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ABSTRACT 

   Image reconstruction by projections is basically a mathematical problem. The speed and accuracy of the 

reconstruction mainly depend upon, (1) discretization scheme (2) solution technique. Solution by Algebraic Method 

(AM) is the most promising technique for manufacturing the low-cost (few detectors arrangement) X-ray CT set-up. 

Slow converging rate and huge memory requirement are the two major drawbacks of AM algorithms. Projection 

coefficient calculations and their storages are major time and storage-consuming processes of the algebraic methods. 

Among all algebraic methods, the Multiplicative Algebraic Reconstruction Technique (MART) is more effective 

because it maximizes the entropy of the image space. The conventional MART algorithm uses square grids (SG) in 

the discretization process of image reconstruction. In the present work, we employed a modified polar grid to cope 

with the shortcomings of the MART method. In this new discretization scheme, only the projection coefficients of the 

first view, need to be calculated. Projection coefficients for other views can be easily calculated by using the 

symmetries of the modified polar grid. This method significantly reduces the reconstruction time and storage 

requirement of the MART algorithm. In addition, we also presented the direct method of polar to square grid 

transformation for the visualization of the reconstructed images. We tested the proposed method to fan-beam geometry 

for 2D image reconstruction. Structural similarity index (SSIM) and L2 error are used for quality assessment of the 

reconstructed images.  
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1. INTRODUCTION 

     Computerized tomography (CT) is an extremely powerful non-invasive technique having tremendous applications 

in basic/applied sciences and engineering [1]. The common feature in all these applications is the search for a solution 

to an inverse problem where a given property of a system (e.g. attenuation coefficient for X-ray CT) has to be 

reconstructed starting from a set of line-integral measurements called projections [2].  



  

 

 
    There are several different solution methods that are developed to date depending on various tomographic 

applications. The transform-based algorithms are computationally efficient but produce satisfactory results only for a 

uniformly distributed large projection data set. The algebraic methods, on the other hand, can be used to produce 

meaningful results with limited and/or non-uniformly distributed projections [3, 4].  

     Among several types of algebraic methods, MART algorithms are proven to be efficient and the most accurate 

method for limited data case applications [5]. It is implemented successfully in different tomographic problems, e.g. 

temperature measurements with a laser-interferometric setup [6, 7], defects detection in composite plate [8] and 

analysis of the performance of three-phase pumps used in pumping of oil [9]. These studies have shown that of all 

these algebraic techniques those based on multiplicative correction are most flexible, and accurate.  

     The algebraic algorithms in their present form face two major problems: high computational complexity and huge 

memory requirement to carry out reconstruction [10]. To overcome the shortcoming of AM algorithms, researchers 

have proposed polar grid (PG) based image reconstructions [11, 12, 13]. These methods significantly reduce the 

storage and computational cost of the reconstruction. The major drawback of the polar grid-based image reconstruction 

method is that they rely on certain assumptions which force to use of a large number of projection data for meaningful 

image formation. Apart from this, the PG scheme has irregular image resolution.  

     In the present work, we propose a novel Constant Resolution Polar Grid (CRPG) discretization scheme to handle 

the issues of conventional PG-based methods. Along with this, we also offer a direct CRPG to SG mapping method 

for proper visualization of the images on the system screen. 

 

2. THEORY  

    2.1 Constant Resolution Polar Grid 

    The conventional polar grid is formed by the intersections of various concentric annular rings and radial lines. Each 

annular ring has the equal number of pixels (see Fig. 1). The space contribution of each pixel increases as we move 

outward from the center of the image. Thus, the resolution of a conventional polar grid image is highest at the centre 

and deteriorates along the radial direction. To overcome this shortcoming, we modify the polar grid in such a way that 

each pixel has the same contribution to the image space. We divide each ring according to the equation 𝑛𝑝 = 4(2𝑛 −

1), where 𝑛𝑝 is the number of pixels in each ring 𝑛 (𝑛 ∈ [1, 𝑁𝑟], where 𝑁𝑟 is the number of rings ). 

                    
(a)                                                            (b) 

Fig. 1 Image discretization using polar grids (a) Conventional polar grid (b) Constant resolution polar grid (CRPG). 

 

   2.2 Mapping Scheme of Constant Resolution Polar Grid to Square Grid 

   The visualization screen of the system has a square shaped pixel arrangement. Therefore, we need a mapping method 

to transform the polar image to square shaped pixel image. Researchers have used interpolation or iterative techniques 

to perform this operation. In these techniques single grid of polar coordinate system is sampled by many grids of 

square coordinate. We have shown the numbering strategy of the CRPG discretization scheme in Fig. 2 (a). We 

separately assign numbers to each grid of a ring starting from zero to 𝑛𝑝 (number of grids in ring n). The square grid 

(SG) coordinate system has been shown in Fig. 2(b) to show the similarity between  CRPG and SG. The concentric 

square rings 𝑆1, 𝑆2, 𝑆3and 𝑆4 can be considered as the building block of the square grid. According to the observation, 

the circular rings of CRPG and their counterpart square rings of SG have the same number of grids. In  Fig. 2, circular 



  

 

 
rings 𝑅1, 𝑅2, 𝑅3 and 𝑅4 of CRPG and square rings 𝑆1, 𝑆2, 𝑆3 and 𝑆4 of  SG have 4, 12, 20 and 28 pixels respectively. 

Equal number of the grids in the rings of the both geometry, facilitate us to have a perfect one-to-one  correspondence. 

In Fig. 2 (b), we have provided the polar grid number in blue font while the square grid number in black font.  

 

                
(a)                                                               (b) 

Fig. 2 Direct mapping Strategy of CRPG to SG (a) Numbering strategy of CRPG (b) Square grid with mapped polar 

grid numbers in blue font. 

 

    2.3 Tracing of Line in the Image Space 

   The most time-consuming operation of AM algorithms is searching for the path of the line through the image. We 

have used binary approach to assign the coefficient to the grid. In the binary method, the grids traversed by a line have 

coefficient one (active grid), other grids have coefficient zero (dead grid). The calculation of coefficients requires to 

solve the line equation with the circle and radial line of the polar grid. The conventional polar grid algorithms take 

O(N2) computation time for tracing the line in the image of size (𝑁 × 𝑁). The binary approach facilities to avoid the 

computation of the line with radial lines thus speeding the coefficient calculation process by O(N). 

 

 
Fig. 3 Schematic of data collection geometry. 

 

   We first need to find out the intersection points of the line with the circles of the CRPG and then sort them according 

to their distance to the source. Two consecutive intersection points 𝐼𝑘 and 𝐼𝑘+1lies in the same ring in all projections 

because of symmetry of the CRPG (see Fig. 3). The distance 𝑑𝑘 of the point 𝐼𝑘 or 𝐼𝑘+1 decides the ring number 𝑅𝑛 of 

the line segment 𝐼𝑘𝐼𝑘+1. 

                                                                                𝑑𝑘 = √𝐼𝑘𝑥
2 + 𝐼𝑘𝑦

2  ,                                                                           (1) 



  

 

 
The ring number 𝑅𝑛 of a line segment can be given by, 

                                                                                         𝑅𝑛 =
𝑑𝑘 

𝑟𝑠
  ,                                                                              (2) 

where 𝑟𝑠 is the ring spacing of the discretization grid (rings are equally spaced). 

The angular locations of points 𝐼𝑘 and 𝐼𝑘+1 are required to trace the line segment 𝐼𝑘𝐼𝑘+1. The azimuthal angles of 

these points are given by, 

                                                        𝜑𝐼𝑘
= tan−1 𝐼𝑘𝑦

𝐼𝑘𝑥
    𝑎𝑛𝑑  𝜑𝐼𝑘+1

= tan−1 𝐼(𝑘+1)𝑦

𝐼(𝑘+1)𝑥
  ,                                                   (3) 

 

Each rings have a different azimuthal step angle ∆𝜑𝑅𝑛
(angle between two consecutive radial planes of ring 𝑅𝑛)  

 

                                                                                 ∆𝜑𝑅𝑛
=

360

4(2𝑛−1)
   ,                                                                        (4) 

 

Grid number 𝑁𝐼𝑘
of point 𝐼𝑘 , in ring 𝑅𝑛 can be find as follows 

 

                                                                                     𝑁𝐼𝑘
= ⌊

 𝜑𝑃𝑘

 ∆𝜑𝑅𝑛

⌋ .                                                                          (5) 

 

where bracket ⌊. . ⌋ converts fraction number to the floor number. The grid number of the point 𝐼𝑘+1 can be find in 

similar fashion. The grid numbers 𝑁𝐼𝑘
 and 𝑁𝐼𝑘+1

are sufficient to trace the line segment 𝐼𝑘𝐼𝑘+1 in the ring 𝑅𝑛. The 

line segment 𝐼𝑘𝐼𝑘+1passes through all the grids which lies in between these two points. 

 

  2.4 Reconstruction Algorithm  

   Image reconstruction by projections requires to solve the linear equation, 

 

                                                                                    𝑃𝑝,𝑙 = ∑ 𝛼𝑝,𝑙,𝑣𝑣 𝑓𝑣 ,                                                                    (6) 

 

where, 𝑃𝑝,𝑙 is the measured projection data of line l of projection p, 𝛼𝑝,𝑙,𝑣 is the coefficient of line l in grid v and 𝑓𝑣 is 

the unknown field value of grid v. The sparse multiplicative reconstruction technique (Sp-MART) [14] has been used 

to solve the equation (6). We initialize the solution process by arbitrary field vector 𝑓 = (𝑓0, 𝑓1 … ….𝑓𝑁2). Equation 

(6) is used to calculate the numerical projection 𝑃𝑝,𝑙 data using the field vector f . This numerical projection data assist 

us to update the field vector of the image space using the equation, 

 

                                                                         𝑓𝑣
𝑛𝑒𝑤 = 𝑓𝑣

𝑜𝑙𝑑(1 − 𝛽 × (1 − ∆𝑃𝑝,𝑙)) .                                                      (7) 

 

where 𝑓𝑣
𝑛𝑒𝑤, 𝑓𝑣

𝑜𝑙𝑑 are the new and old field vector and 𝛽 is the relaxation parameter (𝛽 ∈ [0,2]). We iterate the loop 

of equation (6) and (7) until the filed vector stop changing its value.  

 

3. RESULTS   

   The performance  of the proposed method has been evaluated using various types of 2D numerical phantoms namely 

siemens star, slanted square and Shepp-Logon phantom. The projection data has been calculated using forward 

projection method for 70 projection views over full 360° rotation. The relaxation parameter was set at 0.4 for the back 

projection process of the image reconstruction. In Fig. 4, we have shown the original and reconstructed images of the 

numerical phantoms. 



  

 

 

 
                                                                                           (a) 

 
                                                                                           (b) 

Fig. 4 Reconstruction of numerical phantoms (a) Orginal image (b) Reconstructed image. 

 

   All the numerical experiments are coded in Python 3.8 and executed with the CPU machine of 64bit, 1.80 GHz, 

Intel® Core™ i7-8550U. The computational efficiency of the proposed methods have been tested by reconstructing 

images of different sizes. In Table 1, we have compared the cost of the CRPG based algorithm with the square grid 

based Sp-MART algorithm [14].  

 

Table 1. Comparison of Total Run Time of the CRPG with Sp-MART algorithm  

size Projections CRPG based Sp-MART 

Run Time(seconds) 

SG based Sp-MART 

Run Time (seconds) 

128 × 128 40 45 167 

256 × 256 50 131 390 

512 × 512 70 683 2078 

 

   The accuracy of the CRPG reconstruction has been accessed by using various image quality metrics. The mean 

absolute error (MAE), root mean square error (RMSE) and structural similarity index (SSIM) of the reconstructed 

images are enumerated in Table 2. It is clear from the Table 2 that the reconstructed images have lower values of 

MAE, RMSE and higher values of the SSIM. Lower value of the MAE and RMSE indicates better image 

reconstruction. The high value of SSIM indicates close resemblance of the reconstructed image to the reference image. 

 

  Table 2 Quality Assessment Parameters for Image Reconstruction 

 Siemens Star Slanted Squares Shepp-Logan 

MAE  0.07 0.09 0.04 

RMSE  0.15 0.19 0.09 

SSIM  0.91 0.89 0.93 

 

4. CONCLUSIONS 

The current study attempts to address the shortcomings of algebraic methods using the CRPG discretization scheme. 

The process of line tracing through the image space involves many operations such as multiplications, divisions, 

integer rounding, and array sorting. In the suggested methods, we just need to trace the lines of the first projection, 

which requires extremely few operations of multiplications, divisions, and integer rounding. The information of the 



  

 

 
first projection view has been utilized to fast tracing the lines of all other projections. Thus the proposed strategy 

enhances the computational speed by O(p), where p is the number of projections used for the reconstruction. The 

calculation of forward projection of the line and smearing of the projection values back to the line are performed 

simultaneously. Therefore, the approaches exercised in the present work also reduce the storage requirement by the 

factor of p. The shortcoming of radial deterioration of the resolution of the conventional polar grid reconstruction 

method is also solved by employing CRPG method. In conclusion, we have established a novel mathematical model 

to speed up the calculations of projection coefficients and reduce the storage requirement of the algebraic algorithms  

without compromising the image quality. 
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