′. By the transitivity of∼, t u ∼ t′ u′
follows.
Case 2: ‖u‖ > 0 Since R∞ models all combinator and extended combinator axioms,
we have u ∼ u2 where u2 = (u)↓w. By the induction hypothesis, we have t u2 ∼ t′ u′.
Either Lemma 16 or Lemma 17 is applicable to prove t u ∼ t u2. The theorem follows
by the transitivity of ∼.

Definition 3. Define an interpretation R↑∞ = (U↑, E↑,J ↑) in the ceiling logic as fol-
lows. Let (U , E ,J) = R∞. Let U↑τ = Ubτc and J ↑(f, τ) = J (f τ0 , b τ c). Since R∞ is
term-generated, for every a ∈ Ubτ→υc and b ∈ Ubτc, there exists ground ceiling terms
s : τ → υ and t : τ such that JbscKξR∞

= a and JbtcKξR∞
= b. We define E↑ as

E↑τ,υ(a)(b) = Jbs tcKξR∞

This interpretation is well defined if the definition of E↑ does not depend on the
choice of the ground terms s and t. To show this, we assume that there exists other
ground terms s′ and t′ such that Jbs′cKξR∞

= a and Jbt′cKξR∞
= b. By Lemma 18, it

follows from JbscKξR∞
= Jbs′cKξR∞

and JbtcKξR∞
= Jbt′cKξR∞

that

Jbs tcKξR∞
= Jbs′ t′cKξR∞

indicating that the definition of E↑ is independent of the choice of s and t.
Since R∞ is a term-generated model of bGΣ(N)c, we can show that R↑∞ is also

term-generated.

Lemma 19 (Substitution lemma). For all ceiling logic terms t and grounding substi-
tutions ρ, JtρKR↑

∞
= JtKξR↑

∞
if αξ = αρ for all α and ξ(x) = JxρKR↑

∞
for all x.

Proof. By induction on the structure of t. If t is a variable x, then JxKξR↑
∞

= ξ(x) =
JxρKR↑

∞
.

If t is of the form f〈 τ 〉, then JtKξR↑
∞

= J ↑(f, J τ Kξ) = J ↑(f, τ ρ) = Jf〈 τ 〉ρKR↑
∞

.
Finally, if t is an application of the form t1 t2, then

Jt1 t2K
ξ
R↑

∞
= E↑(Jt1KξR↑

∞
)(Jt2K

ξ
R↑

∞
)

IH
= E↑(Jt1ρKR↑

∞
)(Jt2ρKR↑

∞
)

= Jt1ρ t2ρKR↑
∞

= J(t1 t2)ρKR↑
∞

Lemma 20 (Model transfer to ceiling logic).R↑∞ is a term-generated model of GΣ(N).

Proof. By induction on ground terms t of the ceiling logic it is shown that JtKξR↑
∞

=
JbtcKξR∞

. Let t be a ground ceiling term. If t is of the form f〈 τ 〉, then JtKξR↑
∞

=
J ↑(f, J τ Kξ) = J ↑(f, τ) = J (f0, b τ c) = J (f0, Jb τ cKξ) = JbtcKξR∞

If t is an application t = t1 t2, where t1 is of type τ → υ, then we have:

Jt1 t2K
ξ
R↑

∞
= E↑τ,υ(Jt1K

ξ
R↑

∞
)(Jt2K

ξ
R↑

∞
)

IH
= E↑τ,υ(Jbt1cK

ξ
R∞

)(Jbt2cKξR∞
)

Def E↑
= Jbt1 t2cKξR∞

We have shown that JtKξR↑
∞

= JbtcKξR∞
for all ground ceiling logic terms t. It

follows that a ground equation s ≈ t or inequality s 6≈ t is true in R↑∞ if and only if
bs ≈ tc or bs 6≈ tc is true in R∞. Hence, a ground clause C is true in R↑∞ if and only
if bCc is true in R∞.

By Lemma 12, R∞ is a model of bGΣ(N)c, i.e., all clauses bCc ∈ bGΣ(N)c are
true inR∞. Hence, all clausesC ∈ GΣ(N) are true inR↑∞ and thereforeR↑∞ is a model
of GΣ(N).

To show that R↑∞ is term-generated, let a be an arbitrary member of U↑τ . Since
U↑τ = Ubτc, we have that a ∈ Ubτc. Since R∞ is term-generated, there must exist
a floor ground term t such that JtKξR∞

= a. We have JdteKξR↑
∞

= JtKξR∞
= a, since

we have just shown JuKξR↑
∞

= JbucKξR∞
for all ground ceiling terms u. Hence, R↑∞ is

term-generated.

Lemma 21 (Model transfer). R↑∞ is a model of N .

Proof. We need to show that for all clauses C ∈ N , C holds in R↑∞ for all ξ. Since R↑∞
is term-generated, we have that for all variables x in C, there exists a ground term sx
such that ξ(x) = JsxKR↑

∞
. Let ρ be a substitution that maps each term variable x in C to

sx and each type variable α to αξ. Then for any term variable x in C, JxρKR↑
∞

= ξ(x)
and for any type variable α in C, αρ = αξ. Then by Lemma 19 JCKξR↑

∞
= JCρKR↑

∞
.

As Cρ is ground, by Lemma 20 it is true in R↑∞. Thus so is C.

Lemma 22 (Extensional model). If the extensionality axiom is present in N , then R↑∞
is an extensional model.

Proof. The proof is the same as that of Bentkamp et al. [6]

8 Removing Combinator Axioms

Next, we show that it is possible to replace the combinator axioms with a dedicated
inference rule. We name the inference NARROW. Unlike the other infernce rules, it
works at prefix positions. We define nearly first-order positions inductively. For any
term t, either t = ζ tn where ζ is not a fully applied combinator or t = Cany tn . In
the first case, the nearly first-order subterms of t are ζ ti for 0 ≤ i ≤ n and all the
nearly first-order subterms of the ti. In the second case, the nearly first-order subterms
are Cany ti for 0 ≤ i ≤ n. The notation s〈[u]〉 is to be read as u is a nearly first-order
subterm of s. The NARROW inference:

C ′ ∨ [¬]s〈[u]〉 ≈ s′
NARROW

(C ′ ∨ [¬]s〈[r]〉 ≈ s′)σ

with the following side conditions:

1. u /∈ V
2. Let l ≈ r be a combinator axiom.
σ = mgu(l, u);

3. s〈[u]〉σ 6- s′σ;
4. ([¬] s〈[u]〉 ≈ s′)σ is eligible in Cσ,

and strictly eligible if it is positive.

We show that any inference that can be carried out using an extended combinator ax-
iom can be simulated with NARROW proving completeness. It is obvious that an EQRES
or EQFACT inference cannot have an extended combinator axiom as its premise. By the
SUBVARSUP side conditions, an extended combinator axiom cannot be either of its
premises. Thus we only need to show that SUP inferences with extended combinator
axioms can be simulated. Note that an extended axiom can only be the left premise of a
SUP inference. Consider the following inference:

l ≈ r C ′ ∨ [¬]s〈u〉|p ≈ s′
SUP

(C ′ ∨ [¬]s〈r〉 ≈ s′)σ

Let l = S xn>3 . By the variable condition, we have that u = ζ tm where n ≥ m ≥
n− 2. If u = y tn−2 , then σ = {y → Sx1 x2, x3 → t1, . . . , xn → tn−2}. In this case
rσ = (x1 x3 (x2 x3)x4 . . . xn)σ = x1 t1 (x2 t1) t2 . . . tn−2 and the conclusion of the
inference is (C ′ ∨ [¬]s〈x1 t1 (x2 t1) t2 . . . tn−2〉 ≈ s′){y → Sx1 x2}. Now consider
the following NARROW inference from C at the nearly first-order subterm y t1:

C ′ ∨ [¬]s〈〈[y t1]〉t2 . . . tn〉|p ≈ s′
NARROW

(C ′ ∨ [¬]s〈x1 t1 (x2 t1) t2 . . . tn−2〉 ≈ s′){y → Sx1 x2}

As can be seen, the conclusion of the SUP inference is equivalent to that of the
NARROW inference up to variable naming. The same can be shown to be the case where
u = y tn−1 or u = y tn or u = S tn . Likewise, the same can be shown to hold when
the l ≈ r is an extended B,C,K or I axiom.

9 Implementation and Evaluation

Clausal combinatory-superposition has been implemented in the Vampire theorem prover
[16]. The prover was first extended to support polymorphism. This turned out to be
simpler than expected with types being turned into terms and type equality checking
changing to a unifiability (or matching) check. Applicative terms are supported by the
use of a polymorphic function app of type Πα, β. (α→ β)→ α→ β.

As the SUP, EQRES and EQFACT inferences are identical to their first-order coun-
terparts, these required no updating. The NARROW, SUBVARSUP and ARGCONG in-
ferences had to be added to the implementation. Further, though the NEGEXT inference
is not required for completeness, empirical results suggest that it is so useful, that it is
permanently on in the implementation.

The ARGCONG inference implemented in Vampire does not match the rule given
in the calculus. The rule provided can have an infinite number of conclusions. In Vam-
pire, we have implemented a version of ARGCONG that appends a single fresh variable
to each side of the selected literal rather than a tuple and therefore only has a single

conclusion. This version matches what was originally in the calculus. Shortly before
the submission of this paper, it was discovered that this leads to a subtle issue in the
completeness proof and the inference was changed to its current version. We expect to
be able to revert to the previous version and fix the proof. As matters stand, Vampire
contains a potential source of incompleteness.

A greater challenge was posed by the implementation of the >ski ordering in the
prover. The ordering is based on the length of the longest weak-reduction from a term.
In order to increase the efficiency of calculating this quantity, we implemented caching
and lazy evaluation. For example, when inserting a term of the form f t1 t2 into the
term-sharing data structure, a check is made to see if the maximum reduction lengths
of t1 and t2 have already been calculated. If they have, then the maximum reduction
length of the term being inserted is set to the sum of the maximum reduction lengths of
t1 and t2. If not, it is left unassigned and only calculated at the time it is required.

During the experimentation phase, it was realised that many redundant clauses were
being produced due to narrowing. For example, consider the single literal clause x a b ≈
d ∨ f x ≈ a. Narrowing the first literal with C-axiom results in x′ b a ≈ d ∨ f (Cx′) ≈
a. A second narrow with the same axiom results in x′′ a b ≈ d ∨ f (C (Cx′′)) ≈ a
which is extensionally equivalent to first clause and therefore redundant. However, it
will not be removed by subsumption since it is only equivalent extensionally. To deal
with this problem, we implemented some rewrite rules that replace combinator terms
with smaller extensionally equivalent terms. 2 For example, any term of the form C (C t)
is rewritten to t. There is no guarantee that these rewrite remove all such redundant
clauses, but in practice, they appear to help.

To implement unification with abstraction, we reused the method introduced in our
previous work relating to the use of substitution trees as filters [8]. In our current con-
text, this involves replacing all subterms of functional or variable sort with special sym-
bols that unify with any term prior to inserting a term into the substitution tree index.

To evaluate our implementation, we ran a number of versions of our prover across
two problem sets and compared their performance against that of some of the leading
higher-order provers. The first problem set we tested on was the set of all 592 monomor-
phic, higher-order problems from the TPTP problem library [29] that do not contain
first-class boolean subterms. We restricted our attention to monomorphic problems
since some of the provers we used in our evaluation do not support polymorphism. The
second benchmark set was produced by the Isabelle theorem prover’s Sledgehammer
system. It contains 1253 benchmarks kindly made available to us by the Matryoshka
team and is called SH-λ following their naming convention. All tests were run with a
CPU time limit of 300. Experiments were performed on StarExec [28] nodes equipped
with four 2.40 GHz Intel Xeon CPUs. Our experimental results are publicly available3.

To compare out current implementation against, we chose the Leo-III, 1.4, Satal-
lax 3.4, Zipperposition 1.5 and Vampire-THF 4.4 provers. These provers achieved the
top four spots in the 2019 CASC system competition. Vampire THF 4.4 was devel-
oped by the authors, but uses different principles being based on combinatory unifica-

2 Thanks to Petar Vukmirović for suggesting and discussing this idea.
3 https://github.com/vprover/vampire_publications/tree/master/
experimental_data/IJCAR-2020-COMB-SUP

https://github.com/vprover/vampire_publications/tree/master/experimental_data/IJCAR-2020-COMB-SUP
https://github.com/vprover/vampire_publications/tree/master/experimental_data/IJCAR-2020-COMB-SUP

Table 1: Problems proved theorem or unsat
TPTP TH0 Problems Sh-λ Problems

Solved Uniques Solved Uniques

Satallax 3.4 473 0 628 5
Leo-III 1.4 482 6 661 13
Vampire-THF 4.4 472 1 717 14
Vampire-csup-ninj 470 0 (1) 687 1 (2)
Vampire-csup-ax 469 0 (0) 680 0 (3)
Vampire-csup-abs 472 0 (0) 685 0 (0)
Vampire-csup-prag 475 1 (3) 628 0 (1)
Zipperposition 1.5 476 0 609 6

tion. We compare the performance of these provers against four variants of our cur-
rent implementation. First, Vampire-csup-ax which implements clausal combinatory-
superposition as described above and uses the extensionality axiom. Second, Vampire-
csup-abs which deals with extensionality via unification with abstraction. Third, Vampire-
csup-ninj which incorporates an inference to synthesise left-inverses for injective func-
tions in a manner similar to Leo-III [26, Section 4.2.5] and finally Vampire-csup-prag
which introduces various heuristics to try and control the search space, though at the
expense of completeness. For example, it implements a heuristic that restricts the num-
ber of narrow steps. It also switches off the SUBVARSUP rule which is never used in
a proof produced by the other variants of Vampire-csup. All four versions are run on
top of a first-order portfolio of strategies. These strategies control options such as the
saturation algorithm used, which simplification inferences are switched on and so forth.
The results of the experiments can be found summarised in Table 1. In brackets, the
number of uniques between Vampire-csup versions is provided.

The closeness of the results on the TPTP benchmarks is striking. Out of the 592
benchmarks, 95 are known not to be theorems, leaving 497 problems that could possibly
be proved. All the provers are remarkably close to this number and each other. Leo-
III which is slightly ahead of the other provers, only manages this through function
synthesis which is not implemented in any of the other provers.

It is disappointing that Vampire-csup performs worse than its predecessor Vampire-
THF 4.4 on Sledgehammer problems. We hypothesise that this is related to the ex-
plosion in clauses created as a result of narrowing. Vampire-csup-prag is supposed to
control such an explosion, but actually performs worst of all. This is likely due to the
fact that it runs a number of lengthy strategies aimed particularly at solving higher-
order problems requiring complex unifiers. Interestingly, the pragmatic version solved
a difficulty rating 1.00 TPTP problem, namely, NUM829ˆ5.p.

10 Conclusion and Related Work

The combinatory superposition calculus presented here is amongst a small group of
complete proof calculi for higher-order logic. This group includes the RUE resolution

calculus of Benzmüller which has been implemented in the LEO-II theorem prover
[7]. The Satallax theorem prover implements a complete higher-order tableaux calculus
[11]. More recently, Bentkamp et al. have developed a complete superposition calculus
for clausal HOL [4]. As superposition is one of the most successful calculi in first-order
theorem proving [21], their work answered a significant open question, namely, whether
superposition could be extended to higher-order logic.

Our work is closely related to theirs, and in some senses, the SUBVARSUP rule of
clausal combinatory-superposition mirrors the FLUIDSUP rule of clausal λ-superposition.
However, there are some crucial differences. Arguably, the side conditions on SUB-
VARSUP are tighter than those on FLUIDSUP and some problems such as the one
in Example 3 can be solved by clausal combinatory-superposition without the use of
SUBVARSUP whilst requiring the use of FLUIDSUP in clausal λ-superposition. Clausal
λ-superposition is based on higher-order unification and λ-terms. Our calculus is based
on (applicative) first-order terms and first-order unification and implementations can
therefore reuse the well-studied data structures and algorithms of first-order theorem
proving. On the downside, narrowing terms with combinator axioms is still explosive
and results in redundant clauses. It is also never likely to be competitive with higher-
order unification in finding complex unifiers. This is particularly the case with recent
improvements in higher-order unification being reported [30].

Many other calculi for higher-order theorem proving have been developed, most of
them incomplete. Amongst the early calculi to be devised are Andrew’s mating calcu-
lus [1] and Miller’s expansion tree method [19] both linked to tableaux proving. More
recent additions include an ordered (incomplete) paramodulation calculus as imple-
mented in the Leo-III prover [27] and a higher-order sequent calculus implemented in
the AgsyHOL prover [17]. In previous work, the current authors have extended first-
order superposition to use a combinatory unification algorithm [8]. Finally there is on-
going work to extend SMT solving to higher-order logic [3].

There have also been many attempts to prove theorems in HOL by translating to
FOL. One of the pioneers in suggesting this approach was Kerber [15]. Since his early
work, it has become commonplace to combine a dedicated higher-order theorem prover
with a first-order prover used to discharge first-order proof obligations. This is the ap-
proach taken by many interactive provers and their associated hammers such as Sledge-
hammer [22] and CoqHammer [12]. It is also the approach adopted by leading auto-
mated higher-order provers Leo-III and Satallax.

Our work is also relevant to the much discussed philosophical question regarding the
status of higher-order logic as an independent logic separate from first-order logic [25]
[14]. We make no attempt to provide a definitive answer to this question, but note that
our work would suggest that, at least when discussing higher-order logic with Henkin
semantics, the gap between the two is not as large as it may appear.

In this paper we have presented a complete calculus for a polymorphic, boolean-
free, intensional, combinatory formulation of higher-order logic. For the calculus to be
extensional, an extensionality axiom can be added maintaining completeness, but losing
gracefulness. Alternatively, unification can be turned into unification with abstraction
maintaining gracefulness, but losing a completeness guarantee. Experimental results

show an implementation of clausal combinatory-superposition to be competitive with
leading higher-order provers.

It remains to tune the implementation and calculus. We plan to further investigate
the use of heuristics in taming the explosion of clauses that result from narrowing.
the heuristics may lead to incompleteness. It would also be of interest to investigate
the use of heuristics or even machine learning to guide the prover in selecting specific
combinator axioms to narrow a particular clause with. One of the advantages of our
calculus is that it does not consider terms modulo β- or weak-reduction. Therefore,
theoretically, a larger class of terms should be comparable by the non-ground order than
is possible with a calculus that deals with β- or weak-equivalence classes. It remains to
implement a stricter version of the >ski ordering and evaluate its usefulness.

As a next step, we plan to add support for booleans and choice to the calculus. An
appealing option for booleans is to extend the unification with abstraction approach
currently used for functional extensionality. No attempt would be made to solve uni-
fication pairs consisting of boolean terms. Rather, these would be added as negated
bi-implications to the result which would then be re-clausified.

Finally, we feel that our calculus calculus complements existing higher-order calculi
and presents a particularly attractive option for extending existing first-order superpo-
sition provers to dealing with HOL.

Acknowledgements Thanks to Jasmin Blanchette, Alexander Bentkamp and Petar
Vukmirović for many discussions on aspects of this research. We would also like to
thank Andrei Voronkov, Martin Riener and Michael Rawson. We are grateful to Visa
Nummelin for pointing out the incompleteness of unification with abstraction and pro-
viding the counterexample. Thanks is also due to the maintainers of StarExec and the
TPTP problem library both of which were invaluable to this research. The first author
thanks the family of James Elson for funding his research.

References

1. Andrews, P.B.: On connections and higher-order logic. Journal of Automated Reasoning
5(3), 257–291 (1989)

2. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and
simplification. J. Log. Comput. 4(3), 217–247 (1994)

3. Barbosa, H., Reynolds, A., El Ouraoui, D., Tinelli, C., Barrett, C.: Extending smt solvers to
higher-order logic. In: Fontaine, P. (ed.) CADE-27. LNCS, vol. 11716, pp. 35–54. Springer
(2019)

4. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superposition with
lambdas. In: Fontaine, P. (ed.) CADE-27. LNCS, vol. 11716, pp. 55–73. Springer (2019)

5. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Waldmann, U.: Superposition with
lambdas (technical report). Technical report (2019), http://matryoshka.gforge.
inria.fr/pubs/lamsup_report.pdf

6. Bentkamp, A., Blanchette, J.C., Cruanes, S., Waldmann, U.: Superposition for lambda-free
higher-order logic. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) International Joint Con-
ference on Automated Reasoning (IJCAR 2018). LNCS, vol. 10900, pp. 28–46. Springer
(2018)

http://matryoshka.gforge.inria.fr/pubs/lamsup_report.pdf
http://matryoshka.gforge.inria.fr/pubs/lamsup_report.pdf

7. Benzmüller, C., Sultana, N., Paulson, L.C., Theib, F.: The higher-order prover Leo-II. Journal
of Automated Reasoning 55(4), 389–404 (2015). https://doi.org/10.1007/s10817-015-9348-
y

8. Bhayat, A., Reger, G.: Restricted combinatory unification. In: Fontaine, P. (ed.) CADE-27.
LNCS, vol. 11716, pp. 74–93. Springer (2019)

9. Bhayat, A., Reger, G.: A knuth-bendix-like ordering for orienting combinator
equations (technical report). Technical report, University of Mancester (2020),
https://github.com/vprover/vampire_publications/blob/master/
paper_drafts/comb_compat_ordering_report.pdf

10. Bobot, F., Paskevich, A.: Expressing polymorphic types in a many-sorted language. In:
Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS. LNCS, vol. 6989, pp. 87–102. Springer
(2011)

11. Brown, C.E.: Satallax: An automatic higher-order prover. In: Gramlich, B., Miller, D., Sat-
tler, U. (eds.) Automated Reasoning. pp. 111–117. Springer Berlin Heidelberg, Berlin, Hei-
delberg (2012)

12. Czajka, Ł., Kaliszyk, C.: Hammer for coq: Automation for dependent type theory. Journal of
Automated Reasoning 61(1), 423–453 (Jun 2018)

13. Hindley, J.R., Seldin, J.P.: Lambda-Calculus and Combinators: An Introduction. Cambridge
University Press, New York, NY, USA, 2 edn. (2008)

14. Hylton, P., Kemp, G.: Willard van orman quine. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2019 edn.
(2019)

15. Kerber, M.: How to prove higher order theorems in first order logic pp. 137–142 (01 1991)
16. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: International Con-

ference on Computer Aided Verification. pp. 1–35. Springer (2013)
17. Lindblad, F.: A focused sequent calculus for higher-order logic. In: Demri, S., Kapur, D.,

Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 61–75. Springer (2014)
18. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-order clauses. Journal of

Automated Reasoning 40(1), 35–60 (Jan 2008). https://doi.org/10.1007/s10817-007-9085-y,
https://doi.org/10.1007/s10817-007-9085-y

19. Miller, D.A.: Proofs in higher-order logic. Ph.D. thesis, University of Pennsylvania (1983)
20. Miller, D.A.: A compact representation of proofs. Studia Logica 46(4), 347–370 (1987)
21. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A.,

Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, chap. 7, pp. 371–443. El-
sevier Science (2001)

22. Paulson, L.C., Blanchette, J.C.: Three years of experience with sledgehammer, a practical
link between automatic and interactive theorem provers. IWIL-2010 1 (2010)

23. Reger, G., Suda, M., Voronkov, A.: Unification with abstraction and theory instantiation in
saturation-based reasoning. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol.
10805, pp. 3–22. Springer International Publishing (2018)

24. Schulz, S.: E — a brainiac theorem prover. AI Communications 15(2, 3), 111–126 (2002)
25. Shapiro, S.: Foundations without foundationalism : a case for second-order logic. Oxford

logic guides ; 17, Clarendon (1991)
26. Steen, A.: Extensional Paramodulation for Higher-Order Logic and its Effective Implemen-

tation Leo-III. Ph.D. thesis, Freie Universität Berlin (2018)
27. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In: International Joint Confer-

ence on Automated Reasoning. LNCS, vol. 10900, pp. 108–116. Springer (2018)
28. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving service.

https://www.starexec.org (2012)
29. Sutcliffe, G.: The TPTP problem library and associated infrastructure, from CNF to TH0,

TPTP v6.4.0. Journal of Automated Reasoning 59(4), 483–502 (2017)

https://doi.org/10.1007/s10817-015-9348-y
https://doi.org/10.1007/s10817-015-9348-y
https://github.com/vprover/vampire_publications/blob/master/paper_drafts/comb_compat_ordering_report.pdf
https://github.com/vprover/vampire_publications/blob/master/paper_drafts/comb_compat_ordering_report.pdf
https://doi.org/10.1007/s10817-007-9085-y
https://doi.org/10.1007/s10817-007-9085-y
https://www.starexec.org

30. Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-order unification
(2019), http://matryoshka.gforge.inria.fr/pubs/hounif_paper.pdf,
unpublished, http://matryoshka.gforge.inria.fr/pubs/hounif_paper.
pdf

31. Waldmann, U.: Automated reasoning II. Lecture notes, Max-Planck-Institut für In-
formatik (2016), http://resources.mpi-inf.mpg.de/departments/rg1/
teaching/autrea2-ss16/script-current.pdf

http://matryoshka.gforge.inria.fr/pubs/hounif_paper.pdf
http://matryoshka.gforge.inria.fr/pubs/hounif_paper.pdf
http://matryoshka.gforge.inria.fr/pubs/hounif_paper.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf
http://resources.mpi-inf.mpg.de/departments/rg1/teaching/autrea2-ss16/script-current.pdf

A Abstraction not Complete

The following counterexample proves that unification with abstraction is not complete
for clausal extensional higher-order logic. Thanks to Visa Nummelin for noticing the
incompleteness and for providing the example.

Consider the following set of unsatisfiable clauses. The larger side of each literal is
shown in bold.

f x ≈ g x k g ≈ k h k f 6≈ k h

It is necessarily the case that k f ≺ k h ≺ k g if the weight of f, h and g are all the
same, g has the highest precedence amongst the three and f the lowest. In this case, the
only non-redundant inference available is an equality factoring with abstraction on the
clause k f 6≈ k h resulting in the clause f 6≈ h. A negative extensionality inference can
be carried out on this clause to produce f sk 6≈ h sk. On addition of this clause, the
clause set is saturated and no further inferences can be performed.

	A Combinator-Based Superposition Calculus for Higher-Order Logic (Technical Report)

