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ABSTRACT

Interference suppression using adaptive nulling algo-
rithm is an important array signal processing technique for
radar/sonar sensing. However, in long term task, most of the
arrays’ parameters vary from time to time, which need known
sources to re-calibrate. To be free of calibration sources,
this paper presents an adaptive nulling algorithm using array
observation data. We first establish the model of SV mis-
matches due to gain-phase error and sensor shifting. Then the
angle-related bases of received signal subspace are estimated
by applying a joint optimization method consists of Genetic
algorithm and quasi-Newton method. In the end, the array
weighting vector can be calculated, and the results of sev-
eral numerical simulations are demonstrated, which shows
that the proposed algorithm can significantly improve the
interference suppression performance of sensor array.

Index Terms— Adaptive nulling, Signal subspace, Steer-
ing vector estimation,Uncalibrated array

1. INTRODUCTION

Interference suppression is a major area of interest within
the field of sensor array processing. Autonomous platform
carrying sensor arrays may suffer from calibration error
caused by platform vibrations, environment variations and
error caused by time accumulation .

During the past 30 years, plenty of adaptive nulling meth-
ods had been proposed to decrease the effects of calibration
error. By adding a scaled identity matrix to the sample co-
variance matrix (SCM), Cox proposed the diagonal loading
beamformer [1]. Because of the precise selection of the di-
agonal level is hard to obtain, researches proposed robust
Capon beamformer [2][3] and the worst-case optimization
beamformer [4]. Based on this, convex optimization [5],
linear constrains [6] and the iterative approaches [7] were
applied to enhance the robustness of beamforming.

The aforementioned method mainly focused on maintain-
ing main beam towards the desired direction in the case of
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calibration errors. However, when the SV mismatch is severe,
these beamformers may suffer from performance degradation,
especially in a high signal-to-noise ratio (SNR) environment
[8].

Plenty of works show that the singal of interest (SOI)
component in the SCM is the main cause of beamformer’s
performance degradation [8]. To create a covariance ma-
trix that is free of the SOI component, an angular-sector-
based covariance matrix reconstruction and estimation beam-
former (REB) was proposed in [9]. Several categories of
interference-plus-noise covariance matrix (INCM)-based
beamformers were then proposed, such as the sparse re-
construction methods [10], and the low-complexity meth-
ods [11][12], subspace-based method [13]. In [14], an
annulus-uncertainty-set-based method was proposed to al-
leviate the performance degradation due to random SV mis-
match. In[15], the proposed algorithm corrected all SVs of
possible interferences, and then corresponding interference
power were estimated , which achieved satisfactory perfor-
mance with high computational complexity. [10] demon-
strated an INCM reconstruction-based adaptive beamformer
for co-prime array, which shows effectiveness in suppressing
interference.

Recently, weighted subspace fitting-based methods were
proposed to overcome sensor position error [16][17]. How-
ever, when other kind of error exist, these methods may not
correctly fit the signal subspace, which may cause failure in
interference suppression.

In this paper, we propose a novel INCM-based adaptive
nulling algorithm that only number of signals and performs
robustly in the case of gain-phase error, sensor position error
and unkonwn signal incident angle. By modeling the SV mis-
matches due to various causes, we estalish a joint optimiza-
tion problem using the idea of signal subspace fitting. Next,
instead of estimating powers of all signals, we reconstruct the
INCM by extending the subspace bases transition to eigen-
space bases transition. In the end, SV of the SOI is estimated
and the results of simulations validate the performance of the
proposed algorithm.



2. PROBLEM FORMULATION

Consider an array with M omnidirectional sensors that re-
ceives far-field narrowband signals from several sources. The
array observation data at the k-th snapshot can be written as

x(k) = a0s0(k) +
∑Q

1
aqsq(k) + n(k) , (1)

where a0 and aq denote the actual SVs of the desired signal
and the q-th interference, respectively. s0, sq , and n(k) de-
note the waveform of the desired signal, the q-th interference,
and the additive white Gaussian noise vector, respectively. We
assume that the desired signal, interferences, and noise to be
uncorrelated with each another. To overcome the sensor dis-
placement and gain-phase error, we start from modeling the
mismatched SV from the nominal SV as

a(de, ϕe, θ) = α� ej[kw(d̄+de) sin θ+ϕe]

= ā(θ)� α� ej(kwde sin θ+ϕe) ,
(2)

where d̄ is the assumed sensor position vector, de denotes the
sensor position error vector, � denotes the Hadamard prod-
uct, and kw is the wavenumber. α and ϕe are the angle-
independent sensor gain vector and phase error vector, re-
spectively. Usually, the first sensor is the reference sensor
in the array, which is assumed without sensor position error
and phase error, and the sensor gain for the first sensor is 1.
Therefore, de, α and ϕe can be expressed as

de = [0, d2, · · · , dM ]T ∈ RM×1

α = [1, α2, · · · , αM ]T ∈ RM×1

ϕe = [0, ϕ2, · · · , ϕM ]T ∈ RM×1 .

(3)

The SCM contains the information about the actual array
calibration and the signals, we can eigen-decompose the SCM
R̂x as

R̂x =

M∑
m=1

λmvmvH
m = VΛVH

= VSΛSV
H
S + VNΛNVH

N ,

(4)

where λm and vm are the m-th eigenvalue in descend-
ing order and the corresponding eigenvector, respectively.
Λ = diag{λ1, λ2, · · · , λM} is a diagonal matrix that con-
sists of all eigenvalues in a descending order, V is the matrix
that contains all eigenvectors. ΛS = diag{λ1, λ2, · · · , λL}
contains L dominant eigenvalues, and VS is the signal sub-
space that contains the corresponding eigenvectors. ΛN =
diag{λL+1, · · · , λM} consists of the remaining eigenval-
ues, and VN denotes the noise subspace that contains the
corresponding eigenvectors.

3. PROPOSED ALGORITHM

In this section, we establish a hybrid optimization problem
to estimate the angle-related bases consist of signal SVs using

subspace fitting technique. Then we propose a novel INCM
reconstruction method that directly eliminate the desired sig-
nal component from the sample covariance matrix.

3.1. Angle-related bases estimation

When the precise information about the array and the sig-
nals are exactly known, the signal subspace equals to the
space spanned by the actual SVs of signals, which is

span{VS} = span{A} , (5)

where A = [a(θ0),a(θ1), · · · ,a(θ0)] denote the actual SV
set consists of all Q+1 signal SVs. It is worth noticing that
when the interference is coherent with desired signal, or the
INR is extremely higher than the SNR, the number of dom-
inate eigenvalues L does not equal the number of signals.
However, the number of signals can be estimated using vari-
ous algorithms.

According to (2), the gain errors is independent of phase
errors, then the gain error of the mth sensor can be estimated
as

α̂m =

√
R̂x(m,m)− λM
R̂x(1, 1)− λM

, (6)

where R̂x(m,m) denotes the mth diagonal elements of the
SCM, and λM is the smallest eigenvalue of the SCM. It can
be seen that the sensor position error and the phase error
only influence the phase of the SV. It is difficult to accurately
estimate the precise directions, sensor position errors and
the phase errors separately because kwde sin θ in (2) can be
treated as angle-related phase errors, which is coupled with
the angle-independent phase errors ϕe. However, we can
estimate the mismatched SV set by minimizing the difference
of the signal subspace and the space spanned by the possible
mismatched SV set as

Â(d̂e, ϕ̂e, Θ̂) = min
de,ϕe,Θ

tr{ P⊥VSWVH
S } , (7)

where W is a positive definite weighting matrix, which equals
to (ΛS − λMI)

2
Λ−1

S under the condition of lowest asymp-
totic variance and P⊥ is the orthogonal projection matrix,
which is formed as P⊥ = I − A(de, ϕe,Θ)A+(de, ϕe,Θ),
where A(de, ϕe,Θ) ∈ CM×(Q+1) represents the possible
mismatched SV set, (·)+ denotes the Moore-Penrose inver-
sion, and C is the complex number field. Θ consist of possible
directions of all signals. The i-th column in A(de, ϕe,Θ) rep-
resents the possible SV of the ith signal, which can be formed
as

a(de, ϕe, θi) = α̂� ej[kw(d+de) sin θi+ϕe] , (8)

where α̂ = [1, α̂2, · · · , α̂2]
T is the estimated gain error vec-

tors in (5). The minimization problem in (6) is obvious a
nonlinear optimization problem with 2M + Q − 1 variables.
The previous work in [17] use genetic algorithm to tackle this



problem. However, with large number of variables, the ge-
netic algorithm requires large number of generations or it-
erations to present a satisfactory result. Therefore, we use
a joint optimization method that initialize with a few gen-
erations of Genetic algorithm, then we use a quasi-Newton
Method called the BFGS method to tackle this optimization
problem. First, we need to construct the solution vector of the
minimization problem as

δ = [d2, · · · , dM , ϕ2, · · · , ϕM , θ′0, · · · , θ′Q]T (9)

where θ′q, q = 0, 1, · · · , Q is the possible DOAs of all signal
in an ascending order, and θ′0 is not necessarily the DOA of
the SOI. (6) can be rewritten as

Â(δ̂) = min
δ
F (δ) (10)

where F (δ) is the objective function in (6). Hence, the itera-
tion algorithm of the BFGS method can be formed as

δ̂(l+1) = δ̂(l) − β(l)[F
′′(δ̂(l))]

−1F ′(δ̂(l)) (11)

where δ̂(l) and β(l) are the solution vector and step length
at lth iteration, respectively. F ′(δ) and F ′′(δ) indicate the
gradient and Hessian of F (δ), respectively. and the gradient
can be obtained as

F ′(δ) = [
∂F

∂dm
, · · · , ∂F

∂ϕm
, · · · , ∂F

∂θ′0
, · · · , ∂F

∂θ′Q
]T , (12)

where the ∂F/∂dm denotes the partial derivative of variable
dm. The close-form of partial derivative is difficult to obtain,
we can approximate the partial derivative by central differ-
ence. For example, ∂F/∂d2 can be approximated as

F (δ̂(l))

∂d2
≈
F (δ̂(l) + ∆δd2)− F (δ̂(l) −∆δd2)

2∆d2
, (13)

where ∆δd2 = [∆d2,0]
T, and ∆d2 denotes a very small pos-

itive value. By using the central difference method, the gra-
dient of F (δ) can be efficiently calculated. Moreover, the
close-form of Hessian matrix is difficult to obtain. By uti-
lizing the BFGS method, the inversion of the Hessian matrix
[F ′′(δ̂(l))]

−1
can be obtained. However, the BFGS method is

sensitive to the initial value δ̂0, when δ̂0 is far from the real
values, the BFGS may fail to converge. Considering the sen-
sitivity of BFGS, we can estimate initial values of BFGS by
using a global optimization method such as the genetic algo-
rithm with small number of generations. By combining the
genetic algorithm and the BFGS method, the mismatched SV
set in (6) can be estimated as

ÂS = Â(d̂e, ϕ̂e, Θ̂) = F (δ̂) . (14)

It is worth noticing that though the difference between
span{ÂS} and span{VS} is minimized, the estimated param-
eters d̂e, ϕ̂e, Θ̂ is not necessarily accurate because these pa-
rameters are coupled together and cannot be precisely and
separately estimated in this method.

3.2. Covariance matrix reconstruction

To avoid using the estimated power of interference and noise,
we can reconstruct the INCM by eliminating the SOI compo-
nent directly from the SCM using subspace techniques. With
well estimated mismatched SV set ÂS, (4) can be rewritten as
span{ÂS} ≈ span{VS}, where VS can be seen as a set of or-
thogonal bases of the signal subspace, and ÂS can be regarded
as a set of angle-related non-orthogonal bases of the signal
subspace. Because the signal subspace is orthogonal to the
noise subspace, each column in ÂS is orthogonal to the noise
subspace, which can be expressed as span{ÂS}⊥span{VN}.

Therefore, span{ÂS} is the orthogonal complement of
span{VN} in span{V}, which indicates that

span{[ÂS VN]} ≈ span{[VS VN]} = span{V} , (15)

where [ÂS VN] is an M × M matrix, and each column in
[ÂS VN] can be seen as a basis of the observation space
span{V}. Hence, we define a bases transition matrix from
[ÂS VN] to V, and V is

T = [ÂS VN]+V, V = [ÂS VN]T . (16)

Then the SCM in (4) can be rewritten as

R̂x = VΛVH = [ÂS VN]TΛTH[ÂS VN]H . (17)

To eliminate the component of the SOI from the SCM, the
INCM can be directly reconstructed as

R̂i + n = [ÂS VN]DTΛTHDH[ÂS VN]H , (18)

where D denotes a M ×M diagonal matrix as

D = diag{[µ,11×M−1]} . (19)

where µ is a very small positive constant that ensure the SOI
component can be eliminated. µ = 0 is not recommended be-
cause it may result in zero eigenvalue or extremely small pos-
itive eigenvalues of R̂i+n, which may cause the INCM nonin-
vertible.

3.3. SOI SV estimation

The actual SV of the SOI is usually unavailable in practical
applications, which needs to be estimated or corrected. In this
subsection, the desire signal covariance matrix (DSCM) will
be reconstructed using the idea similar to the INCM recon-
struction, and the SV of the SOI can be estimated from the
reconstructed DSCM.

R̂s(fr) =

∫
Θs

a(θ, fr)a
H(θ, fr)

aH(θ, fr)R̂
−1
F a(θ, fr)

dθ , (20)

where Θs is the angular sector of the SOI. Unlike R̂i+n, R̂s is
supposed to contain only the SOI that originates from θ0 ∈
Θs, and the SV of the SOI can be estimated as

â0 =
√
MP{R̂x − R̂i + n} (21)
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(b) Comparision of normalized beampattern.

Fig. 1: Performance comparison of different adaptive beamformers.

where P {·} denotes the eigenvector corresponding to the
largest eigenvalue of a Hermitian matrix. Therefore, the
weighting vector of the proposed focused wideband beam-
former can be written as

w =
R̂−1

i + nâ0

aH
0 R̂−1

i + nâ0

(22)

4. NUMERICAL SIMULATION

In this section, we consider an non-ideal scenario to eval-
uate the robustness of the proposed beamformer. We assume
that an uliform linear array with 10 omnidirectional sensors
receive signals from three far-field sources. The sensors are
assumed evenly spaced at half wavelength. Two interferences
with interference-to-noise ratio at 20 dB impinge from −25◦

and 35◦, and the desired signal impinges from 15◦. The de-
sired signal and interferences are generated from zero means
complex Gaussian noises and therefore spatially and tempo-
rally independent. In the case of SINR versus SNR, the num-
ber of snapshots is fixed at K = 30, and in the case of SINR
versus snapshots number, the SNR is fixed at 10 dB.

The results are averages of 200 Monte-Carlo simulations.
In these simulations, We assumed that the calibration error
is partially caused by gain and phase perturbations in each
sensor, which distributed in N (0, 0.12) and N (0, (0.1π)2).
Besides, the calibration error contains sensor position error,
which is a normal distribution in N (0, 0.12) except for the
reference sensor. The proposed beamformer is compared with
3 beamformers, namely the RCB [2], REB [9] and USS-REB
[18]. All tested beamformers are compared in the scale of
output SINR.

Fig. 1a shows output SINR of four different beamformer.

In this case, signal direction error is subject to uniform dis-
tribution in [−2◦, 2◦]. With the increase of SNR, the perfor-
mance of RCB degrades severely due to the SOI component
in the SCM. For REB and USS-REB, the output SINRs are
lower than RCB when the SNR is smaller than 5 dB. Although
proposed beamformer performs worse than RCB when the
SNR is -10 dB, it can avoid self-cancellation at high SNR
and efficiently suppress interferences in the case of multiple
calibration error.

Fig. 1b demonstrate the normalized beam-pattern when
SNR = 20 dB. It is obvious that all tested beamformer can
steer the main lobe to θ0 = 15◦. However, RCB fails to
form nulls around the actual direction of two interferences,
the nulls of REB and USS-REB deviate from actual direc-
tion of interferences. The proposed beamformer can form two
nulls precisely at θ0 = −25◦ and θ0 = 35◦. In other words,
the proposed beamformer can suppress interferences in the
case of multiple calibration error without known calibration
sources.

5. CONCLUSION

This paper proposes an adaptive beamforming and nulling
method, which aims to suppress interferences based on the ar-
ray observation data, and calculate the beamformer’s weight-
ing vector using covariance matrix reconstruction. A set of
angle-related bases of signal subspace are estimated by ap-
plying a joint optimization method. By applying eigen-space
bases transition method, the INCM is reconstructed by elimi-
nating SOI component in the SCM, and then the SV of SOI is
estimated. The results of several numerical simulations show
the performance of proposed beamformer.
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