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ABSTRACT

Graph convolutional neural networks (GCNs) have demonstrated
powerful representing ability of irregular data, e.g., skeletal data
and graph-structured data, providing the effective mechanism to
fuse the neighbor nodes. The representative are the spectral-based
methods, which are designed to obtain the beneficial discriminative
information from input signals for learning. However, many works
have been shown that the essence of the GCN are low-pass filters,
which propagate information and distill the beneficial signals, thus
performing the information denoising. Although there are some
efforts not only concentrate on the fixed low-pass filters, but also the
adaptive frequency filters, which harness the dynamic frequency,
they do not go deeply into the intrinsic part of the useful signals of
all nodes. To explore the core of signals propagating, we design a
novel framework FiGCN that leverages the each of channel signal,
which comprises of all the neighbor. Specifically, every channel
of a node and its neighborhoods contribute dynamically to the
final channel signal, which can capture the inherent difference of
different channel and neighbor nodes and even determine whether
a node is neighborhood or not. Meanwhile, it can enhance the
representation ability of nodes and ameliorate the over-smoothing
problem. On the other hand, our model can dynamically adjust the
importance of neighborhoods to the central vertex. We empirically
validate the effectiveness of the proposed framework FiGCN on
various benchmark datasets. Experimental results show that our
method achieves substantial improvements and outperforms the
state-of-the-art performance significantly.

1 INTRODUCTION

Graph convolutional neural networks (GCNs) have received broad
attention for its excellent performance in various of graph tasks,
e.g., node classification [1, 32, 35], link prediction [31, 39], and rec-
ommendation [4, 24, 29]. In essence, the GCNs send and receive the
nodes feature representation to and from its neighbor nodes and
stack multiple layers to learn the global node features [10]. Inspired
by the convolutional neural networks, the GCNs are developed to
the domain of irregular data. Generally, the GCNs are categorized
as spectral-based and spatial-based methods. The spectral-based
methods are found on the theory of Graph Signal Processing (GSP)
[27] and Spectral Graph Theory [7], which perform convolution
operation in the spectral domain. As for the spatial-based methods,
they are exhibited in straightforward and understandable forms,
which perform convolutions on spatial domain and the information
is conveyed along the edge [2, 12]. Until the work [19] arises, which
leverages the localized first-order approximation of spectral graph
convolution, the two categories methods are connected. From an-
other perspective, the GCN is also spatial-based, which possesses
of the obvious sense of the node localization, thus giving rise to the
prosperity of this methods [2, 11, 12, 17, 20, 23, 28, 35]. Although
the spatial-based methods have achieved remarkable success in

various applications, they are not investigated from perspective of
the essence of the signal-passing, just stacking multiple layers to
learn the high-level node feature representations. Recently, some
researches find that the essence of the signal-passing is a fixed low-
pass filter [25], which means that the beneficial signals of the node
feature representation are low frequency with the high frequency
degraded [33]. Whereas, the real-world is sophisticated and the data
exhibits hierarchies. To tackle this problem, there are researchers
that dive into deeply to explore the intrinsic useful information
of the node feature representation [3, 6, 9], which shows that the
high frequency may also contain the beneficial information for
contributing the performance of the tasks. Especially, the work [9]
harnesses the frequency filter adaptively to capture the beneficial
information of every layer, which is based on the spectral method
and achieves remarkable results. However, the work [9] neglects
the neighbor nodes frequency dependency of the same channel,
which contributes greatly to the final performance.

To tackle the aforementioned problems, we dive into the essence
of signal-passing, which alleviates the over-smooth and computa-
tion efficiency of spectral-based methods. Specifically, we propose
a framework FiGCN that explores the neighbor nodes frequency
dependency of the same channel and meanwhile adapts the impor-
tance of different channel. For each channel, it consists of a node
and its neighbor nodes, which dynamically adjust the frequency
components together, resulting in learning the discriminative and
informative frequency information to the channel’s final aggre-
gated output feature representation. To the best of our knowledge,
this is the first attempt that takes the neighbor nodes frequency
components of one channel into consideration and dynamically
adjust its weight to fit the node feature representation, which con-
tributes to boosting the network performance aggressively. Our
contributions are summarized as follows:

e We propose a novel framework named as FIGCN that in-
vestigates the neighbor nodes frequency dependency of the
same channel and meanwhile adapts the importance of dif-
ferent channel. The idea may pave the way for revealing the
intrinsic signal-passing mechanism of graphs.

e Compared to the conventional GCNs, our framework effec-
tively tackle the unequal importance of information from
different vertices.

e Our framework FIGCN implementation is simple and effi-
cient, thus giving rise to high hardware computation effi-
ciency. That makes it highly feasible to the real applications.

e We conduct extensive experiments on multiple datasets and
the results show that our method achieves promising results
and outperform state-of-the-art methods significantly.

2 RELATED WORK

GCNs are derived from classical convolutional neural networks,
which are naturally suitable for the graph data, e.g., social networks
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and chemical molecules. By transforming graph signals into the
spectral domain via the graph Fourier transform, the spectral-based
GCNss are built [5, 8, 16, 19]. Compared to the spectral-based GCNs,
the spatial-based GCNs are intuitively straightforward, which ag-
gregates the message from its neighbor nodes, resembling to the
convolution kernel of CNN. The seminal work [19] propose a lo-
calized first-order approximation of spectral graph convolution
[8], which bridges the spectral-based and spatial-based methods of
GCNs, leading to the boom of spatial-based GCNs. However, the
spatial-based GCNs may not investigate the intrinsic mechanism of
signal-passing of the graph. For this sake, spectral-based GCNs are
thoroughly explored [5, 8, 9, 16, 19, 25]. To explore the essence of
the propagation of GCN, the work [25] discovers that the frequency
response of the convolution operation is equal to the fixed low-pass
filter at each layer. However, owing the complex real-world graph
data, it may be not enough to demonstrate that all the useful signals
are low-passed. Recent researches show that while high-frequency
components may also have useful information that contributes to
the performance of some tasks [3, 6, 9]. In this paper, based on the
work [9], , we propose a framework FIGCN to dive deeply into the
varying frequency components of a node and its neighborhoods,
which play the key role in graph tasks. Concurrently with this work,
the framework of FIGCN have applied to the knowledge graph of
our study and achieved astonishing results, which indicates that
the dynamic frequency may prone to adapting to various scenarios
and obtaining beneficial information of the latent hierarchy.

3 NOTATIONS AND PRELIMINARIES

3.1 Notations

Let G = (V,E) be a graph, where V = {v1,v3 - - - vy} and E denote
a set of nodes and edges, respectively. Each node v € V has feature
representation of x, € RF. Let X = {x1,x2---xN} € RNXF Here,
N and F denote the total number of nodes and feature represen-
tation dimension of each node, respectively. Let A € RN*N pe
adjacent matrix of the graph, where A;; = 1if v; € N (v;), oth-
erwise A; j = 0. N (-) denotes the neighbor nodes. Let L =D — A
be Laplacian matrix of the graph, where D = diag (dy,dz - - - dn) is
the diagonal degree matrix of A. The symmetric normalized Lapla-
cian matrix is defined as Lsys = D_%LD_%. Spectral-based GNN
methods is derived from graph filter based on Graph Signal Pro-
cessing [27]. According to the theory, Lsys can also be rewritten
as Lsys = D_%LD_% =UAUT . Here, U = [u1,uz - - - un], where u;
is the i-th eigenvector of Lsys and A = diag (A1, A2 - -+ Ay) is the
corresponding eigenvalue matrix.

3.2 Frequency Response Filter

In image signal processing, the Laplacian kernel is usually har-
nessed to obtain the high-frequency edge information for sharpen-
ing and blurring [13, 15, 34, 37] of images. As such, the graph signal
process (GSP) has similar operations. To obtain the high-frequency
signals, graph Laplacian matrix L can be multiplied by the input
signal x, i.e., h = Lx, which characterizes the sharp high-frequency
along the edge. Recently, the pioneering works [25, 33, 36] find
out that the essence of signal passing along the edge of graph is
the low-pass filter that filters the high-frequency and keeps the
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low-frequency for making a node and its neighbor nodes simi-
lar. Subsequently, the work [9] develops the adaptive frequency
response filtering that adaptively adjusts the frequency of the chan-
nels. Specifically, they characterize the low-frequency by z = x — Lx,
which leverages the original signal x to subtract the high-frequency
signal Lx. If symmetric normalized Laplacian matrix Lsym is used,
z conforms with the GCN [19]:

z= x—I:symx
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where A = A + 1 is self-loop augmented adjacency matrix and D
is degree matrix derived from A. After Eq. (1), the low-frequency
signals are obtained, which corresponds to the fixed low-pass filter
in the spectral domain. In practical, however, high-frequency signals
may play the complementary roles for learning representation
[3, 6]. Besides that, with the layers deeper, the high-frequency
signals are usually weakened, which is called well-known over-
smoothing problem [22]. To alleviate the phenomenon, the work [9]
proposes an adaptive frequency response filter method, which not
only can capture the low-frequency, but also adjust the useful high-
frequency signals. Specifically, for the j-th channel of the nodes,
a parameter ¢ is assigned to learn the single channel information:
Zj = Xxj — qﬁixj (1 < j < F).If applied to all channels of the all
nodes, it can be formulated as:

E=X-LX®, (2

where ¢ = diag (¢1, ¢z - - - ¢F), ¢; represents the learnable parame-
ter of the j-th channel and E denotes the output signals of the nodes.
At this point, the channel-wise paradigm has been built for adap-
tively capturing the beneficial low-frequency and high-frequency
signals. In fact, this theory is special case of our FIGCN, which will
be presented in the next section.

4 PROPOSED FRAMEWORK

In this section, we detail the frequency inception and the framework
of FIGCN. First, we present the overall architecture of FiIGCN. Then,
we make a thorough analysis of the spatial and spectral to show
the superiority of our model.

4.1 Overall Architecture of FiGCN

From the Eq. (2), we can observe that the channel-wise paradigm
has obvious drawbacks. Firstly, for the specific channel, each com-
ponent shares the identical parameter, which results in degrading of
diversity of each component as shown in Fig. 1(a). Then, the number
of parameters is too small, leading to the model little-explored. On
the contrary, our model, as shown in Fig. 1(b), dynamically dives
deeply into each frequency component to investigate the diversity
of information. Formally, the adjacent matrix A can be rewritten as
sparse form in order to fuse the parameter of « , which is used to
dynamically adjust the frequency components in the form of incep-
tion. From the perspective of the spatial, the inception parameters
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Figure 1: (a) AdaGNN based method [9], leveraging the diagonal matrix to channel-wise adaptively learning the beneficial
information. (b) Frequency inception based method, dynamically diving deep into the each frequency component.
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Figure 2: The effect of AdaGNN (a) and FiGCN (b). It is obvious that (b) achieves the diversity of each channel in terms of

discrimination and information, compared to (a).

are equipped with the ability of dynamically deciding whether a
node is its neighborhood or not.

Let n; be the number of adjacent nodes of i-th node and n is the
total number of adjacent nodes. The output filtered by the inception
is:

E = X-D 1AD ZaX, 3)
where a = [ag, @1 - - - an] is the learnable inception parameter. With
the end-to-end learning, « is able to learn and obtain the discrimina-
tive and informative signals, which is beneficial to the final accuracy.
Specifically, taking the Fig. 1 as an example, if ag, @1, a2 are identi-
cal, the output of channel 1 is same with the Eq. (2). In this regard,
our model can thoroughly explore the intrinsic frequency varying,
which obtains the vital frequency components of each channel and

ameliorates over-smoothing in deeper layers. Intuitively, the effect
of our model can be depicted as in Fig. 2, which achieves the dis-
criminative and informative of each channel. Though comparison
of the two effect, the inception-based method is able to dive deeply
into the channel components and investigate the most beneficial
signals.

4.2 Spectral and Spatial Analysis of FIGCN

In this section, we analysis FiGCN from the perspectives of the
spectral and spatial, which gives a thorough explanation of the
advantages of FIGCN.

4.2.1 Spectral Analysis. The normalized adjacent matrix is de-

fined as A = f)_%/ilj_%. For convince, the learnable inception
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Figure 3: A comparison of three scheme. The upper is GCN
that learn similar representation; the middle is AdaGNN [9]
that becomes discriminative compared to the central node;
the lower is our model, which introduces the inception pa-
rameters, learning the representation with much discrimi-
native information.

parameters have been fused into A. The FiGCN consists of K layers,
which are stacked to provide the inception frequency information
of each layer.

Theorem 1. For the K layers of FIGCN, the frequency response
function of the j-th input feature channel can be formulated as
fx (Ai, 0!) =15, g (/11‘, 0!) [15. (
the eigenvalue, which contains the learnable inception parameter
a.

Proof. Considering the j-th feature channel, x; € RN of the input
signal at the k-th layer, we obtain:

i a), where /11 « denotes

Xj — isymx]' =Xj - UAUTXJ'
= (007 - 040" x; @)
=0 (1-4)07x,
where A = diag (A1,A2 - - - An) and & = [ap, @1 - - - @] is contained
in A for dynamically adjusting the inception frequency. It can be de-
rived that the frequency response function of FiGCN is g (/L-, a) =
1- /Ik . For the K layers of FiGCN, the frequency response filter

functlon is:

() =[To ) =[T(1-2,) @
k=1

It can be noted that the frequency response function of K-layered
~ ~\K
GCN is fi (Ai) - (1 - )Ll-)
drawbacks. The FIGCN has four advantages: (1) the inception pa-
rameter o can dynamically adapt every frequency component. (2)

for the K-layered FiGCN, ak is leveraged to adjust different impor-
tance of different layers. (3) different nodes have its own inception

for any feature channel with obvious
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parameters to learn the high-frequency and low-frequency compo-
nents importance. (4) the inception parameters of different layers
are decoupled, leading to learning discriminative and informative
signals and alleviating the over-smooth problem.

4.2.2 Spatial Analysis. Intuitively, the FiGCN dynamically ad-
justs each feature channel in the form of inception and enables the
framework to learn discriminative and informative signals. Com-
pared with the AdaGNN [9], each node and its neighborhoods
of FiGCN are equipped with independent inception parameters,
leading to aggregating varying and beneficial information when
multiple layers stacked. To better illustrate how it aggregates vary-
ing information, we provide a comparison of different frameworks.
As shown in Fig. 3, for the middle subfigure [9], we suppose that
the learnable parameters for these two channels across two layers
are Py = {¢>y,1, QSY’z} , PG = {¢G,1’ ¢G,2}~ If &G = 0, it can learn
the information differently, compared with the upper subfigure
in Fig. 3. However, for the FiGCN, the parameter is a = [ag, a1] ,
which can adjust the two components and obtain much information
when aggregating signals along edge. By adaptively learning the
inception parameters, we can easily control the smoothness of each
feature channel and its components, which naturally ameliorates
the over-smoothing problem (the lower subfigures in Fig. 3).

Comparison of computational efficiency: Compared with
the baseline methods, our proposed model achieves remarkable
performance with even much fewer parameters, which makes it
possible to apply the model to many practical applications with less
computational power, such as IoT and edge devices. Conventional
GCN [19] has complex and even probably redundant parameters
when propagating with linear transformation and non-linearity
activation repeatedly through K layers:

H:(,(g(...(,(gxw(m)...)W<K—1>) ()

The number of parameters of K -layers model are KanFgut, where
an and Fgu ; are input and out node feature dimension at ¢-th layer,
respectively. However, our model has only Kn (the total number of
adjacent nodes) parameters. Taking the dataset of Flickr as example,
the total amount of parameters is more than 2,449,400 while our
model is 484,292. Thus, it is usually true that anFgut > n, which
dramatically ameliorates the computational pressure and is also

hardware-friendly to deploy it on various hardware platforms.

4.3 Over-smoothing Analysis
We firstly analysis the inevitable over-smooth problem of GCN and
then explain why our FiGCN can alleviate it.

For I:symx = UAUTx, it can be regarded a projection of x onto
N eigenvectors, re-weighting each component vector and accumu-
lating them together. Through K layers, x can be expressed:

= o a) it (7)
+n-"’<( )|uN|
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Figure 4: Spatial clustering visualization of Flickr in 2D from our model and baseline [9]. In the two figure, Different colors
denote the different labels. From the perspective of the spatial, our model can learn much discriminative information, leading

to the better spatial clustering than right.

It will be inevitable that x is collinear with u; if and only if the
Eq. (8) is satisfied.

an [ o (i) =0 ®
k=1

It means that feature values of different nodes are prone to be the
same. However, most of the conventional GCN and its variants
are mainly based on Eq. (6). To naturally alleviate the over-smooth
problem, our model integrates the inception parameters into the
frequency response function as expressed Eq. (5), which dynam-
ically adjusts the frequency component in the form of inception.
Thus, Eq. (6) can be rewritten as:

K ~ uy-x K > Uz - X
x = Hgk (Al,a) Wul + Hgk (/12,0() mu2+
k=1 1 k=1 2

K
~ UN - X
-~-+l_[gk(/1N,a') |u |uN.
k=1 N

From the Eq. (9), it can be noticed that every eigenvector of u;
is dynamically weighted, thus overcoming the over-smoothing
problem.

©)

5 EXPERIMENT AND RESULTS
5.1 Datasets

In this section, we will conduct our method on dataset of BlogCata-
log [21], ACM [30] and Flickr [21].

BlogCatalog: BlogCatalog is social blog directory, in which blog-
gers and their blogs are managed. Each blogger has a tag with
specific feature information. Users could thumb up to others, and

then construct the link of social information. Ground truth for vali-
dation are based on the categories of bloggers’ registration of their
blogs.

ACM: ACM database is a collection of publications that are exhib-
ited as nodes and any two publications are connected as edge when
they share the same authors.

Flickr: Flickr is an image hosting and sharing website, in which
user can specify a list of tags that they are interested in. Users also
can interact with others like BlogCatalog. The photos are prespeci-
fied in different kinds, which are leveraged for the ground truth.
The detailed information of these datasets is listed in Table 1.

5.2 Implementation details

The results of experiment will be compared with the state-of-the-art
GNN: (1) GCN [19]; (2) GraphSAGE [14]; (3) SGC [33]; (4) DropEdge
[26]; (5) PairNorm [38] including PairNorm-SI and PairNormSCS
and (6) AdaGNN [9]. The dimensions of intermediate layers are
set to 128, which is equal to the baseline model for fairness. We
randomly sample 10% nodes for training, 20% for validation, and
the rest 70% for test. The parameter of learning rate is set to 0.01, a
le-6 and S 9e-4. Our model is conducted on NVIDIA GeForce RTX
2080 Ti and implemented by PyTorch. The optimizer is adaptive
moment (Adam) algorithm [18]. The comparisons results are shown
in Table 2.

5.3 Discussion

Though the Table 2, it can be noted that the performances of our
model on datasets of BlogCatalog and Flickr are remarkable com-
pared to other models. The most reasonable explanation may lie in
the average node degree of two social networks BlogCatalog and
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Table 1: Detailed information of datasets.

dataset Nodes Edges Features Average Degree Classes
BlogCatalog 5196 173468 8189 66.8 6
ACM 16484 71980 8337 8.7 9
Flickr 7575 242146 12047 63.9 9
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Table 2: Average accuracy with standard deviation on BlogCatalog, ACM and Flickr (the best results are marked with bold).

Datasets BlogCatalog ACM Flickr

Methods 8 Layer 16 Layer 8 Layer 16 Layer 8 Layer 16 Layer
GCN [19] 37.61+2.2% 20.61+1.9% 53.74+1.9% 3597 +£0.7% | 12.20 £ 1.0% 13.29 £ 0.1%
GraphSAGE [14] 39.15+1.6% 18.34£3.9% 52.21 £ 1.5% - 11.30 £ 0.1% 11.20 £ 0.2%
SGC [33] 47.94£0.9% 29.02+1.7% | 73.80 £ 0.3% | 64.01 £0.4% | 16.64 + 2.2% 14.40 £ 1.3%
DropEdge-GCN [26] 60.51+2.4% 51.88+.8% 7143 £2.2% | 67.37+19% | 36.16 £ 0.3% 27.30 £ 1.6%
Pairnorm-GCN-SI [38] 65.04£0.6% 67.51£0.4% | 73.63+0.2% | 68.35+2.0% | 39.12 £ 0.8% 38.24+0.2%
Pairnorm-GCN-SCS [38] | 69.03+0.7% 69.75+1.2% | 7333 £0.1% | 70.84 £ 1.4% | 34.79 £ 0.3% 38.17 £ 0.2%
AdaGNN-S [9] 88.81+0.1% | 88.19£0.2% | 75.64 £ 0.0% | 74.95+0.1% | 72.93 £ 0.1% 73.03 £ 0.4%
Ours 91.2+0.1% | 91.5+0.1% | 7431 £0.1% | 74.26 £ 0.25% | 79.10+ 0.15% | 79.50+ 0.12%

Flickr, which are much higher than ACM. Given the low average
node degree of dataset of ACM, it achieves the comparable results
compared to the baseline model. Thus, the inception channel com-
ponents make a great difference especially in the datasets with high
average node degree.

As shown in Fig. 4, the visualization of feature representations
of our model and baseline model [9] in 2-D space is presented.
Different classes of node label are indicated by different colors.
Intuitively, through the distribution of the nodes, our model exhibits
better spatial clustering than the baseline [9] from the perspective
of compactness, which leads to high classification performance.

6 CONCLUSION AND FUTURE WORK

In this paper, we systematically dive into essence of signal passing
along the edge of nodes and delicately design the framework of
FiGCN in the form of inception. With the inception parameters,
FiGCN is able to dynamically delve deeper into the frequency com-
ponents of each channel and capture the varying low-frequency
and high-frequency of different importance, leading to more bene-
ficial signals obtained. From the perspective of spectral and spatial
analysis, we investigate the superiorities over the conventional
GNNs, which reflects on inception channel components and learnt
discriminative information. As a result, we achieve significant ad-
vantages over the state-of-the-art GNNs, especially in the datasets
with high average node degree. Due to the pioneering thinking, the
inception framework can also inspire much sophisticated networks,
which may integrate complementary information, e.g., knowledge
graph, and contribute to investigate deeper useful information.
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