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Abstract— Visual assessment of welds is crucial in welding 

training, yet traditional instructor-led evaluations are prone to 

subjectivity and inconsistent feedback. This research introduces 

an innovative artificial intelligence (AI)-driven system for 

objective evaluation and analysis of welding skills through 

visual inspection. The system utilizes deep learning models, 

incorporating a Vision Transformer for welding skill 

classification and a YOLO (You Only Look Once) algorithm for 

precise weld defect detection. Experimental validation 

demonstrates the effectiveness of the Vision Transformer, 

achieving an 89% accuracy in classifying welding skills base on 

visual inspection, while the YOLO model attained an F1-score 

of 0.8 in weld defect detection. This AI-powered approach has 

the potential to enhance the objectivity, consistency, and 

efficiency of welding skill assessment in educational settings. 

Keywords—welding training, weld defect, AI-based welding 
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I. INTRODUCTION  

In the field of welding, particularly manual metal arc 
welding (MMAW), the quality of welds is a critical 
determinant of the structural integrity and durability of 
fabricated products. Ensuring high-quality welds requires a 
combination of skill, experience, and meticulous attention to 
detail. However, traditional welding training methods often 
rely on subjective assessments by instructors, which can 
introduce variability and potential bias into the evaluation 
process. In particular, as the volume of samples to be assessed 
increases, the likelihood of undetected errors also rises, 
potentially compromising the accuracy and reliability of the 
assessment. 

Previous study has explored the integration of AI and 
machine learning in the welding evaluation. For instance, in a 
recent study [1], an artificial neural network (ANN) based 
model was developed to predict weld defects. The authors 
used data from 289 specimens produced by an automated Gas 
Metal Arc Welding (GMAW) system. The input data 
consisted of three welding process measurements: welding 
current, travel speed, and protective gas flow. The 
corresponding non-destructive test results for four defect types 
(underfill, lack of penetration, incomplete fusion, and 
porosity) served as the output data. The authors of another 
study [2] conducted experiments on tube-to-tube butt joints, 
varying process parameters to predict good welds and three 
types of defects. While these research shares the goal of weld 
defect detection using machine learning, it differs from our 

project by using welding process parameters as inputs rather 
than weld images. In addition to direct identification of 
surface weld defects, we also use a separate model to classify 
the welding skill level of students. 

Since the MMAW images data can be challenging to 
obtain, the authors of another previous research [3] have 
developed a system using Total Focusing Method (TFM) 
imaging, combining Finite Element (FE) simulations, Deep 
Convolutional Generative Adversarial Network (DCGAN) for 
rapid image generation, and the addition of real-world noise 
to enhance dataset realism. However, to enhance the practical 
applicability of the model, we elected to utilize real-world 
MMAW images for both training and evaluation process. 

Conversely, comprehensive AI-driven systems that 
integrate both welding skill classification and detailed defect 
detection within the specific context of arc welding training, 
particularly for student-produced welds, are scarce in the 
literature. To address this gap, this paper presents a novel 
system that concurrently classifies welding skill levels and 
detects the weld defects, with the overarching goal of 
enhancing welding training efficacy. The proposed 
methodology comprises two distinct models: an image 
classification model designed to classify students' welding 
skills based on visual assessment, and an object detection 
model tailored to identify and localize defects on the weld 
surface itself. Additionally, we also collected a dataset 
containing raw MMAW images data. 

In summary, the major contributions of this work are as 
follows: 

• We collect a dataset consisting of MMAW product 
images from students. 

• We analyze and categorize the welding skill of the 
students by doing a visual analysis of the weld bead 
surface characteristics. 

• We identify and visualize defects present on the weld 
surface. 

II. METHODOLOGY 

A. Dataset description 

In Manual Metal Arc Welding (MMAW), five primary 
types of welded joints exist: butt, corner (angle), edge, fillet 
(or tee), and lap joints. This research specifically focuses on 
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the butt weld joint configuration, wherein two metal pieces are 
positioned end-to-end without overlap and subsequently 
welded along the joint interface. More specifically, the dataset 
comprises approximately 1200 MMAW images acquired 
from student welding exercises.  

 

Fig. 1. Real weld sample with two weld beads 

1) Welding skill classification data 
Based on an analysis of the collected student welding 

exercise data and consultation with welding experts, MMAW 
products from students have been categorized into four 
distinct level classes as summarized in Table I. 

TABLE I.  WELDING SKILL LEVEL DEFINITION 

Level Definition 

A Perfect weld bead with small or no surface defects. 

B The weld bead has been disrupted by appearing of 
several surface defects than class A. 

C Weld bead created but the welding line has been 
disrupted continuously by appearing of more 
surface defects than class B. 

D Not creating a weld or burn through. 

 

Fig. 2 through Fig. 5 provide illustrative examples for each 
distinct welding skill level. 

 

Fig. 2. Level A weld joint. 

 

Fig. 3. Level B weld joint. 

Welds classified as level B closely approximate the quality 
of level A welds; however, minor imperfections such as 
uneven or non-uniform metal ripples, spatter, or slag 
inclusions may be present on the weld bead surface, resulting 
in a less aesthetically pleasing appearance. 

 

Fig. 4. Level C weld joint. 

Level C welds exhibit non-linearity and discontinuity in 
the weld bead, characterized by inconsistent shape and 
dimensions. Additionally, multiple surface defects are 
typically present. 

 

Fig. 5. Level D weld joint. 

Lastly, Level D welds indicate a lack of mastery of the 
welding technique and/or inappropriate welding parameters. 
This manifests as a weld bead that is interrupted, 
discontinuous, or even exhibits burn-through. 

2) Weld defect detection data 
Following a collaborative analysis of numerous student-

produced weld images with welding experts, six recurring 
defects were identified as the most prevalent among students 
among 25 common defects listed in a reference literature[4]. 
Consequently, the system was designed to focus on the 
detection of these six specific defects, which will be annotated 
in the dataset if present: burn-through, incomplete fusion 
(infusion), porosity, surface roughness, slag inclusions, and 
spatter. Fig. 6 and 7 present representative examples of defect 
on the weld image dataset. 

 

Fig. 6. Sample with burn-through defect. 

 

Fig. 7. Sample with porosity defect. 

B. Proposed workflow 

We use a basic workflow for developing and evaluating an 
AI-driven system for welding skill classification and defect 
detection is structured into three main stages: Data Preparing, 
Data Processing, and Model Evaluation as depicted in Fig. 8. 

 

Fig. 8. Models workflow. 
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1) Data preparing 
Following the acquisition of MMAW weld images from 

student samples, each image was meticulously labeled in 
accordance with the aforementioned criteria. To mitigate 
overfitting and model selection bias, both datasets were 
partitioned into three distinct subsets: 75% for training, 15% 
for validation, and 10% for testing. 

2) Data processing  
Due to the diverse capture environments and varying 

camera settings of the collected MMAW images, data 
augmentation techniques were employed during the training 
phase to enhance data diversity and improve model 
robustness. These techniques included: 

• Vertical and horizontal flipping.  

• Adding random noise.  

• Adding random Gaussian Blur.  

• Brightness adjustments. 

After augmentation, the train set comprised approximately 
2700 MMAW images. 

To ensure compatibility with the Vision Transformer [5] 
model, the following preprocessing steps were applied to the 
skill classification dataset: resizing to a standard dimension of 
224x224 pixels, rescaling by a factor of 1/255, normalizing 
using a mean of [0.5, 0.5, 0.5], resampling and formatting into 
tensors. 

Conversely, for the defect detection model, we employ 
fundamental data processing techniques tailored for YOLO 
[6], specifically leveraging YOLOv8[7] for this work. The 
preprocessing steps include resizing the images to a fixed 
dimension of 640x640 pixels to maintain a consistent input 
size, normalizing pixel values by scaling them to the range [0, 
1], and applying padding as necessary to preserve the aspect 
ratio. Finally, the images are converted into tensors, 
facilitating efficient training and inference of the YOLOv8 
model. 

3) Model evaluation metric 
For the welding skill classification model, accuracy was 

defined as the ratio of correct predictions to the total number 
of predictions. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁 

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 () 

For the defect detection model, performance was assessed 
using F1-score metrics[8]. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 () 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 () 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 () 

Where: 

• TP is True positives 

• TN is True negatives 

 

• FP is False positives 

• FN is False negatives 

Furthermore, we also trained the welding skill 
classification dataset using stable established convolutional 
neural network (CNN) architectures, including 
InceptionsV3[9] , Resnet-50[10] and VGG-16[11], to provide 
a comparative performance assessment against the Vision 
Transformer model. 

III. RESULT AND DISCUSSION 

A. Welding skill classification 

 

Fig. 9. Example of welding skill classification result. 

Fig. 9 presents the results of a visual inspection-based 
welding skill classification model, analyzing a weld sample 
that appears rough and uneven. The classification strongly 
indicates a Level D weld with 85.8% confidence, suggesting 
low-quality work by an unskilled student. 

Table II shows that the Vision Transformer model 
achieves the best accuracy (89%), outperforming traditional 
CNN architectures on test dataset. InceptionV3 (82.60%) 
demonstrates strong performance among CNNs, while 
Resnet-50 (72.1%) and VGG-16 (70.2%) show moderate 
effectiveness. 

TABLE II.  COMPARISON OF MODEL ACCURACIES FOR WELDING SKILL 

CLASSIFICATION 

Model Accuracy (%) 

Vision Transformer 89 

InceptionV3 82.6 

Resnet-50 72.1 

VGG-16 70.2 

B. Weld defect detection 

 

Fig. 10. Testing defect detection model on real weld sample. 
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Fig. 11. F1-Confidence curve of defect detection model.  

Fig. 11 depicts the performance of the defect detection 
model. The overall model performance (blue line) reveals a 
substantial F1 score of 0.80 at a confidence threshold of 0.253. 
While the model appears effective for most defect types, 
spatter detection presents the most challenging defect type for 
the model. 

IV. CONCLUTION 

This study aimed to develop a system for classification of 
welding skill levels and detection of weld defects. The system 
utilizes deep learning models, specifically a Vision 
Transformer for image classification and YOLO for object 
detection, trained on a dataset of images captured directly 
from student-produced welds. Various data processing 
techniques were employed to enhance model performance. 
Evaluation metrics demonstrated the effectiveness of the 
proposed system in assessing weld quality. Future work may 
include the development of integrated hardware for real-time 
student interaction and feedback during welding exercises, 
applied in welding training. 
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