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Abstract

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its
zeros only at the negative even integers and complex numbers with real part 1

2 . Many consider it
to be the most important unsolved problem in pure mathematics. The Robin’s inequality is true
for every natural number n > 5040 if and only if the Riemann hypothesis is true. We state the
following hypothesis: Given two natural numbers a, b > 5040, if 3 × log log a > 2 × log log b,
then we obtain that 3×log log(a+1) > 2×log log(b+2). We demonstrate if this hypothesis is true
and the Robin’s inequality is false for some natural number n > 5040, then the Robin’s inequality
will have an infinite number of counterexamples. However, the Robin’s inequality cannot have
an infinite number of counterexamples according to the asymptotic growth rate of the sigma
function. In this way, we prove if this hypothesis is true, then the Riemann hypothesis is true as
well. Consequently, the Riemann hypothesis is true, because of our hypothesis is trivially true.
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1. Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real part 1

2 . Many consider
it to be the most important unsolved problem in pure mathematics [1]. It is of great interest in
number theory because it implies results about the distribution of prime numbers [1]. It was
proposed by Bernhard Riemann (1859), after whom it is named [1]. It is one of the seven Millen-
nium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize
for the first correct solution [1]. The divisor function σ(n) for n a natural number is defined as
the sum of the powers of the divisors of n,

σ(n) =
∑
k|n

k

where k | n means that the natural number k divides n [2]. In 1915, Ramanujan proved that under
the assumption of the Riemann hypothesis, the inequality,

σ(n) < eγ × n × log log n
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holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler-Mascheroni constant [3]. The
largest known value that violates the inequality is n = 5040. In 1984, Guy Robin proved that the
inequality is true for all n > 5040 if and only if the Riemann hypothesis is true [3]. Using this
inequality, we show that the Riemann hypothesis is true.

2. Results

Hypothesis 2.1. Given two natural numbers a, b > 5040, we state the Hypothesis that if 3 ×
log log a > 2 × log log b, then we obtain that 3 × log log(a + 1) > 2 × log log(b + 2).

Theorem 2.2. Given a natural number n > 5040, we state that if the Hypothesis 2.1 is true, then
we have that 3 × log log n > 2 × log log(2 × n).

Proof. We will prove this by mathematical induction. For k = 5041, we have that,

3 × log log 5041 > 2 × log log(2 × 5041)

is actually true. Let’s state that is true for some k = n− 1 > 5040 and let’s prove it for k = n. For
k = n, we need to prove

3 × log log n > 2 × log log(2 × n)

but that is the equivalent to

3 × log log(n − 1 + 1) > 2 × log log(2 × (n − 1 + 1))

since we know that n = n − 1 + 1. That would be the same that,

3 × log log((n − 1) + 1) > 2 × log log((2 × (n − 1)) + 2)

but we know that 3 × log log(n − 1) > 2 × log log(2 × (n − 1)) is true for the previous induction
step. If we make a = (n − 1) and b = 2 × (n − 1), then we obtain that we actually need to prove
that,

3 × log log(a + 1) > 2 × log log(b + 2)

under the assumption that,
3 × log log a > 2 × log log b

is true. Therefore, if the Hypothesis 2.1 is true, then this mathematical induction is finally proved.

Theorem 2.3. If the Hypothesis 2.1 is true and the Robin’s inequality is false for some natural
number n > 5040, then this will be false for 2 × n as well.

Proof. Suppose that the Robin’s inequality is false for some natural number n > 5040. Hence,
we would have that,

σ(n) ≥ eγ × n × log log n

and if we multiply by 2 the two sides of this inequality, then we obtain that,

2 × σ(n) ≥ eγ × n × (2 × log log n).
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If we sum both inequalities, then we have that,

σ(n) + 2 × σ(n) ≥ eγ × n × log log n + eγ × n × (2 × log log n)

and that will be equivalent to

σ(2 × n) ≥ eγ × n × (3 × log log n).

Certainly, it is trivial that σ(2 × n) = σ(n) + 2 × σ(n) under the properties of the σ function [2].
In addition, we know that,

eγ × n × log log n + eγ × n × (2 × log log n)

is equal to
eγ × n × (log log n + 2 × log log n)

that is finally,
eγ × n × (3 × log log n).

In addition, if the Robin’s inequality is true for 2 × n, then we would have that,

σ(2 × n) < eγ × (2 × n) × log log(2 × n)

which is the same that,
σ(2 × n) < eγ × n × (2 × log log(2 × n)).

However, we know that,

eγ × n × (3 × log log n) > eγ × n × (2 × log log(2 × n))

since we have that,
3 × log log n > 2 × log log(2 × n)

according to Theorem 2.2. Consequently, we obtain that,

σ(2 × n) > eγ × n × (2 × log log(2 × n))

and thus, when the Hypothesis 2.1 is true, then the Robin’s inequality will be false for 2 × n as
well.

Theorem 2.4. If the Hypothesis 2.1 is true and the Robin’s inequality is false for some natural
number n > 5040, then the Robin’s inequality will have an infinite number of counterexamples.

Proof. When the Hypothesis 2.1 is true and the Robin’s inequality is false for some natural
number n > 5040, then the Robin’s inequality will be false for 2 × n and 2 × 2 × n and so forth
as a consequence of Theorem 2.3. Indeed, this will be false for every 2k × n, where k could be
any natural number. As result, we could produce an infinite number of counterexamples under
the assumptions of the Hypothesis 2.1 is true and the Robin’s inequality is false for some natural
number n > 5040.

Theorem 2.5. If the Hypothesis 2.1 is true, then the Robin’s inequality is true for every natural
number n > 5040.
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Proof. The asymptotic growth rate of the sigma function can be expressed by,

lim sup
n→∞

σ(n)
n × log log n

= eγ

where lim sup is the limit superior [3]. If the Robin’s inequality is not true for every natural
number n > 5040, then this has an infinite number of counterexamples, because of Theorem
2.4. In this way, if the Robin’s inequality has an infinite number of counterexamples, then the
previous limit superior should be false. Since this is a previous checked result, then we have the
Robin’s inequality is true for every natural number n > 5040 as the remaining only option.

Theorem 2.6. If the Hypothesis 2.1 is true, then the Riemann hypothesis is true.

Proof. If the Robin’s inequality is true for every natural number n > 5040, then the Riemann
hypothesis is true [3]. Hence, if the Hypothesis 2.1 is true, then the Riemann hypothesis is true
due to Theorem 2.5.

Theorem 2.7. The Riemann hypothesis is true.

Proof. It is trivial that the Hypothesis 2.1 must be true.

3. Conclusions

The practical uses of the Riemann hypothesis include many propositions known true under
the Riemann hypothesis, and some that can be shown equivalent to the Riemann hypothesis
[1]. Certainly, the Riemann hypothesis is close related to various mathematical topics such as
the distribution of prime numbers, the growth of arithmetic functions, the Lindelöf hypothesis,
the large prime gap conjecture, etc [1]. In this way, a proof of the Riemann hypothesis could
spur considerable advances in many mathematical areas, such as the number theory and pure
mathematics [1].
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