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1 Introduction

A positive integer n is called a balancing number ([2]) if the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1)

holds for some positive integer r which is called balancer corresponding to n. If n is a balancing
number with balancer r, then from (1)

r =
−2n− 1 +

√
8n2 + 1

2
. (2)

From (2) we note that n is a balancing number if and only if 8n2 + 1 is a perfect square. Though
the definition of balancing numbers suggests that no balancing number should be less than 2. But
from (2) we note that 8(0)2 + 1 = 1 and 8(1)2 + 1 = 32 are perfect squares. So we accept 0

and 1 to be balancing numbers. Let Bn denote the nth balancing number. Then B0 = 0, B1 = 1,

B2 = 6 and Bn+1 = 6Bn −Bn−1 for n ≥ 2.
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Later Panda and Ray ([14]) defined that a positive integer n is called a cobalancing number if
the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (3)

holds for some positive integer r which is called cobalancer corresponding to n. If n is a cobal-
ancing number with cobalancer r, then from (3)

r =
−2n− 1 +

√
8n2 + 8n+ 1

2
. (4)

From (4) we note that n is a cobalancing number if and only if 8n2 + 8n + 1 is a perfect square.
Since 8(0)2 + 8(0) + 1 = 1 is a perfect square, we accept 0 to be a cobalancing number, just like
Behera and Panda accepted 0, 1 balancing numbers. Cobalancing number is denoted by bn. Then
b0 = b1 = 0, b2 = 2 and bn+1 = 6bn − bn−1 + 2 for n ≥ 2.

It is clear from (1) and (3) that every balancing number is a cobalancer and every cobalancing
number is a balancer, that is, Bn = rn+1 and Rn = bn for n ≥ 1, where Rn is the nth the balancer
and rn is the nth cobalancer. Since Rn = bn, we get from (1) that

bn =
−2Bn − 1 +

√
8B2

n + 1

2
and Bn =

2bn + 1 +
√

8b2n + 8bn + 1

2
. (5)

Thus from (5), we see that Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1 are integers which are

called the nth Lucas-balancing number and nth Lucas-cobalancing number, respectively.
Let α = 1 +

√
2 and β = 1 −

√
2 be the roots of the characteristic equation for Pell and

Pell-Lucas numbers which are the numbers defined by P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 and
Q0 = Q1 = 2, Qn = 2Qn−1 + Qn−2 for n ≥ 2. Then Ray ([17]) derived some nice results on
balancing numbers and Pell numbers his Phd thesis. Since x is a balancing number if and only
if 8x2 + 1 is a perfect square, he set 8x2 + 1 = y2 for some integer y ≥ 1. Then he get the Pell
equation ([1, 3, 9])

y2 − 8x2 = 1. (6)

The fundamental solution of (6) is (y1, x1) = (3, 1). So yn + xn
√

8 = (3 +
√

8)n for n ≥ 1 and
similarly yn − xn

√
8 = (3 −

√
8)n. Let γ = 3 +

√
8 and δ = 3 −

√
8. Then he get xn = γn−δn

γ−δ
which is the Binet formula for balancing numbers, that is, Bn = γn−δn

γ−δ . Since α2 = γ and

β2 = δ, he conclude that the Binet formula for balancing numbers is Bn = α2n−β2n

4
√
2
. Similarly he

get bn = α2n−1−β2n−1

4
√
2

− 1
2
, Cn = α2n+β2n

2
and cn = α2n−1+β2n−1

2
for n ≥ 1 (see also [10, 13, 16]).

Balancing numbers and their generalizations have been investigated by several authors from
many aspects. In [7], Liptai proved that there is no Fibonacci balancing number except 1 and
in [8] he proved that there is no Lucas balancing number. In [20], Szalay considered the same
problem and obtained some nice results by a different method. In [5], Kovács, Liptai and Olajos
extended the concept of balancing numbers to the (a, b)-balancing numbers defined as follows:
Let a > 0 and b ≥ 0 be coprime integers. If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)
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for some positive integers n and r, then an + b is an (a, b)-balancing number. The sequence of
(a, b)-balancing numbers is denoted by B(a,b)

m for m ≥ 1. In [6], Liptai, Luca, Pintér and Szalay
generalized the notion of balancing numbers to numbers defined as follows: Let y, k, l ∈ Z+ such
that y ≥ 4. Then a positive integer x with x ≤ y − 2 is called a (k, l)-power numerical center for
y if 1k + · · · + (x − 1)k = (x + 1)l + · · · + (y − 1)l. They studied the number of solutions of
the equation above and proved several effective and ineffective finiteness results for (k, l)-power
numerical centers. For positive integers k, x, let Πk(x) = x(x + 1) . . . (x + k − 1). Then it was
proved in [5] that the equation Bm = Πk(x) for fixed integer k ≥ 2 has only infinitely many
solutions and for k ∈ {2, 3, 4} all solutions were determined. In [23] Tengely, considered the
case k = 5, that is, Bm = x(x + 1)(x + 2)(x + 3)(x + 4) and proved that this Diophantine
equation has no solution for m ≥ 0 and x ∈ Z. In [15], Panda, Komatsu and Davala considered
the reciprocal sums of sequences involving balancing and Lucas-balancing numbers and in [18],
Ray considered the sums of balancing and Lucas-balancing numbers by matrix methods. In [12],
Panda and Panda defined the almost balancing number and its balancer. In [21], the first author
considered almost balancing numbers, triangular numbers and square triangular numbers and in
[22], he considered the sums and spectral norms of almost balancing numbers.

2 Balcobalancing Numbers.

In this work we define a new balancing number called balcobalancing number, Lucas-balcoba-
lancing number and balcobalancer and determine the general terms of them.

If we sum of both sides of (1) and (3), then we get the Diophantine equation

1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n = 2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]. (7)

So a positive integer n is called a balcobalancing number if the Diophantine equation (7) holds for
some positive integer r which is called balcobalancer. For example, 10, 348, 11830, 401880, · · ·
are balcobalancing numbers with balcobalancers 4, 144, 4900, 166464, · · · .

From (7), we get

r =
−2n− 1 +

√
8n2 + 4n+ 1

2
. (8)

Let Bbc
n denote the nth balcobalancing number and let Rbc

n denote the nth balcobalancer. Then
from (8), we get Bbc

n is a balcobalancing number if and only if 8(Bbc
n )2 + 4Bbc

n + 1 is a perfect
square. Thus

Cbc
n =

√
8(Bbc

n )2 + 4Bbc
n + 1 (9)

is an integer which are called the nth Lucas-balcobancing number. For example 29, 985, 33461, · · ·
are Lucas-balcobancing numbers (Here we notice that balcobalancing numbers should be grater
that 0. But 8(0)2 + 4(0) + 1 = 1 is a perfect square, so we assume that 0 is a balcobalancing
number, that is, Bbc

0 = 0. In this case, Rbc
0 = 0 and Cbc

0 = 1).

In order to determine the general terms of balcobalancing numbers, Lucas-balcobancing num-
bers and balcobalancers, we have to determine the set of all (positive) integer solutions of the Pell
equation

x2 − 2y2 = −1. (10)
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We see from (8) that Bbc
n is a balcobalancing number if and only if 8(Bbc

n )2 + 4Bbc
n + 1 is a perfect

square. So we set 8(Bbc
n )2 + 4Bbc

n + 1 = y2 for some integer y ≥ 1. If we multiply both sides of
the last equation by 2, then we get 16(Bbc

n )2 + 8Bbc
n + 2 = 2y2 and hence (4Bbc

n + 1)2 + 1 = 2y2.
Taking x = 4Bbc

n + 1, we get the Pell equation in (10).
For the set of all integer solutions of (10), we can give the following theorem.

Theorem 2.1. The set of all integer solutions of (10) is {(cn, 2bn + 1) : n ≥ 1}.

Proof. For the Pell equation x2 − 2y2 = −1, the set of representatives is Rep = {[±1 1]} and

M =

[
3 2

4 3

]
. In this case [−1 1]Mn generates all integer solutions (xn, yn) for n ≥ 1. It can

be easily seen that the nth power of M is Mn =

[
Cn 2Bn

4Bn Cn

]
for n ≥ 1. So

[xn yn] = [−1 1]

[
Cn 2Bn

4Bn Cn

]
= [−Cn + 4Bn − 2Bn + Cn].

Thus the set of all integer solutions is {(−Cn + 4Bn,−2Bn + Cn) : n ≥ 1}. But we notice that

−Cn + 4Bn = −(
α2n + β2n

2
) + 4(

α2n − β2n

4
√

2
) =

α2n−1 + β2n−1

2
= cn

and similarly −2Bn + Cn = 2bn + 1. So the result is clear.

From Theorem 2.1, we can give the following result.

Theorem 2.2. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers
and balcobalancers are

Bbc
n =

c2n+1 − 1

4
, Cbc

n = 2b2n+1 + 1 and Rbc
n =

4b2n+1 − c2n+1 + 1

4

for n ≥ 1.

Proof. Notice that we multiply the equation 8(Bbc
n )2+4Bbc

n +1 = y2 by 2 and since x = 4Bbc
n +1,

we get

Bbc
n =

x2n+1 − 1

4
=
c2n+1 − 1

4
for n ≥ 1. Thus from (9),

Cbc
n =

√
8(Bbc

n )2 + 4Bbc
n + 1

=

√
8(
c2n+1 − 1

4
)2 + 4(

c2n+1 − 1

4
) + 1

=

√
c22n+1 + 1

2

=

√
(α

4n+1+β4n+1

2
)2 + 1

2
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=

√[
2(
α4n+1 − β4n+1

2
√

2
− 1

2
) + 1

]2
= 2b2n+1 + 1

and from (8), we conclude that

Rbc
n =

−2( c2n+1−1
4

)− 1 + 2b2n+1 + 1

2
=

4b2n+1 − c2n+1 + 1

4
.

This completes the proof.

We can also give the general terms of balcobalancing numbers, Lucas-balcobalancing num-
bers and balcobalancers in terms of balancing and cobalancing numbers as follows.

Theorem 2.3. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers
and balcobalancers are

Bbc
n =

B2n + b2n+1

2
, Cbc

n = 2b2n+1 + 1 and Rbc
n =

−B2n + b2n+1

2

for n ≥ 1.

Proof. We proved in Theorem 2.2 that Bbc
n = c2n+1−1

4
. So we easily deduce that

Bbc
n =

c2n+1 − 1

4

=
α4n+1 + β4n+1

8
− 1

4

=
α4n+1(α

−1+1
4
√
2

) + β4n+1(−β
−1−1
4
√
2

)

2
− 1

4

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
B2n + b2n+1

2
.

Cbc
n = 2b2n+1 + 1 is already proved in Theorem 2.2. Similarly we get Rbc

n = −B2n+b2n+1

2
.

Recall that the general terms of all balancing numbers can be given in terms of Pell numbers,
namely,

Bn =
P2n

2
, bn =

P2n−1 − 1

2
, Cn = P2n + P2n−1, cn = P2n−1 + P2n−2.

Similarly we can give the following theorem.

Theorem 2.4. The general terms of balcobalancing numbers, Lucas–balcobalancing numbers
and balcobalancers are

Bbc
n =

P4n+1 + P4n − 1

4
, Cbc

n = P4n+1 and Rbc
n =

P4n+1 − P4n − 1

4

for n ≥ 1.
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Proof. Notice that

c2n+1 =
α4n+1 + β4n+1

2
=
α4n+1(1 + α−1)− β4n+1(1 + β−1)

2
√

2
= P4n+1 + P4n.

So from Theorem 2.2, we get

Bbc
n =

c2n+1 − 1

4
=
P4n+1 + P4n − 1

4
.

The others can be proved similarly.

We notice that n is a a balancing number if and only if n2 is a triangular number (triangular
numbers denoted by Tn are the numbers of the form Tn = n(n+1)

2
for n ≥ 0). Indeed from (1) we

get (n+r)(n+r+1)
2

= n2, that is,
TBn+Rn = B2

n.

Similarly we can give the following theorem.

Theorem 2.5. Bbc
n is a balcobalancing number if and only if (Bbc

n )2 + Bbc
n

2
is a triangular number,

that is,

TBbc
n +Rbc

n
= (Bbc

n )2 +
Bbc
n

2
.

Proof. From (7), we get n2 = 2nr + r(r + 1) and hence

(n+ r)(n+ r + 1)

2
= n2 +

n

2
.

So the result is obvious.

As in Theorem 2.5, we can give the following result.

Theorem 2.6. Bbc
n is a balcobalancing number if and only if (Rbc

n )2 + 2Bbc
n R

bc
n + Rbc

n + Bbc
n

2
is a

triangular number, that is,

TBbc
n +Rbc

n
= (Rbc

n )2 + 2Bbc
n R

bc
n +Rbc

n +
Bbc
n

2
.

Proof. Since n2 = 2nr + r(r + 1)⇔ (n+r)(n+r+1)
2

= r2 + 2nr + r + n
2
, the result is clear.

We notice that the sum of nth balancing number and it is balancer is equal to the half of the
nth Lucas-balancing number −1, that is, Bn + Rn = Cn−1

2
. Similarly we can give the following

result.

Theorem 2.7. The sum of nth balcobalancing number and it is balancer is equals to the (2n+1)st

cobalancing number, that is, Bbc
n +Rbc

n = b2n+1, and the difference of nth balcobalancing number
and it is balancer is equals to the (2n)nd balancing number, that is, Bbc

n −Rbc
n = B2n.

Proof. From Theorem 2.3, we get the desired result.

Theorem 2.8. Rbc
n is a perfect square for every n ≥ 1.
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Proof. Notice that Rbc
n = −B2n+b2n+1

2
by Theorem 2.3. So we get

√
Rbc
n =

√
−B2n + b2n+1

2

=

√
−α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=

√
α4n + β4n − 2

8

=

√[
2(
α2n − β2n

4
√

2
)

]2
= 2Bn

as we wanted.

Further we can give the following theorem.

Theorem 2.9. The ration of the nth balcobalancing number to the nth balancing number is

Bbc
n

Bn

= 4bn+1 + 2

and the ration of the nth Lucas-balcobalancing number to the nth Lucas-balancing number is

Cbc
n

Cn
=

2b2n+1 + 1

2Bn + 2bn + 1

for n ≥ 1. The ration of the nth balcobalancer to the nth balancer is

Rbc
n

Rn

=


8C2

n
2
Bn

2

cn
2

for even n ≥ 2

2(2bn+1
2

+1)2cn+1
2

Bn−1
2

for odd n ≥ 3.

Proof. It can be easily derived from Theorem 2.3.

3 Binet Formulas, Recurrence Relations and Companion Mat-
rix.

Theorem 3.1. The Binet formulas for balcobalancing numbers, Lucas-balcobalancing numbers
and balcobalancers are

Bbc
n =

α4n+1 + β4n+1

8
− 1

4
, Cbc

n =
α4n+1 − β4n+1

2
√

2
and Rbc

n =
α4n + β4n

8
− 1

4

for n ≥ 1.
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Proof. Note that Bn = α2n−β2n

4
√
2

and bn = α2n−1−β2n−1

4
√
2

− 1
2
. So we get from Theorem 2.3 that

Bbc
n =

B2n + b2n+1

2

=

α4n−β4n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n(1+α

4
√
2
) + β4n(−1−β

4
√
2

)

2
− 1

4

=
α4n(

√
2(1+

√
2)

4
√
2

) + β4n(
√
2(1−

√
2)

4
√
2

)

2
− 1

4

=
α4n+1 + β4n+1

8
− 1

4
.

The others can be proved similarly.

Theorem 3.2. Bbc
n , C

bc
n and Rbc

n satisfy the recurrence relations

Bbc
n = 35(Bbc

n−1 −Bbc
n−2) +Bbc

n−3

Rbc
n = 35(Rbc

n−1 −Rbc
n−2) +Rbc

n−3

for n ≥ 3 and

Cbc
n = 34Cbc

n−1 − Cbc
n−2

for n ≥ 2.

Proof. Recall that Bbc
n = α4n+1+β4n+1

8
− 1

4
by Theorem 3.1. Since 35α−3 − 35α−7 + α−11 = α

and 35β−3 − 35β−7 + β−11 = β, we conclude that

35(Bbc
n−1 −Bbc

n−2) +Bbc
n−3

= 35

[
(
α4n−3 + β4n−3

8
− 1

4
)− (

α4n−7 + β4n−7

8
− 1

4
)

]
+
α4n−11 + β4n−11

8
− 1

4

=
α4n(35α−3 − 35α−7 + α−11) + β4n(35β−3 − 35β−7 + β−11)

8
− 1

4

=
α4n+1 + β4n+1

8
− 1

4

= Bbc
n

The others can be proved similarly.

Recall that the companion matrix for balancing numbers is

M =

[
6 −1

1 0

]
.

It can be easily seen that the nth power of M is

Mn =

[
Bn+1 −Bn

Bn −Bn−1

]
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for n ≥ 1. Since Bbc
n = 35(Bbc

n−1 − Bbc
n−2) + Bbc

n−3 and Rbc
n = 35(Rbc

n−1 − Rbc
n−2) + Rbc

n−3 by
Theorem 3.2, the companion matrix for balcobalancing numbers and balcobalancers are same
and is

M bc =

 35 −35 1

1 0 0

0 1 0


and since Cbc

n = 34Cbc
n−1 − Cbc

n−2, the companion matrix for Lucas-balcobalancing numbers is

N bc =

[
34 −1

1 0

]
.

Hence we can give the following theorem.

Theorem 3.3. The nth power of M bc is

(M bc)n =



n
2∑
i=0

B4i+1 −
n∑
i=1

B2i+1

n−2
2∑
i=0

B4i+3

n−2
2∑
i=0

B4i+3 −
n−1∑
i=1

B2i+1

n−2
2∑
i=0

B4i+1

n−2
2∑
i=0

B4i+1 −
n−2∑
i=1

B2i+1

n−4
2∑
i=0

B4i+3


for even n ≥ 4 or

(M bc)n =



n−1
2∑
i=0

B4i+3 −
n∑
i=1

B2i+1

n−1
2∑
i=0

B4i+1

n−1
2∑
i=0

B4i+1 −
n−1∑
i=1

B2i+1

n−3
2∑
i=0

B4i+3

n−3
2∑
i=0

B4i+3 −
n−2∑
i=1

B2i+1

n−3
2∑
i=0

B4i+1


for odd n ≥ 3, and the nth power of N bc is

(N bc)n = (−1)n


n+1∑
i=1

(−1)i+1B2i−1
n∑
i=1

(−1)i+1B2i−1

−
n∑
i=1

(−1)i+1B2i−1 −
n−1∑
i=1

(−1)i+1B2i−1


for every n ≥ 1.

Proof. It can be proved by induction on n.
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We can rewrite the nth power of M bc and N bc in terms of balancing and Lucas-balancing
numbers instead of sums of balancing numbers. For this purpose, we set the integer sequences

kn =
−8B2n + 3C2n − 3

96
and ln =

−288B2n − 102C2n + 102

96

for n ≥ 0. Then we can give the following theorem.

Theorem 3.4. The nth power of M bc is

(M bc)n =


kn+2 ln kn+1

kn+1 ln−1 kn

kn ln−2 kn−1


for every n ≥ 2, and the nth power of N is

(N bc)n = (−1)n



 kn+2 − kn+1 kn − kn+1

−kn + kn+1 −kn + kn−1

 for even n ≥ 2

 kn+1 − kn+2 kn+1 − kn

−kn+1 + kn −kn−1 + kn

 for odd n ≥ 1.

Proof. It can be proved by induction on n.

4 Sums of Balcobalancing Numbers.

Theorem 4.1. The sum of first n−terms of Bbc
n , C

bc
n and Rbc

n is

n∑
i=1

Bbc
i =

b2n+2 − 2n− 2

8

n∑
i=1

Cbc
i =

c2n+2 − 7

8

n∑
i=1

Rbc
i =

B2n+1 − 2n− 1

8

for n ≥ 1.

Proof. Recall that Bbc
n = α4n+1+β4n+1

8
− 1

4
by Theorem 3.1. So

n∑
i=1

Bbc
i =

n∑
i=1

(
α4i+1 + β4i+1

8
− 1

4
). (11)
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Here we notice that
n∑
i=1

α4i+1 = −α3(1−α4n)

4
√
2

and
n∑
i=1

β4i+1 = β3(1−β4n)

4
√
2

. So (11) becomes

n∑
i=1

Bbc
i =

n∑
i=1

(
α4i+1 + β4i+1

8
− 1

4
)

=

−α3(1−α4n)

4
√
2

+ β3(1−β4n)

4
√
2

8
− n

4

=
α4n+3 − β4n+3 − α3 + β3

32
√

2
− n

4

=
α4n+3 − β4n+3

32
√

2
− 5

16
− n

4

=
(α

4n+3−β4n+3

4
√
2

− 1
2
) + 1

2

8
− 5

16
− n

4

=
b2n+2 − 2n− 2

8
.

The others can be proved similarly.

In [13], Panda and Ray proved that the sum of first 2n− 1 Pell numbers is equals to the sum
of nth balancing number and its balancer, that is,

2n−1∑
i=1

Pi = Bn +Rn. (12)

Later in [4], Gözeri, Özkoç and Tekcan proved that the sum of Pell-Lucas numbers from 0 to
2n − 1 is equals to the sum of the nth Lucas-balancing and the nth Lucas-cobalancing number,
that is,

2n−1∑
i=0

Qi = Cn + cn.

As in (12), we can give the following theorem.

Theorem 4.2. The sum of even ordered Pell numbers from 1 to (2n) is equals to the sum of the
nth balcobalancing numbers and its balancer, that is,

2n∑
i=1

P2i = Bbc
n +Rbc

n .

Proof. Recall that Pn = αn−βn

2
√
2

. Since
2n∑
i=1

α2i = −α(1−α4n)
2

and
2n∑
i=1

β2i = −β(1−β4n)
2

, we observe

that

2n∑
i=1

P2i =
2n∑
i=1

(
α2i − β2i

2
√

2
)

=
−α(1−α4n)

2
− −β(1−β

4n)
2

2
√

2

11



=
α4n+1 − β4n+1

4
√

2
− 1

2

=
α4n+1(1 + α−1) + β4n+1(1 + β−1)

8
− 1

2

=
α4n+1 + β4n+1

8
− 1

4
+
α4n + β4n

8
− 1

4

= Bbc
n +Rbc

n

as we claimed.

Similarly we can give the following theorem which can be proved similarly.

Theorem 4.3. For the sums of Pell, Pell-Lucas and balancing numbers, we have

1. the sum of odd ordered Pell numbers from 1 to (2n) is equals to the difference of the nth

balcobalancing number and its balancer, that is,

2n∑
i=1

P2i−1 = Bbc
n −Rbc

n .

2. the half of the sum of Pell numbers from 1 to (4n) is equals to the nth balcobalancing
number, that is,

4n∑
i=1

Pi

2
= Bbc

n .

3. the sum of Pell-Lucas numbers from 0 to (4n + 1) is equals to the sum of the twelve times
of the nth balcobalancing number, four times of the its balancer plus 4, that is,

4n+1∑
i=0

Qi = 12Bbc
n + 4Rbc

n + 4.

4. the sum of Pell-Lucas numbers from 1 to (4n) is equals to the two times of the nth Lucas-
balcobalancing number mines 1, that is,

4n∑
i=1

Qi = 2(Cbc
n − 1).

5. the sum of balancing numbers from 1 to (4n + 1) is equals to the product of the three
times of the nth balcobalancing number, its balancer plus 1 and the four times of the nth

balcobalancing number plus 1, that is,

4n+1∑
i=1

Bi = (3Bbc
n +Rbc

n + 1)(4Bbc
n + 1).

12



In [19], Santana and Diaz-Barrero proved that the sum of first nonzero 4n + 1 terms of Pell
numbers is a perfect square, that is,

4n+1∑
i=1

Pi =

[
n∑
i=0

(
2n+ 1

2i

)
2i

]2
.

In fact this sum equals to the square of the (n+ 1)st Lucas-cobalancing number, that is,

4n+1∑
i=1

Pi = c2n+1.

Similarly we can give the following result.

Theorem 4.4. The sum of Pell numbers from 1 to (8n+ 1) is a perfect square and is

8n+1∑
i=1

Pi = (4Bbc
n + 1)2.

Proof. It can be proved as in the same way that Theorems 4.1 and 4.2 were proved.

Also they proved that

P2n+1

∣∣∣∣∣
2n∑
i=0

P2i+1 and P2n

∣∣∣∣∣
2n∑
i=1

P2i−1 .

Similarly we can give the following result.

Theorem 4.5. Cbc
n

∣∣∣∣ 4n∑
i=0

P2i+1 .

Proof. It can be easily derived that

4n∑
i=0

P2i+1 = Cbc
n (4Bbc

n + 1).

So the result is obvious.

Apart from Theorem 4.4, we can give the following theorem which can be proved similarly.

Theorem 4.6. For the sums of Pell, Pell-Lucas, balancing and Lucas-cobalancing numbers, we
have

1. the sum of Pell numbers from 1 to (8n+ 3) plus 1 is a perfect square and is

1 +
8n+3∑
i=1

Pi = (4Bbc
n + 2Cbc

n + 1)2.

2. the sum of odd ordered Pell-Lucas numbers from 1 to (4n+ 2) is a perfect square and is

4n+2∑
i=1

Q2i−1 = (8Bbc
n + 2Cbc

n + 2)2.

13



3. the half of the sum of odd Pell-Lucas numbers from 0 to (4n) is a perfect square and is

4n∑
i=0

Q2i+1

2
= (4Bbc

n + 1)2.

4. the sum of odd ordered balancing numbers from 1 to (2n+ 1) is a perfect square and is

2n+1∑
i=1

B2i−1 = (3Bbc
n +Rbc

n + 1)2

and the four times of the sum of odd ordered balancing numbers from 1 to n is a perfect
square and is

4
n∑
i=1

B2i−1 = Rbc
n (by Theorem 2.8)

5. the sum of Lucas-cobalancing numbers from 1 to (4n+ 2) plus 1 is a perfect square and is

1 +
4n+2∑
i=1

ci = (8Bbc
n + 4Rbc

n + 3)2.

5 Relationship with Square Triangular Numbers.

Recall that there are infinitely many triangular numbers that are also square numbers which are
called square triangular numbers and are denoted by Sn. For example, 1, 36, 1225, 41616, . . . are
square triangular numbers.

For the nth square triangular number Sn, we can write

Sn = s2n =
tn(tn + 1)

2
,

where sn and tn are the sides of the corresponding square and triangle. Their Binet formulas are

Sn =
α4n + β4n − 2

32
, sn =

α2n − β2n

4
√

2
and tn =

α2n + β2n − 2

4
(13)

for n ≥ 1 (see [2, 11]).
In [21], the first author gave the general terms of almost balancing numbers in terms of square

triangular numbers. Similarly, we can give the general terms of balcobalancing numbers, Lucas-
balcobalancing numbers and balcobalancers in terms of squares and triangles as follows.

Theorem 5.1. The general terms of balcobalancing numbers, Lucas-balcobalancing numbers
and balcobalancers are

Bbc
n =

2s2n+1 − t2n+1 − 1

2

Cbc
n = −2s2n+1 + 2t2n+1 + 1

Rbc
n =

−4s2n+1 + 3t2n+1 + 1

2

for n ≥ 1.

14



Proof. Since Bbc
n = B2n+b2n+1

2
by Theorem 2.3, we find that

Bbc
n =

B2n + b2n+1

2

=

α4n−β2n

4
√
2

+ α4n+1−β4n+1

4
√
2

− 1
2

2

=
α4n+1 + β4n+1 − 2

8

=
α4n+2( 1

2
√
2
− 1

4
) + β4n+2(− 1

2
√
2
− 1

4
)− 1

2

2

=
2(α

4n+2−β4n+2

4
√
2

)− (α
4n+2+β4n+2−2

4
)− 1

2

=
2s2n+1 − t2n+1 − 1

2

by (13). The others can be proved similarly.

Finally we can give the following result.

Theorem 5.2. Sn = Rbc
n

4
for n ≥ 1.

Proof. Appyling (13), we get

Sn =
α4n + β4n − 2

32
=

α4n+β4n

8
− 1

4

4
=
Rbc
n

4

by Theorem 3.1.
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