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Abstract. The article deals with the rod model for the analysis of stress-

strain state of rod structures. Analytical solutions are obtained by the 

operating method. It is assumed that the rod elements can have variables 

along their axis of physicals characteristics. External loads can also vary 

along the axes. Calculation formulas are suitable for loads distributed 

according to an arbitrary law. Unlike the finite element method, defining 

matrices are formed after obtaining an expression, allowing to calculate the 

nodal forces through nodal displacements. Examples are given to 

demonstrate the accuracy of the obtained expressions. 

1 Introduction 

For systems of any kind it is true that the disruption of the systems is possible in case of 

violation of the connectivity of their structures. The system cannot perform its functions 

when there is no interaction between all or at least vital (key) elements. It is obvious that 

there is a need to develop analytical and numerical methods for calculating the loaded 

structural construction systems that can describe their stress-strain state during transients 

initiated by sudden external influences or internal structural changes. Therefore, we propose 

a variant of the mathematical model of the rod with arbitrary signs of the distribution of 

stiffness and density along the axis, which do not contain internal degrees of freedom and 

its state in any section is determined by the movements of the boundary nodes.  

2 Construction of a mathematical model  

Take the Cartesian coordinate system x, y, z where x is the longitudinal (axial) coordinate, 

y, z are the main Central axis of inertia. We assume that the x, y, z axes are combined with 

the orts of the natural trihedron (Frenet trihedron [6]) t, n, b (tangent, normal, binormal). It 

is assumed that the deformation of the rod is small in accordance with the operating 

conditions and Bernoulli hypotheses can be used [7, 8]. It is recommended to see the 

following works [9, 10]. 

A condition that allows to construct a FE model of the rod system is the presence of an 

expression that allows to calculate the nodal forces through nodal displacements. This is 

presented in [10-15]. 
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As a result, the state at any point of the rod is determined through the nodal 

displacements. 
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Here qF is the vector of nodal forces equivalent to the distributed load, V - this is the 

matrix of influence of initial parameters, built on the basis of the analytical solution of the 

equations of state. [10-15] The influence matrix is a property of the rod that does not 

depend either on external loads or on the conditions of fastening the rod. 

We combine nodal moments and forces into a vector of nodal force factors: 

0node F F LF y y       (2) 

Similarly we proceed with the displacements of the ends of the rod. We obtain the 

vector of nodal displacements: 

0 0node C kCU y y       (3) 

Then (1) can be written compactly: 

K node
node node qF U F        (4) 

where we have introduced the stiffness matrix of the rod: 
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and the vector of nodal loads from external loads on the rod: 

1 1
0 V 0 V V Vnode st st st st

q qF FF CF qC qF FF CF qCL L L L L LF F F F F    (6) 

Expression (4) by forms, like the analogous FEM equation in the form of the 

displacement approach. Using the terminology of FEM (MSE), the result is an expression 

for one structural element of the system - the continuum superelement of the rod (KSER). 

Its initial relations do not contain internal degrees of freedom and its state in any section is 

determined by the displacements of the boundary nodes. He models an element of the 

subsystem - one rod. 

3 Verification of the obtained relationships 

The correctness of mathematical modeling made in the formulation of the relations (1) is 

confirmed by constructing the calculation formulas for dimensionless components of the 

state under static loading of the rod (Fig. 1). It is a rod has known length L, Young's 



modulus E, cross-sectional area A, principal central moments of inertia Jy, Jz from 

dimensionless longitudinal coordinate  = x/L: 
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Fig. 1. Boundary conditions and external loads are given. 

Table 1. The dimensionless factors and calculation formulas for Fig. 1. 

The dimensionless factor Calculation formula for Fig. 1 

The longitudinal movement of the p  

Deflection axis у 
2

1 2 1
48

yf
 



The dimensionless factor Calculation formula for Fig. 1 

Deflection axis z 2 1
4

m
 

Angle of twist 0 

The rotation angle of the cross section 

relative to the axis у 
2 3 2

4

m
 

The rotation angle of the cross section 

relative to the axis z 
38 9 1

48

yf
 

Torsional moment 0 

The bending moment in the plane xz 3 1
2

m
 

The bending moment in the plane xz 4 3
8

yf
 

Longitudinal force P 

Transverse force along the axis у 8 3
8

yf
 

Transverse force along the axis z 
3

2
m  

Below, Fig. 2, 3 shows graphs of changes by the length of the rod dimensionless factors. 

To match the scales in the graphs of dimensionless displacements and longitudinal and 

transverse forces, the parameter p – dimensionless longitudinal force – was taken to be 

0.05; the parameter fy was taken to be one. 

 

Fig. 2. Dimensionless displacement and the angles of twist and turn. 

 

Fig. 3. Dimensionless moments and dimensionless longitudinal and transverse forces. 



From Fig. 1-3 it can be seen that both the force and kinematic conditions are satisfied 

(which, however, is obvious from the calculation formulas). Thus, at least for statics, the 

formula (1) is satisfied. 

To check the correctness of the same formula in the dynamic calculation, a dynamic 

stiffness matrix was constructed and a homogeneous dynamic problem (on free vibrations 

of the rod) under different boundary conditions was considered. Frequency equations 

representing the dependence of the main determinant of the stiffness matrix with imposed 

kinematic conditions from dimensionless quantities were compared kten, ktor, 

,y zk k , where 
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Table 2. The frequency equations for different variants the end restraint. 

Conditions of fastening The frequency equation 

The swivel bearing at the 

beginning and end, bending in 

the plane xy 

22 sin
0
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z z z

z z

k sh k k
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Built-in support in the 

beginning, freely at the end, 

spatial bending with 

stretching and twisting 

6 4 4
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cos 1 cos 1

y z ten tor ten tor

y y z z

y y z z

k k k k ctn k ctn k

k ch k k ch k

k ch k k ch k

 

Built-in support in the end, 

freely at the beginning, spatial 

bending with stretching and 

twisting 

6 4 4

cos 1 cos 1

cos 1 cos 1

y z ten tor ten tor

y y z z

y y z z

k k k k ctn k ctn k

k ch k k ch k

k ch k k ch k

 

Note that the formulas in the second and third lines should coincide in essence with the 

problems, since for the natural frequencies it does not matter whether the end or the 

beginning is clamped. Further, the numerators of the formulas coincide with those given in 

the Handbook of Birger et al. (v. 3) for hinged and cantilever rods. [16] The presence of the 

denominators is a consequence of the matrix inversion VCF  in equation (5), however, the 

excess of roots at the same is not added. The same can be said about the frequencies of 

stretching and torsion, if you express the cotangent through the sine and cosine. The 

presence of possible zeros in the denominators is not critical. It is easy to avoid its influence 

by replacing the solution of the frequency equation with the minimization of its square: 

then the break points will give maximum, and the roots - minimum. 

4 Conclusions 

The solution based on analytical formulas allows to determine the behavior of the system or 

its element under different external influences. The proposed method of modeling the rod 

as a continuum spatial superelement for static and dynamic problems is original. The 

calculation of the system of such finite elements in the form of FEM is of practical 



importance. Calculations are possible for statically definable and statically indeterminate 

systems. 
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