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Abstract—In this paper, a novel variational compensation
based nonlinear filter (VCNF) is proposed to cope with the
nonlinear filtering problem in continuous-discrete systems. The
core of VCNF is to construct a variational state compensation
model with variational compensation parameters for accurately
describing uncertain continuous state. The role of variational
compensation parameters is to adaptively compensate the un-
predictable approximation and discretization errors of system
states. In the variational Bayesian framework, through iteratively
and alternatively achieving the fitting of the state priori model
and the compensation of approximation and discretization errors,
estimation accuracy and adaptiveness can be enhanced gradually.
The superior performance of VCNF is demonstrated in the
simulation of target tracking.

Index Terms—Variational Bayesian method, Continuous-
discrete stochastic system, Nonlinear Kalman filter, Target track-
ing

I. INTRODUCTION

In continuous-discrete system, process dynamics are gov-
erned by a continuous-time stochastic differential equation
(SDE) and measurements are taken at discrete time instants,
which can accurately reflect the real engineering problems.
The filtering problems of continuous-discrete systems also
widely exist in target tracking and navigation [1], [2], stochas-
tic control [3], fault estimation [4], systems biology [5] and
many other real-life estimation problems.

For filtering problem of linear continuous-discrete systems,
continuous-discrete-Kalman filter (CD-KF) is the optimal so-
lution [6], where the dynamic state is described by an SDE
and the measurements are at discrete times. In continuous-
discrete nonlinear problems, many variants of CD-KF are pro-
posed, which share the same framework, i.e. the time update
and measurement update. The authors of [7] discussed two
different kinds of numerical approximation methods in CD-
EKF, i.e. numerical integration and discrete approximation,
for solving the moment differential equation (MDE) in time
update. But either in integration or in discretization, the step
size is fixed, which will make the CD-EKF procedure quickly
diverge and limit the application so that many advanced CD-
EKF with variable-step size are proposed [8], [9]. Besides
CD-EKF, various implementations of CD-UKF [10] and CD-
CKF [11]–[13] were discussed as well and classified into
the discretization and integration two categories. However,

the arising unpredictable numerical errors may broke the
positive definiteness of covariance and lead to degradation of
filtering performance [14]. Hence, in the accurate CD-EKF
(ACD-EKF) [15], an efficient embedded Runge-Kutta pair was
applied to process global error and simplify computational
procedure. Especially for the radar tracking, the ACD-EKF
is compared with CD-UKF and CD-CKF [16] to demonstrate
the impact of error control. Accurate CD-CKF (ACD-CKF)
was proposed in [17], but the involved iteration processes
for integrating matrix differential equation are quite time-
consuming. In [18] an advance ACD-CKF is designed which is
particularly effective for CD stochastic systems with nonlinear
and/or non-differentiable observations. When the continuous-
discrete system is not Gaussian system, particle filter can be
referred and extended to cope with it and develop CD-particle
filter (CD-PF) [19], [20]. However, in the existing filters for
nonlinear continuous-discrete systems, the discretization of d-
ifferential equation and approximation of nonlinear integral are
both inevitable. The unpredictable error and uncertainty caused
by approximation and discretization will greatly influence the
accuracy and confidence of estimation results. Especially for
rare measurement with long interval of measurement, state
have to suffer from long-term propagation without measure-
ment to correct state. An inaccurate and unreliable state mean
and covariance even can lead to divergency. Moreover, for
decreasing the discretization error, the discretization interval
of state must be decreased as well so that the computational
burden will be increased.

This paper aims to overcome the above-mentioned disad-
vantages and a novel variational compensation nonlinear filter
(VCNF) is proposed. The main challenge of VCNF is how to
accurately model the continuous system state priori model and
adaptively compensate the approximation and discretization
error. In this paper, we construct variational state compensation
model (VSCM) to model the state priori probability. In VSCM,
variational compensation parameters (VCPs) are introduced in
both mean and covariance of VSCM. Instead of single point,
VCPs represent probability distributions, which can reflect and
capture more information about uncertain continuous state.
In VCNF, the role of VSCM is to accurately describe the
uncertain state priori model and VCPs are used to adap-
tively compensate the approximation and discretization error



and adjust the confidence of VSCM. Based on VSCM, the
model of complete-data likelihood probability (CLP) can be
established as well. Then, given the model of CLP, through
iteratively maximizing evidence lower bound (ELBO) in vari-
ational bayesian (VB) framework, the identification of VCPs,
the fitting of state priori model and the estimation of state
can be achieved jointly. This paper’s contributions lie in that:
1) by characterizing the state priori model with VSCM, the
uncertainty of continuous system state can be reflected so that
the adaptiveness and robustness of VCNF to approximation
and discretization are strong. 2) By introducing a set of VCPs
in the mean and covariance of VSCM, different errors can
be compensated and the estimation accuracy can be improved
gradually.

The rest of this paper is organized as follows: the problem
is formulated and our idea is briefly introduced in section II.
In section III, the models of VSCM and CLP are established
and the iterative maximization process of ELBO is derived.
Section IV gives the simulation results illustrating that our
proposed VCNF is superior. Concluding remarks are given in
section V.

II. PROBLEM FORMULATION

In this paper, the nonlinear state-space model of the
continuous-discrete stochastic system [6] is considered as

dx (t) = f (x (t) , t) dt+Gdw (t) , t > 0 (1)

where x (t) ∈ Rn represents the n-dimensional contin-
uous state of the system at time t; {w (t) , t > 0} de-
notes the n-dimension standard Brownian motion with
E
[
dw (t) dw(t)

T
]

= Q (t) dt that is independent of x (t);
G ∈ n×n is the gain matrix of the process noise and f :
R × Rn → Rn is a known differentiable nonlinear drift
function.

The behavior of the system is observed by noisy measure-
ments at sampled time instants tk = k∆t, i.e.

zk = h(xk) + vk (2)

zk ∈ Rm is the measurement at discrete instant t = tk
with respect to xk = x (tk). The discrete measurements are
assumed to arrive with equidistant interval between zk and
zk−1, i.e. ∆t = tk − tk−1. h : Rn × R → Rm is nonlinear
differentiable measurement function. Measurement noise vk is
zero-mean Gaussian white noises satisfying E[vkvT

j ] = δkjR
and R > 0. The initial state is assumed to obey Gaussian with
mean x̂0 and covariance P0, which is independent of w (t)
and vk.

The aim of continuous-discrete filter is to accurately calcu-
late the posterior distributions of current state x (t) given all
history of the measurements, i.e.

p (x (t) |z1, z2, . . . , zk) , t ∈ [tk, tk+1) , k = 1, 2, . . . (3)

Compared with traditional discrete filtering problem, the
measurement update step of continuous-discrete filter is the
same as that of relative discrete-discrete filter, which does not

need to be discussed in this paper. The main difference of
continuous-discrete filter is the probability of the continuous
state x (t) ∼ N (x̂ (t) , P (t)), which is actually defined for all
t ≥ 0 and not only for the discrete measurement steps at tk.

Hence, in continuous-discrete filtering, the propagations of
system state x̂ (t) and covariance P (t) at state prediction
step without arrived measurements require first solving the
full Fokker-Planck-Kolmogorov (PFK) partial differential e-
quations [4], [6], i.e.

dx̂ (t)

dt
=E [f (x (t) , t)] (4)

dP (t)

dt
=E

[
(x (t)− x̂ (t)) fT (x (t) , t)

]
+ E

[
f (x (t) , t) (x (t)− x̂ (t))

T
]

+GQ (t)GT

=P (t)E[Fx (x (t) , t)]
T

+ E[Fx (x (t) , t)]
T
P (t) +GQ (t)GT (5)

where t ∈ [tk, tk+1]; E [·] represents the expectation with
respect to x (t) ∼ N (x̂ (t) , P (t)). Fx (x (t) , t) is the Jaco-
bian matrix of f (x (t), t) with respect to x (t), with elements
[Fx]ij = ∂fi

∂xj
.

A. Continuous-discrete nonlinear filter

Because of the nonlinear drift and measurement function,
it is almost impossible to obtain analytical and closed-form
solution of these equations (4)-(5) at state prediction step.
Hence, in order to approximately implement the differential
equations (4)-(5) on the state prediction step, the unpredictable
error and uncertainty will be inevitably caused by two main
reasons.

The first reason is the approximation of expectation in (4)-
(5) with the general form, i.e.

E [g (x, t)] =

∫
g (x, t)N (x|m,P ) dx (6)

Two different kinds of popular approximation methods are
Taylor expansion [21] and sigma-point (unscented transform
and Cubature method) [10], [11] methods, which will lead
to CD-EKF, CD-UKF and CD-CKF, respectively. Obviously
other approximations exist as well. For example, it is also
possible to use sequential Monte Carlo based particle filter [20]
and Markov chain Monte Carlo based method [22]. However,
in these approaches, the approximation error of the expectation
can not be avoided well.

The second reason is the discretization of differential e-
quations in (4)-(5). The error caused by discretization mainly
depend on the interval of discretization, i.e. the smaller the
interval is, the smaller discretization error is. However, cor-
respondingly small interval will lead to heavy computational
burden.

Besides above mentioned PFK partial differential equation
based methods, there exists another way to solve continuous-
discrete filtering problem, i.e. directly using stochastic numer-
ical scheme to simulate or discrete the stochastic differential



equation (1). For example, in [11] the 1.5 order strong Itô-
Taylor scheme is used to discrete stochastic differential e-
quation (1). Then, the result of the state prediction step can
be obtained through approximately calculating the expectation
with the form in (6). However, in different kinds of continuous-
discrete nonlinear filters, the unpredictable error and uncertain-
ty caused by approximation of expectation and discretization
are both inevitable and not negligible. For nonlinear system
and rare measurements with large ∆t, the approximation and
discretization errors will demolish the performance of filter or
even lead to divergence.

B. Our idea

In order to decrease above discussed errors and obtain
accurate filtering results, in this paper, we introduce VCPs to
be iteratively optimized at the state prediction step for more
accurately approximating the continuous state probability.

To this end, we construct VSCM with VCPs to describe the
true state priori model, i.e.

p (x (tk,σ) |x (tk,σ−1)) ≈ p (x (tk,σ) |x (tk,σ−1) ,Λk,Σk) (7)

where σ = 1, 2, . . . , θ and θ is the number of state propagation
during a measurement interval ∆t. α = ∆t

θ is the interval of
discretization of continuous state. For notation concision, in
this paper, tk,σ denotes tk+σα. When σ = θ, x (tk−1,σ) =
x (tk)

In (7), Λ and Σ are VCPs to be optimized for enhancing
adaptivity and accuracy of VSCM. This paper aims to propose
a novel nonlinear filter for continuous-discrete system, in
which VCPs and system state can be iteratively identified
and estimated based on VB framework. Through optimizing
VSCM by identifying VCPs, more accurate state estimation
can be achieved. Correspondingly, state estimation will also
contribute to the identification of VCPs. The construction of
VSCM and the derivation of VCNF will be shown in the
following section.

III. VARIATIONAL COMPENSATION NONLINEAR FILTER

The first challenge of CD-VCNF is to design VSCM and
properly introduce VCPs to compensate approximation and
discretization error. Then, based on VB framework and pro-
posed VSCM, the model optimization and state estimation can
be achieved iteratively by maximizing ELBO.

A. Construction of the variational state compensation model

In order to more accurately describe the continuous state
and control the negative influence caused by approximation
and discretization error, we propose parametric VSCM to
approximate the state priori model, i.e.

p (x (tk,σ) |x (tk,σ−1)) ≈

N
(
x (tk,σ) |Fv

(
x̂
(
tk,σ−1

))
+ Λk,

(
Pv
(
P
(
tk,σ−1

))
Σk
)−1
)

= p (x (tk,σ) |x̂ (tk,σ−1) ,Λk,Σk) , σ = 1, 2, . . . , θ (8)

where

Fv
(
x̂
(
tk,σ−1

))
= x̂

(
tk,σ−1

)
+ αf

(
x̂
(
tk,σ−1

)
, t
)

(9)

Pv
(
P
(
tk,σ−1

))−1

= P
(
tk,σ−1

)
+ αP

(
tk,σ−1

)
Fx
(
x̂
(
tk,σ−1

)
, t
)T

+ αFx
(
x̂
(
tk,σ−1

)
, t
)
P
(
tk,σ−1

)T
+ αGQ (t)GT (10)

Comparing (9)-(10) with (4)-(5), we can find that they are
similar. Actually, using Euler method to discrete the differ-
ential equations (4)-(5) and Taylor expansion to approximate
the expectation with the form of (6), we can obtain (9)-(10),
which is employed as parts of mean and covariance of VSCM
in (8).

However, besides Fv
(
x̂
(
tk,σ−1

))
and Pv

(
P
(
tk,σ−1

))
,

the more important parts in are VCPs Λ and Σ. It is remark-
able that VCPs Λ and Σ represent probability distributions,
rather than single point. Because distribution can reflect more
information than point, through optimizing VCPs, error and
uncertainty of state can be captured and compensated more
effectively by probability distributions. This is the main reason
why we use VB framework, rather than other point-estimation
methods. The role of VCP Λ is to compensate the error of
state’s mean. Σ is used to adjust the confidence of mean and
reflect the fluctuation of error. Through iteratively optimizing
Λ and Σ, the discretization and approximation error of state
can be significantly reduced and the state priori model can
be fitted well. Then, the accuracy of state estimation can be
improved gradually.

Because VCPs are probability, to calculate the posteriori
probability of VCPs, their priori probabilities need to be
defined. The following analysis can be considerably simplified
if conjugate prior distributions are selected. We therefore use
Gaussian-Wishart prior governing the mean and precision of
VSCM. i.e.

p (Λk,Σk) = p (Λk|Σk) p (Σk)

= N
(

Λk|Λ0, (λ0Σk)
−1
)
ω (Σk|WΣ0

, VΣ0
) (11)

The hyperparameters Λi0, λi0, WΣ0 , VΣ0 need to be initialized
at the beginning of our proposed algorithm.

As for the process of measurement function, we will use the
Taylor expansion to approximate the measurement likelihood
probability p (zk|x (tk)), i.e.

p (zk|x (tk)) ≈ N (zk|Hkx (tk) + uk, Rk) (12)

where Hk ∈ Rm×n and uk ∈ Rm are the priori known matrix
and vector respectively, which can be considered as Hessian
matrix and first-order constant term of the Taylor expansion,
i.e.

Hk =
∂2h (xk)

∂xk2

uk = h
(
x̂k/k−1

)
−Hkx̂k/k−1

where x̂k/k−1 is the result of state prediction step at sampling
time tk.



B. Variational iterative calculation of posteriori probability
Employing VB approach, posteriori probability can be cal-

culated by maximizing the ELBO [23], i.e.

L(q) =

∫
q (x (tk) ,Λk,Σk)

× ln
p
(
Zk1 , x (tk) ,Λk,Σk

)
q (x (tk) ,Λk,Σk)

d {x (tk) ,Λk,Σk} (13)

where q (xk,Λk,Σk) denotes posteriori probability of state
and VPs, which can be factorized with respect to these groups,
i.e.

q (x (tk) ,Λk,Σk) = q (x (tk)) q (Λk|Σk) q (Σk) (14)

Based on VSCM in (8), measurement likelihood probability
in (12) and priori probabilities of VCPs in (11), the complete-
data likelihood probability p

(
Zk1 , x (tk) ,Λk,Σk

)
in (13) can

be expressed as

p
(
Zk1 , x (tk) ,Λk,Σk

)
= p (zk|x (tk)) p (x (tk) |x̂ (tk−1) ,Λk,Σk)

× p (Λk|Σk) p (Σk) p
(
Zk−1

1

)
(15)

Based on the model of complete-data likelihood probability
in (15), the posterior probabilities of the state q (x (tk)) and
VCPs q (Λ|Σ) q (Σ) can be iteratively calculated by maximiz-
ing the ELBO L (q) in (13) with model identification stage
and state correctness stage, which are derived as follows.

1) model identification stage: Given the posterior probabil-
ity of state x (tk) in the i-th iteration, i.e.

qi (x (tk)) = N
(
x (tk) |x̂i (tk) , Pi(tk)

−1
)

then, we can calculate the posterior probabilities of VCPs Λ,
Σ in the i+1-th iteration, i.e.

qi+1 (Λk|Σk) = N
(

Λk|Λi+1
k ,

(
λi+1
k Σk

)−1
)

qi+1 (Σk) = ω
(
Σk|W i+1

Σk
, V i+1

Σk

)
where

λi+1
k = Pv

(
P
(
tk−1

))
+ λ0 (16)

Λi+1
k =

(
λi+1
k

)−1
Pv
(
P
(
tk−1

)) (
x̂i (tk)− Fv

(
x̂
(
tk−1

)))
+
(
λi+1
k

)−1
λ0Λ0 (17)(

W i+1
Σk

)−1
= Pi(tk)

−1
Pv
(
P
(
tk−1

))
+ (WΣ0

)
−1

+ X̄X̄T
(
Pv
(
P
(
tk−1

))−1
+ λ−1

0

)−1

(18)

V i+1
Σk

= VΣ0
+ 1 (19)

X̄ = x̂i (tk)− Fv
(
x̂
(
tk−1

))
− Λ0

Proof : According to the mean field theory used in VB
method, based on the decomposition of in (15), it is easy to
get

ln qi+1 (Λk,Σk)

= Eqi(x(tk))

{
ln p

(
Zk1 , x (tk) ,Λ,Σ

)}
+ const

= Eqi(x(tk)) {ln p (x (tk) |x̂ (tk−1) ,Λk,Σk)}
+ ln p (Λk|Σk) + ln p (Σk) + const (20)

Note that we are only interested in the functional depen-
dence of the right-hand side on the VCPs. Hence, any terms
that do not depend on VCPs can be absorbed into the additive
normalization constant in (20). Then, the expectation in (20)
can be evaluated i.e.

Eqi(x(tk)) [ln p (x (tk) |x̂ (tk−1) ,Λk,Σk)]

=
1

2
ln |Σk| −

1

2
X̄TPv

(
P
(
tk−1

))
ΣkX̄

− 1

2
Tr
[
Pi (tk)Pv

(
P
(
tk−1

))
Σk
]

(21)

Then given (11) and (21), by re-organizing (20), we can
obtain (16)-(19).

�
2) state estimation stage: Given posterior probabilities of

VCPs Λ, Σ in the i+1-th iteration, i.e.

qi+1 (Λk|Σk) = N
(

Λk|Λi+1
k ,

(
λi+1
k Σk

)−1
)

qi+1 (Σk) = ω
(
Σk|W i+1

Σk
, V i+1

Σk

)
then, we can calculate the posterior probability of state x (tk)
in the i+1-th iteration, i.e.

qi+1 (x (tk)) = N
(
x (tk) |x̂i+1 (tk) , Pi+1(tk)

−1
)

where

Pi+1 (tk) =Pv
(
P
(
tk−1

))
W i+1

Σk
V i+1

Σk
+HT

k R
−1
k Hk (22)

x̂i+1 (tk) =Pi+1(tk)
−1
HT
k R

−1
k (zk − uk)

+ Pi+1(tk)
−1
W i+1

Σk
V i+1

Σk

(
Fv
(
x̂
(
tk−1

))
+ Λi+1

k

)
(23)

Proof : According to the mean field theory used in VB
approach, based on the decomposition in (15), it is easy to
get

ln qi+1 (x (tk))

= Eqi+1(Λk,Σk)

{
ln p

(
Zk1 , x (tk) ,Λ,Σ

)}
+ const

= Eqi+1(Λk,Σk) {ln p (x (tk) |x̂ (tk−1) ,Λk,Σk)}
+ ln p (zk|x (tk)) + const (24)

In (24), we only pay attention to the functional dependence
on the system state x (tk). Hence, terms that do not depend
on state x (tk) can be considered as the additive normalization
constant in (24). Then, the expectation in (24) can be evaluated
i.e.

Eqi+1(Λk,Σk) {ln p (x (tk) |x̂ (tk−1) ,Λk,Σk)}

= −1

2
X̄T
k Pv

(
P
(
tk−1

))
W i+1

Σk
V i+1

Σk
X̄k + const (25)

where X̄k = x (tk)− Fv
(
x̂
(
tk−1

))
− Λi+1

k

Then given (12) and (25), by re-organizing (24), we can
obtain (22)-(23). �

The maximization process of the lower bound has been
derived, which includes model identification and state esti-
mation stages. From the updated formulation in every stage,
it is obviously that the solution of maximizing ELBO has



an analytical expression form. Through iteratively and alter-
natively operating these two stages, the error compensation,
model identification and state estimation can be achieved
simultaneously.

IV. SIMULATION

In this section, our proposed CD-VCNF is compared with
CD-EKF, CD-UKF and CD-CKF in the target tracking non-
linear model.

The aircrafts dynamics obeys an stochastic differential e-
quation of the form (1), where the state vector x (t) :=
[x (t) , ẋ (t) , y (t) , ẏ (t) , z (t) , ż (t) , ϕ (t)]

T ∈ R7. x (t), y (t),
z (t) and ẋ (t), ẏ (t), ż (t) are positions and velocities at time
t and ϕ (t) denotes turn rate. The drift function is f (x (t)) :=
[x (t) ,−ϕ (t) ẏ (t) , ẏ (t) , ϕ (t) ẋ (t) , ż (t) , 0, 0]

T ∈ R7. The
driving noise term is also 7-D with all entries {ϕi (t) , t > 0},
i = 1, 2, . . . , 7 being mutually independent Brownian
processes with zero mean and unit covariance. Its ma-
trix G is constant, diagonal, and given by the formula
G := diag[0, σ1, 0, σ1, 0, σ1, σ2]

T with σ1 =
√

0.2m/s and
σ2 = 0.007◦s−1.

The observation model in the explored air traffic control
scenario is nonlinear, discrete-time, i.e.

h (xk) =


√
x2
k + y2

k + z2
k

tan−1
(
yk/xk

)
tan−1

(
zk
/√

x2
k + y2

k

)
+ υk

where xk, yk, zk denote the aircrafts position at time tk. The
measurement is polluted by the white noise υk ∼ N (0, R),
where with the constant diagonal covariance matrix R =
diag

[
σ2
r , σ

2
θ , σ

2
ϕ

]
and σr = 50m, σθ = 0.1◦, σϕ = 0.1◦.

In this simulation, the simulation time K is 100s.
Measurement interval ∆t is 1s. In order to adequate
test estimation accuracy and robustness to error of d-
ifferent filters, the discretization interval α is set as
0.5s. Initial state is the 7-D Gaussian variable, with
mean

[
1000m, 0m/s, 2560m, 150m/s, 200m, 0m/s, 3◦s−1

]T
and covariance diag [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,].
Furthermore, the hyperparameters in our proposed CD-VCNF
are chosen as

VΣ0
= 100 WΣ0

= 0.01In×n
Λ = 0n×1 λ = 0.01In×n

where I is the unit matrix.
In order to evaluate the performance of different filters, we

used the root mean square error (RMSE) over Nmc = 100
simulation runs:

RMSEk (tk) =

√√√√ 1

Nmc

Nmc∑
l=1

(
x̄lk
)2

+
(
ȳlk
)2

+
(
z̄lk
)2

k = 1, 2, · · · ,K

where k is the sampling time of measurement and

x̄lk = xl (tk)− x̂l (tk)

ȳlk = yl (tk)− ŷl (tk)

z̄lk = zl (tk)− ẑl (tk)

xl (tk) is the true value of state and x̂l (tk) is the estimated
value of state in l-th simulation at time tk. Furthermore, the
average RMSE (ARMSE) is considered as a evaluation index
as well, i.e.

ARMSE [i] =
1

K

k∑
k=1

RMSEk [i]

We also considered the mean absolute error (MAE) over
time tk of the l-th simulation run, i.e.,

MAE (l) =
1

k

K∑
k=1

(∣∣x̄lk∣∣+
∣∣ȳlk∣∣+

∣∣z̄lk∣∣)
First of all, we compare the estimation accuracy of our pro-

posed CD-VCNF and other filters. To this end, the ARMSEs of
position and velocity are shown in table I and II, respectively.
Obviously, the ARMSEs of position and velocity of CD-VCNF
are both the lowest and the worst one is CD-UKF. To be
more specific, the curves of RMSEs of position and velocity
over 100s are described in Fig.1-2. We can find that not only
the estimation accuracy of CD-VCNF is higher than that of
other filters, but also the fluctuation of RMSE of CD-VCNF is
also the least. Around 20 and 80 seconds in Fig.1 and around
90 second in Fig.2, there is upward trend in RMSEs of CD-
UKF and CD-CKF. However, RMSEs of CD-VCNF is relative
stable over 100s.

In order to further analyze the estimation stability in the 100
Monte Carlo simulations, the MAEs of position and velocity
for different filters are reported with boxplot form in Fig.3-4,
respectively. A filters box represents a point set of 100 MAEs
of all Monte Carlo simulations, the characteristics of which
can be reflected graphicly. The interquartile range (length
of blue rectangle) and the distance between maximum and
minimum value both indicate the dispersion degree of point
set. Evidently, MAEs of CD-VCNF in 100 simulations is the
most dense. Moreover, the medians (the red line in the blue
rectangle) of CD-VCNF is obvious smaller than that of other
filters. Hence, the estimation result of CD-VCNF is the most
stable and accuracy one. In CD-VCNF, our proposed VSCM
can can not only fit the state priori model, but also compensate
the approximate error by VCPs. Through iteratively maximiz-
ing the ELBO by iteratively operating model identification
and state correctness stages, VCPs can be identified so that
the accuracy and adaptiveness of CD-VCNF can be improved
gradually.

V. CONCLUSION

Based on VB framework, VCNF is proposed to solve
filtering problem in continuous-discrete system. Through it-
eratively and alternatively operating model identification and



0 20 40 60 80 100

Step / s

0

10

20

30

40

R
M

S
E

 o
f p

os
iti

on

CD-VCNF

CD-UKF

CD-EKF

CD-CKF

Fig. 1. RMSEs of position

0 20 40 60 80 100

Step / s

2

3

4

5

6

7

8

9

R
M

S
E

 o
f v

el
oc

ity

CD-VCNF

CD-UKF

CD-EKF

CD-CKF

Fig. 2. RMSEs of velocity

CD-VCNF CD-EKF CD-UKF CD-CKF

15

20

25

30

35

M
A

E
 o

f p
os

iti
on

Fig. 3. MAEs of position

TABLE I
ARMSES OF POSITION FOR DIFFERENT FILTERS

Filters CD-VCNF CD-EKF CD-UKF CD-CKF
ARMSEs(m) 18.8405 25.9768 29.1965 29.0043

TABLE II
ARMSES OF VELOCITY FOR DIFFERENT FILTERS

Filters CD-VCNF CD-EKF CD-UKF CD-CKF
ARMSEs(m/s) 4.2569 5.3097 6.2960 6.2914

state correctness stages, ELBO can be maximized gradually,
and at the same time, the identification of VCPs, the fitting of
state priori model and the estimation of state can be achieved
jointly. Through using VSCM to model uncertain state, per-
formance of VCNF will not be influenced by uncertainty so
that the adaptiveness and robustness to unpredictable error
can be enhanced evidently. Moreover, because of a set of
introduced VCPs in the mean and covariance of VSCM, the
approximate and discretization error can be decreased and the
estimation accuracy can be improved during the processing of
the maximization of ELBO. Finally, we have shown that the
performance of VCNF is superior in the simulation of target
tracking.
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