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Abstract 
The frequencies of long period seismic excitations fall within the range of the fundamental frequencies 
of tall structures. This results in large resonance responses of the structures. Their resonance motions 
affect the modular vertical transportation systems (VTS) operating in tall buildings. The main 
objective of this work is to develop an improved, computationally efficient dynamic model to predict 
the effects of resonances in VTS [1]. 

Figure 1: Simplified diagrams of the VTS and of the structure – soil – bedrock model. 
Fig. 1(a) shows a model of a VTS installed in a cantilever vertical host structure subjected to seismic 
ground motions ݏ଴௩ and ݏ଴௪. The structure is subject to the fundamental bending mode resonance 
conditions. The fundamentad mode shape function is expressed by a polynomial shape function ߖ ଶߟ3= − ߟ ଷ whereߟ2 =  ଴. A model of the structure is shown in Fig. 1(b) [2]. In this model R(t)ܼ/ݖ
represents the absolute motion of the bedrock, G(t) is the motion of the ground layer (represented by 
the mass msoil) relative to the bedrock, s0(t) = R(t) + G(t) is the absolute motion of the ground. The 
properties of the ground layer are represented by the coefficient of stiffness ksoil and the coefficient of 
viscous damping csoil. The parameters of the structure are the modal mass mr, modal stiffness 
coefficient kr, and modal damping coefficient cr. The displacements of the structure relative to the 
ground are ̄ݒ଴ = ,(ݐ)௥݌(଴ߟ)ߖ ଴ߟ =  where pr(t) denotes the modal coordinate. The motion of the ,(଴ܼ)ߟ
structure is then desribed by the ordinary differential equations (ODE) given by Eq. (1):  ̈݌௥(ݐ) + (ݐ)௥̇݌௥߱௥ߞ2 + ߱௥ଶ݌௥(ݐ) = ௥ܲ(ݐ)̈(ݐ)ܩ + (ݐ)ܩ௦߱௦௢௜௟̇ߞ2 − ܿ௥݉௦௢௜௟ ௥̇݌ + ߱௦௢௜௟ଶ (ݐ)ܩ − ݇௥݉௦௢௜௟ ௥݌ = (ݐ)ܴ̈− (1)

where ߱௦௢௜௟ = ට௞ೞ೚೔೗௠ೞ೚೔೗ and s is the layer damping ratio. The model depicted in Fig. 1(a) represents a 

multibody system with rigid bodies (RB) shown as the masses M1, M2 and M3, respectively. These 
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correspond to the car, counterweight (CWT) and compensating sheave assembly (CSA) of the VTS, 
respectively, and are constrained by elastic long slender continua (LSC) of time-varying length Li(t), 
where i = 1,4 are referred to as compensating cables, and i = 2,3 as suspension ropes, at the car and 
CWT sides, respectively. They have small bending stiffness EiJi and are of mass per unit length mi, 
where i = 1,2. The dynamic vertical displacements of RB are denoted by ݍெభ ெభమݍ , and ݍெయ, 
respectively. I3 is the second moment of inertia of the CSA, with its rotational degree of freedom 
represented by the angular coordinate 3. A nonlinear viscous damping (tie-down) element of the 
coefficient of damping c3 is applied to constrain vertical motions of the CSA. The equations of 
motion of RB are given by Eq. (2): ܯଵ̈ݍெభ − ଵ݁ଵܣଵܧ + ଶ݁ଷܣଶܧ = 0; ெమݍଶ̈ܯ − ଵ݁ସܣଵܧ + ଶ݁ଶܣଶܧ = ெయݍଷ̈ܯ;0 + ଵ݁ଵܣଵܧ + ଵ݁ସܣଵܧ + ௗܨ = 0; ߠଷ̈ܫ − ଵ݁ଵܣଵܧ)ܦ + ଵ݁ସ)/2ܣଵܧ = 0 (2)

where Ei, Ai i = 1,2 denote the moduli of elasticity and cross-sectional areas of LSC, and ei, i = 
1,2,..,4, denote the quasi-static axial strains in the LSC components. D is the diameter of the 
compensating sheave and Fd represents the damping force in the tie-down element. The kinematic 
constraint 2ݍଷ − ଵݑ − ସݑ = 0, where ݑଵ = ெయݍ + ସݑ,ଷߠܴ = ெయݍ −  ଷ, is applied to complementߠܴ
Eq. (2). The equations of motion of LSC are given by the nonlinear partial differential equations 
(PDE) presented in Eq. (3): ݉௜̄ݒ௜௧௧ + ௜௫௫௫௫ݒ௜̄ܬ௜ܧ − { ௜ܶ − ݉௜[ܸଶ + (݃ − ܽ௜)ݔ௜] + ௜௫௫ݒ̄{௜݁௜ܣ௜ܧ + ݉௜݃̄ݒ௜௫+ 2݉௜ܸ̄ݒ௜௫௧ , = ,ݐ]௜௩ܨ ௜௧௧ݓ௜̄݉,[(ݐ)௜ܮ + ௜௫௫௫௫ݓ௜̄ܬ௜ܧ − { ௜ܶ − ݉௜[ܸଶ + (݃ − ܽ௜)ݔ௜] + ௜௫௫ݓ̄{௜݁௜ܣ௜ܧ + ݉௜݃̄ݓ௜௫+ 2݉௜ܸ̄ݓ௜௫௧ = ,ݐ]௜௪ܨ [(ݐ)௜ܮ (3)

where g is the acceleration of gravity, ̄ݒ௜(ݔ௜ , ,(ݐ ,௜ݔ)௜ݓ̄ (ݐ i = 1,2,...,4, represent the lateral dynamic 
displacements of LSC relative to the host structure, and ܨ௜௩  ௜௪ are the excitation terms. The response ofܨ,
the structure is determined from Eq. (1). The Galerkin method is applied to discretize Eq. (3). The 
resulting nonlinear ODE system is then solved numerically by using a stiff solver. The dynamic 
interactions when the frequency of the building is tuned to the natural frequencies of the VTS are 
investigated. In Fig. 2 (a-c) the frequency plots are shown, and vertical responses of the RBs are 
presented in (d). The scenario is when the car is moving upwards at speed 5 m/s. The plots demonstrate 
interactions of the RB responses with the LSC resonance conditions when the frequency of the excitation 
(represented by horizontal red lines) is tuned to the natural frequencies of the LSC system. 

Figure 2: The frequency plots: (a) suspension LSC (b) compensating LSC (c) vertical RB, and 
(d) the dynamic displacements of RB.
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