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Abstract— Visual assessment of welds is crucial in welding
training, yet traditional instructor-led evaluations are prone to
subjectivity and inconsistent feedback. This research introduces
an innovative artificial intelligence (Al)-driven system for
objective evaluation and analysis of welding skills through
visual inspection. The system utilizes deep learning models,
incorporating a Vision Transformer for welding skill
classification and a YOLO (You Only Look Once) algorithm for
precise weld defect detection. Experimental validation
demonstrates the effectiveness of the Vision Transformer,
achieving an 89% accuracy in classifying welding skills base on
visual inspection, while the YOLO model attained an F1-score
of 0.8 in weld defect detection. This Al-powered approach has
the potential to enhance the objectivity, consistency, and
efficiency of welding skill assessment in educational settings.

Keywords—welding training, weld defect, Al-based welding
assessment

I. INTRODUCTION

In the field of welding, particularly manual metal arc
welding (MMAW), the quality of welds is a critical
determinant of the structural integrity and durability of
fabricated products. Ensuring high-quality welds requires a
combination of skill, experience, and meticulous attention to
detail. However, traditional welding training methods often
rely on subjective assessments by instructors, which can
introduce variability and potential bias into the evaluation
process. In particular, as the volume of samples to be assessed
increases, the likelihood of undetected errors also rises,
potentially compromising the accuracy and reliability of the
assessment.

Previous study has explored the integration of Al and
machine learning in the welding evaluation. For instance, in a
recent study [1], an artificial neural network (ANN) based
model was developed to predict weld defects. The authors
used data from 289 specimens produced by an automated Gas
Metal Arc Welding (GMAW) system. The input data
consisted of three welding process measurements: welding
current, travel speed, and protective gas flow. The
corresponding non-destructive test results for four defect types
(underfill, lack of penetration, incomplete fusion, and
porosity) served as the output data. The authors of another
study [2] conducted experiments on tube-to-tube butt joints,
varying process parameters to predict good welds and three
types of defects. While these research shares the goal of weld
defect detection using machine learning, it differs from our
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project by using welding process parameters as inputs rather
than weld images. In addition to direct identification of
surface weld defects, we also use a separate model to classify
the welding skill level of students.

Since the MMAW images data can be challenging to
obtain, the authors of another previous research [3] have
developed a system using Total Focusing Method (TFM)
imaging, combining Finite Element (FE) simulations, Deep
Convolutional Generative Adversarial Network (DCGAN) for
rapid image generation, and the addition of real-world noise
to enhance dataset realism. However, to enhance the practical
applicability of the model, we elected to utilize real-world
MMAW images for both training and evaluation process.

Conversely, comprehensive Al-driven systems that
integrate both welding skill classification and detailed defect
detection within the specific context of arc welding training,
particularly for student-produced welds, are scarce in the
literature. To address this gap, this paper presents a novel
system that concurrently classifies welding skill levels and
detects the weld defects, with the overarching goal of
enhancing welding training efficacy. The proposed
methodology comprises two distinct models; an image
classification model designed to classify students' welding
skills based on visual assessment, and an object detection
model tailored to identify and localize defects on the weld
surface itself. Additionally, we also collected a dataset
containing raw MMAW images data.

In summary, the major contributions of this work are as
follows:

e We collect a dataset consisting of MMAW product
images from students.

e We analyze and categorize the welding skill of the
students by doing a visual analysis of the weld bead
surface characteristics.

o We identify and visualize defects present on the weld
surface.

Il. METHODOLOGY

A. Dataset description

In Manual Metal Arc Welding (MMAW), five primary
types of welded joints exist: butt, corner (angle), edge, fillet
(or tee), and lap joints. This research specifically focuses on
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the butt weld joint configuration, wherein two metal pieces are
positioned end-to-end without overlap and subsequently
welded along the joint interface. More specifically, the dataset
comprises approximately 1200 MMAW images acquired
from student welding exercises.

Fig. 1. Real weld sample with two weld beads

1) Welding skill classification data

Based on an analysis of the collected student welding
exercise data and consultation with welding experts, MMAW
products from students have been categorized into four
distinct level classes as summarized in Table I.

TABLE I. WELDING SKILL LEVEL DEFINITION

Level | Definition

A Perfect weld bead with small or no surface defects.

B | The weld bead has been disrupted by appearing of
several surface defects than class A.

C | Weld bead created but the welding line has been
disrupted continuously by appearing of more
surface defects than class B.

D | Not creating a weld or burn through.

Fig. 2 through Fig. 5 provide illustrative examples for each
distinct welding skill level.

s

Fig. 3. Level B weld joint.

Welds classified as level B closely approximate the quality
of level A welds; however, minor imperfections such as
uneven or non-uniform metal ripples, spatter, or slag
inclusions may be present on the weld bead surface, resulting
in a less aesthetically pleasing appearance.

Fig. 4. Level C weld joint.

Level C welds exhibit non-linearity and discontinuity in
the weld bead, characterized by inconsistent shape and
dimensions. Additionally,
typically present.

multiple surface defects are

Fig. 5. Level D weld joint.

Lastly, Level D welds indicate a lack of mastery of the
welding technique and/or inappropriate welding parameters.
This manifests as a weld bead that is interrupted,
discontinuous, or even exhibits burn-through.

2) Weld defect detection data

Following a collaborative analysis of numerous student-
produced weld images with welding experts, six recurring
defects were identified as the most prevalent among students
among 25 common defects listed in a reference literature[4].
Consequently, the system was designed to focus on the
detection of these six specific defects, which will be annotated
in the dataset if present: burn-through, incomplete fusion
(infusion), porosity, surface roughness, slag inclusions, and
spatter. Fig. 6 and 7 present representative examples of defect
on the weld image dataset.

3 “ o’

Fig. 7. Sample with porosity defect.

B. Proposed workflow

We use a basic workflow for developing and evaluating an
Al-driven system for welding skill classification and defect
detection is structured into three main stages: Data Preparing,
Data Processing, and Model Evaluation as depicted in Fig. 8.
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Fig. 8. Models workflow.
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1) Data preparing

Following the acquisition of MMAW weld images from
student samples, each image was meticulously labeled in
accordance with the aforementioned criteria. To mitigate
overfitting and model selection bias, both datasets were
partitioned into three distinct subsets: 75% for training, 15%
for validation, and 10% for testing.

2) Data processing

Due to the diverse capture environments and varying
camera settings of the collected MMAW images, data
augmentation techniques were employed during the training
phase to enhance data diversity and improve model
robustness. These techniques included:

o Vertical and horizontal flipping.
e Adding random noise.

e Adding random Gaussian Blur.
e Brightness adjustments.

After augmentation, the train set comprised approximately
2700 MMAW images.

To ensure compatibility with the Vision Transformer [5]
model, the following preprocessing steps were applied to the
skill classification dataset: resizing to a standard dimension of
224x224 pixels, rescaling by a factor of 1/255, normalizing
using a mean of [0.5, 0.5, 0.5], resampling and formatting into
tensors.

Conversely, for the defect detection model, we employ
fundamental data processing techniques tailored for YOLO
[6], specifically leveraging YOLOV8[7] for this work. The
preprocessing steps include resizing the images to a fixed
dimension of 640x640 pixels to maintain a consistent input
size, normalizing pixel values by scaling them to the range [0,
1], and applying padding as necessary to preserve the aspect
ratio. Finally, the images are converted into tensors,
facilitating efficient training and inference of the YOLOvV8
model.

3) Model evaluation metric

For the welding skill classification model, accuracy was
defined as the ratio of correct predictions to the total number
of predictions.

TP+TN

Accuracy = TP+TN+FP+FN (0

For the defect detection model, performance was assessed
using F1-score metrics[8].

P TP
Precision = (2)
TP+FP
TP
Recall = 3)
TP+FN
Precision*Recall
Flscore =2 —————— 4)
Precision+Recall

Where:
e TP is True positives

e TN is True negatives

e FPis False positives
e FN is False negatives

Furthermore, we also trained the welding skill
classification dataset using stable established convolutional
neural  network  (CNN) architectures, including
InceptionsVV3[9] , Resnet-50[10] and VGG-16[11], to provide
a comparative performance assessment against the Vision
Transformer model.

I1l. RESULT AND DISCUSSION

A. Welding skill classification

[a]ll Welding skill level classification

Result

D 0.858
G 0.129
A 0.008
B 0.005

Fig. 9. Example of welding skill classification result.

Fig. 9 presents the results of a visual inspection-based
welding skill classification model, analyzing a weld sample
that appears rough and uneven. The classification strongly
indicates a Level D weld with 85.8% confidence, suggesting
low-quality work by an unskilled student.

Table 1l shows that the Vision Transformer model
achieves the best accuracy (89%), outperforming traditional
CNN architectures on test dataset. InceptionV3 (82.60%)
demonstrates strong performance among CNNs, while
Resnet-50 (72.1%) and VGG-16 (70.2%) show moderate
effectiveness.

TABLE Il COMPARISON OF MODEL ACCURACIES FOR WELDING SKILL
CLASSIFICATION
Model Accuracy (%)
Vision Transformer 89
InceptionV3 82.6
Resnet-50 72.1
VGG-16 70.2

B. Weld defect detection

Fig. 10. Testing defect detection model on real weld sample.
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Fig. 11. F1-Confidence curve of defect detection model.

Fig. 11 depicts the performance of the defect detection
model. The overall model performance (blue line) reveals a
substantial F1 score of 0.80 at a confidence threshold of 0.253.
While the model appears effective for most defect types,
spatter detection presents the most challenging defect type for
the model.

IV. CONCLUTION

This study aimed to develop a system for classification of
welding skill levels and detection of weld defects. The system
utilizes deep learning models, specifically a Vision
Transformer for image classification and YOLO for object
detection, trained on a dataset of images captured directly
from student-produced welds. Various data processing
techniques were employed to enhance model performance.
Evaluation metrics demonstrated the effectiveness of the
proposed system in assessing weld quality. Future work may
include the development of integrated hardware for real-time
student interaction and feedback during welding exercises,
applied in welding training.
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