
EasyChair Preprint
№ 10474

Aircraft Accident Prediction Using Machine
Learning Classification Algorithms

Rade Kačar, Darko Ćulibrk, Olja Čokorilo and Petar Mirosavljević

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 30, 2023

Aircraft Accident Prediction Using Machine
Learning Classification Algorithms

1st Rade Kačar
Faculty of Transport and

Traffic Engineering
University of Belgrade

Belgrade, Serbia
kacarrade@gmail.com

2nd Darko Ćulibrk
Planning and Development

of ISP Network
MTEL

Banja Luka, Bosnia and
Herzegovina

Darko.Culibrk@mtel.ba

3rd Olja Čokorilo
Faculty of Transport and

Traffic Engineering
University of Belgrade

Belgrade, Serbia
oljav@sf.bg.ac.rs

4th Petar Mirosavljević
Faculty of Transport and

Traffic Engineering
University of Belgrade

Belgrade, Serbia
perami@sf.bg.ac.rs

Abstract— Air traffic and transportation is the safest form
of traffic despite the fact that every year in the world a
significant number of air traffic accidents and incidents
happen. Safety management and Risk management always
have been extremely important factors in aviation. Safety
improvement is possible through the constant detection and
control of hazards as well as causes of accidents and incidents
and hard work on their mitigation, removal, or reduction of
their consequences. The aim of this paper is to present the
application of machine learning classification in air crash
severity prediction.

Keywords— Aircraft Accident, Prediction, Machine
Learning Classification Algorithms, Multilayer Perceptron,
Artificial Neural Networks, XGBoost, LightGBM.

I. INTRODUCTION

 Air traffic systems became multilayer,
hyperdimensional, highly distributed, and interdependent
with levels of complexity that were unimaginable until just
a few decades ago. That is why maintaining a high level of
safety in such a complex environment is more challenging
than before [1]. Civil aviation is a complex mixture of
many different but interrelated human, technical,
environmental, and organizational factors that affect the
safety and performance of the system. In the early days of
commercial aviation large number of aircraft accidents was
a characteristic. The priority of all safety processes is
accident prevention, but at the beginning of the aviation era
aircraft accident investigation was the main tool of
prevention. Nowadays a proactive approach to safety is
applied. It means that stakeholders should collect data to
predict not only real and current but also upcoming safety
risks. In this situation, safety analytics must be improved to
predict future safety risks and safety performance. It is of
utmost importance that techniques and methods for
recognizing and predicting adverse safety events are
devised and widely used. Nowadays is a time of data
abundance and technological prosperity, which opens a big
door where artificial intelligence and machine learning can
enter every pore of our reality. In this work, we present a
machine-learning algorithm for aircraft accident
prediction. The main idea is to support a proactive safety
approach. This technique could find its place in SAR
(Search and Rescue) missions as an air crash severity
prediction tool to optimize the engagement of resources in
SAR operations. Machine learning is a very powerful
technique that can use data to train algorithms and give
computer systems the ability to "learn" (i.e. progressively

improve performance on a specific task) from data, without
being explicitly programmed [2]. Machine Learning is a
modeling technique that classifies data in a way that figures
out the model out of data - the model is the final product of
Machine Learning [3].

II. RELATED WORK

Today, machine learning is successfully used as a
method for safety and risk analysis. Paper [4] proposed a
Support Vector Machine, Random Forest, Gradient
Boosting Classifier, K-Nearest Neighbors Classifier,
Logistic Regression, and an Artificial Neural Network
machine learning algorithms used to predict aircraft crash
severity. The dataset is obtained from The National
Transportation Safety Board (NTSB). Of all parameters
given in the dataset, 9 were chosen for the study. The
prediction was made on the basis of 9 categories obtained
by the combination of two group categories: categories
based on damage dealt and categories based on fatalities.
Different algorithms gave different accuracies, from 90% up
to 91,66%.

Paper [5] suggests the use of Tree-AS, XGBoost Linear,
XGBoost Tree, CHAID (Chi-squared Automatic Interaction
Detection), and Neural Network. The dataset contains 17
fields with information on the location of the crash. Causes
were classified into seven categories. The highest accuracy
which was obtained using the mentioned methods was 40%.

Paper [6] proposed the use of Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), AdaBoost, and
XGBoost.

Paper [7] proposed the use of dataset from Aviation Safety
Reporting System (ASRS), use of the hybrid model support
vector machine and an ensemble of deep neural networks.

III. METHODOLGY

 Several stages were used in the proposed methodology
to make machine learning (ML) models for the prediction
of the severity of aircraft accidents. Those stages are
common in machine learning projects [8, 9, 10]. Each
model is performing a classification prediction task, i.e.,
predicting class labels for a given set of inputs. The models
developed will predict severity levels in case an accident
already happened, and that is the premise to have in mind.
Stages are graphically represented in Fig. 1.

DATA LOADING AND
PREPARING

1) Load dataset (tables)
2) Table Concatenation/Joining
3) Remove irrelevant (helper) data
4) Ensure datatypes are correct
5) Make (assign) classes

EXPLORATORY DATA ANALYSIS

1) Examine the top and bottom of the
data
2) Examine data's dimensions, datatypes
and missing values
3) Descriptive statistics
4) Data visualizations

DATA WRANGLING

1) Data Cleaning
2) Feature Selection
3) Data Transforms
4) Feature Engineering
5) Dimensionality Reduction

MACHINE LEARNING
ALGORITHMS

1) Evaluate Algorithms
2) Improve Accuracy (Metrics)
3) Finalize Model

Figure 1. Stages of predictive modeling

A. Data loading and preparing

The Aviation accident database that we used is from the
National Transportation Safety Board (NTSB). The data has
been extracted from the "avall.mdb" file, NTSB Aviation
Accident Database. The database contains facts about
accidents and incident events starting from the 1st of
January 2008 up to the 30th of January 2022.

From dozens of parameters contained in the database,
we have chosen 39, which we considered important for the
prediction problem. We took parameters (table columns)
from three tables: “events”, “Flight_Crew” and “aircraft”.
Some of the parameters are numerical in nature, and some
are categorical. Part of the parameters have helper functions
for table grouping, merging, and reformatting, and part is
data used mostly as input to machine learning models.
Those last represent attributes i.e. features of input
variables. Input variables, in form of arrays of values
(vectors), are actual events (represented as table rows). The
list of chosen parameters is shown in Table 1.

TABLE 1. PARAMETERS CHOOSEN FOR THE STUDY

Table “events”

Parameter (Table
column name)

Description Role Kept or
Dismissed

ev_id Unique
Identification for
Each Event

helper dismissed

ev_type Type of Event data,
input

dismissed

ev_dow Event Day of the
Week

data,
input

kept

ev_time Time of Event data,
input

kept

ev_year Event Date Year data,
input

kept

ev_month Event Date Month data,
input

kept

ev_nr_apt_loc Indicates whether
the accident/incident
occurred off or on an
airport

data,
input

kept

apt_dist Distance from the
airport in statute
miles

data,
input

kept

apt_elev Airport Elevation data,
input

kept

light_cond Lighting Conditions data,
input

kept

sky_cond_nonceil Sky Lowest Cloud
Conditions

data,
input

kept

sky_nonceil_ht Lowest Non-Ceiling
Height

data,
input

kept

sky_ceil_ht Lowest Ceiling
Height

data,
input

kept

sky_cond_ceil Sky Condition for
Lowest Ceiling

data,
input

kept

vis_sm Visibility (Statute
Miles)

data,
input

kept

wx_temp Air Temperature at
event time (in
degrees Celsius)

data,
input

kept

wx_dew_pt Dew Point at event
time (in degrees
Fahrenheit).

data,
input

kept

wind_dir_deg Wind Direction
(degrees magnetic)

data,
input

kept

wind_vel_kts Wind Speed (knots) data,
input

kept

gust_kts Wind Gust (knots) data,
input

kept

altimeter Altimeter Setting at
event time (in Hg)

data,
input

kept

ev_highest_injury Event Highest Injury data,
output

kept

wx_cond_basic Basic weather
conditions

data,
input

kept

dec_latitude Event Location
Latitude decimal

data,
input

kept

dec_longitude Event Location
Longitude decimal

data,
input

kept

Table “Flight_Crew”

Parameter (Table
column name)

Description Role Kept or
Dismissed

ev_id Unique
Identification for
Each Event

helper dismissed

Aircraft_Key ID's unique aircraft
in collisions

helper dismissed

crew_no Unique Identifier for
Each Pilot

helper kept,
changed

crew_age Indicates the age of
the flight crew
member in years

data,
input

kept,
changed

med_certf Medical Certificate
Class

data,
input

kept,
changed

med_crtf_vldty Medical Certificate
Validity

data,
input

kept,
changed

Table “aircraft”

Parameter (Table
column name)

Description Role Kept or
Dismissed

ev_id Unique
Identification for
Each Event

helper dismissed

Aircraft_Key ID's unique aircraft
in collisions

helper dismissed

damage Damage data,
output

kept

cert_max_gr_wt Certified Max Gross
Weight

data,
input

kept

acft_category Category of the
involved aircraft

data,
input

kept

homebuilt Is aircraft amateur-
built

data,
input

kept

afm_hrs_last_insp Airframe hours since
the last inspection

data,
input

kept

afm_hrs Airframe Hours data,
input

kept

The next step was to create a unique dataset by grouping
data inside tables, and merging all tables into one
spreadsheet; the goal was to have a unique sample (sample,
instance, or observation is represented as a table row) per
unique aircraft involved in an accident. In this process, the
meaning of some original parameters was changed and
substituted with new ones. The meaning of “crew_no” is
changed to the Number of crew per aircraft, the meaning of

“crew_age” to the Mean value of crew age per aircraft,
“med_certf” and “med_crtf_vldty” now represent Medical
Certificate Class and Medical Certificate Validity of Pilot,
per aircraft. Some number of helper variables were
removed during this process. Part of this stage was also to
ensure that data types in the final table are correct.

B. Problem definition

 Our goal was to predict the severity of aircraft accidents
based on NTSB classification. Severity is defined by a
combination of two parameters - Event Highest Injury (can
be Fatal, Serious, Minor, or None) and Damage imposed to
aircraft (can be Destroyed, Substantial or Minor).
Combining those two parameters we get nine values, or
categories for, as we named it, the Severity class.
Categories are shown in Table 2.

TABLE 2. SEVERITY CLASSES

Event Highest
Injury

Damage Severity class

Fatal Destroyed fatal-destroyed

Fatal Substantial fatal-substantial

Fatal Minor fatal-minor

Serious Destroyed serious-destroyed

Serious Substantial serious-substantial

Serious Minor serious-minor

Minor or None Destroyed minor-destroyed

Minor or None Substantial minor-substantial

Minor or None Minor minor-minor

In the taxonomy of machine learning our problem falls
under the supervised machine learning branch, multiclass
classification task. Every input variable (sample) is mapped
to one of the nine output variables (targets, class labels) in
the used dataset (ground truth data). The goal of
classification (as a subcategory of supervised learning) is
to predict a categorical class label of new observation
(event) based on past observations (through learned, i.e.
fitted, machine learning model).

C. Exploratory data analysis

In this stage, we did standard Exploratory data analysis
(EDA) tasks: examining the top and bottom of data,
examining the data's dimensions, data types, and missing
values, and did descriptive statistics and data visualization.
Although most of those tasks were done in this stage, EDA
is an iterative process, and it was used as necessary in any
following stage.

D. Data wrangling

This stage is also known as data pre-processing, data
munging, or data preparation.

The first task in this stage is Data cleaning. We removed
irrelevant and unwanted data, that is rest of helper features
(columns) we do not need anymore, any sample where
aircraft were home-built (“homebuilt” equal to Yes), and
any sample where aircraft type is different from an airplane
(“acft_category” not equal to Airplane). In this way, we
focused on the most interesting types of aircraft.

We also removed all samples where the Severity class is
equal to the “NaN” value – this was the consequence of

unknown or empty values in either the “ev_highest_injury”
or “damage” columns. After this step we already knew we
are facing the toughest problem in classification –
imbalanced multi-class classification. Table III shows
number of data samples per Severity class.

TABLE 3. NUMBER OF SAMPLES PER SEVERITY CLASSES

severity class number of samples

fatal-destroyed 1683

fatal-substantial 1906

fatal-minor 20

serious-destroyed 107

serious-substantial 1271

serious-minor 28

minor-destroyed 170

minor-substantial 11179

minor-minor 546

Next to do in the Data cleaning stage is to check if are there
any columns with single values (zero-variance columns). If
there are some, we have to remove them because they don’t
bring any value to the learning process. We also identify
columns with very few different values (near-zero-variance
columns). For columns with very few values, we should
consider transforming them from numerical to categorical
before we decide to remove them. In this step, we
transformed “ev_month” data type from integer
(numerical) to string (categorical). Then we identified rows
with duplicated data. There were duplicated rows, but in
our case, they represent different airplanes with the same
values for input features, so we didn’t discard any row in
this step.

After that, we identified data containing unknown values or
wrong ones. Usually, unknown data were marked by the
operator in some way (using “999” for example in
“gust_kts” or “-1” in “apt_dist”). In other cases, there were
wrongly inputted data (for column 'dec_longitude' values
less than -180 and greater than 180 are treated as wrong, for
example). All detected unknown and wrongly inputted data
were replaced with “NaN” at this step.

Then we needed to decide how to deal with missing values
(“NaN”). There can be many strategies on how to do it; we
decide to drop all columns with more than 50% of “NaN-
s”. The rest of the missing values can be replaced with the
mean, median, or mode of their respective columns. We
postponed this step to be done after the dataset train-test
split, to avoid data leaking.

Data cleaning also implies Outlier detection. Outliers are
values out of the expected range. Outliers can be obvious
errors (like Air Temperature at an event time equal to 3000
degrees Celsius) or in some cases rare events with no
significant influence on the population. Removing outliers
can improve machine learning model skills. The standard
method used for detection is Interquartile Range (IQR)
Method, or in case data have Gaussian or Gaussian-like
distribution we can use Standard Deviation Method. After
analyzing our dataset, we decide to use the IQR method
with the upper 99% percentile to clip very extreme values
and keep enough data for model training.

After Outlier detection and removal, and before any
statistical operations, we had to split the dataset into
training and test sets. All following data preparation tasks
should be performed on the training set first. In this way,
we are assuring that any information about data in the hold-
out test set won’t be available to the training set. This
problem is known as Data Leaking and can decrease the
performance of ML models. We used the simplest method
– splitting the dataset into one training and one test set. The
more robust solution would be to use three (training,
validation, and test) or four (training, training-validation,
validation, and test) sets, or to use k-fold cross-validation
[11, 12].

The second task in the Data Wrangling stage is Feature
Selection. It is the process of choosing the most important
features the for ML model. By reducing the number of
features we are making an effective ML model – it will use
less computational power and take less time to run. One of
the ways how Feature Selection can be seen is in terms of
Unsupervised and Supervised selection. Unsupervised
selection methods don’t take into count the output variable
(target), and Supervised methods do.

Under the Unsupervised method, we first tested how
strongly features are related to each other. Statistical
measures used for numerical features were Pearson
correlation (good for linear relationships between data) and
Spearman correlation (good for non-linear relationships
between data). Our test showed a high correlation value
between the “wx_dew_pt” and “wx_temp” features
(Pearson equal to 0.81, Spearman equal to 0.77), so we
have removed the “wx_dew_pt” column as a consequence.
Then we checked the correlation between categorical
features using Phi-k correlation and Mutual information
methods. This test didn’t show any strong correlation
between categorical data.

Under the Supervised method, we used statistical tests to
measure the relationship strength between features and
categorical targets (Severity class labels). For testing
numerical features, we used the ANOVA (analysis of
variance) test. The result was “apt_dist” and “gust_kts”
features have no significant relation with the target, and
“ev_time”, “ev_year” and “wind_dir_deg” have small
relation with the target. So, we discarded those five
columns. For testing categorical features, we used the
Mutual information test. The result was “ev_dow” and
“ev_month” features have no significant relation with the
target, so we discarded those two columns.

All statistical tests above have been performed on the
training set, and results were applied to training and test
sets respectively. The same rule goes for the next two tasks.

The third task in the Data Wrangling stage was Missing
Data Imputation. We have replaced “NaN” values in
numerical columns with median values. If we are sure some
column contains data under Gaussian distribution, we can
use mean value, but for sake of simplicity, we were using
median since we didn’t test columns on statistical
distribution. For categorical columns, we use the mode
(most frequent) value to replace “NaN” -s.

The next task in Data Wrangling was Data transforms –
changing the scale or distribution of data. Many machine
learning algorithms benefit if input variables are scaled to
the standard range, often between 0 and 1. It includes
algorithms that weight inputs like neural networks, and
algorithms that use distance measures, like k-Nearest
Neighbors. Also, scaling is useful for optimization
algorithms in the core of ML algorithms, like gradient
descent [8]. We performed scaling per numerical columns
so all values lie in the range between 0 and 1 in the training
set.

The fifth task in Data Wrangling was Feature Engineering.
Feature Engineering is the process of creating new features
based on existing ones. Since ML models require all inputs
to be numbers, we perform one-hot encoding on categorical
columns. One-hot encoding on one categorical column will
take all variables, and for every unique value, it will create
a new column. A new column will be composed of 1s or 0s
(binary value) – value 1 will signify if that row has a
categorical value. The process is repeated for all categorical
columns. In the end, we have a dataset with all values being
numerical and with an increased number of columns, i.e.
features. After one-hot encoding we performed
Normalization – we rescaled every row to have a length of
one (unit vector). This is useful for sparse datasets (lots of
zeros), like the one we got in the previous step [9].

We didn’t use any dimensionality reduction method, but in
practice, this is a standard task and can improve the
performance of the model.

E. Machine Learning Algorithms

The problem we had to solve was classification predictive
modeling, but what pose a challenge for us was the unequal
distribution of classes in the training dataset. This is a so-
called imbalanced classification problem. Machine
learning algorithms used for classification are mostly based
on the assumption there is an equal, or almost equal,
number of examples in every class. But many real-world
examples have an imbalanced class distribution, so we need
special techniques and methods to use in the modeling
process. Another problem is that most of the literature on
imbalanced classification is focused on binary
classification problems (all examples belong to one of two
classes), and it is very hard to find papers or examples of
how to solve multiclass classification problems (all
examples belong to one of three or more classes). The
slightly imbalanced dataset can be treated as a normal
classification problem and we can use standard techniques,
but severely imbalanced problems (ratio of classes is 1:100
or 1:10000 for example) requires special attention and
modifications to learning algorithms.

Under this circumstance of data imbalance, most machine
learning algorithms will suffer in performance degradation,
not only because of imbalance in data (the algorithm will
tend to predict the majority class, and can have the same
performance as random guessing); other causes of
degradation are dataset size effects (insufficiency of
information, poor generalization of data characteristics),
label noise effects (class noise – mislabeled examples for
some class) and data distribution effects (no clear

boundaries between classes in feature space, i.e. no good
class separability) [13].

In the case of imbalanced multiclass classification, we have
to use appropriate evaluation metrics. An evaluation metric
is a measure to quantify the performance of a predictive
model. Vastly used metric for classification tasks is
Classification Accuracy – the number of correct predictions
divided by the number of total predictions. But in the case
of imbalanced classification, this measure fails. This metric
will mirror the distribution of classes and we can get very
high results, although in reality trained model is no better
than an unskilled classifier. This will lead to erroneous
conclusions about our model. This situation is referred to
as the Accuracy Paradox. From the plethora of evaluations
metrics we choose Weighted F1 Score (1) and Balanced
Accuracy (3). We also kept Classification Accuracy as a
reference. Weighted F1 Score is defined as:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐹1 𝑆𝑐𝑜𝑟𝑒 = ෍ 𝑤௜ × 𝐹1 𝑆𝑐𝑜𝑟𝑒௜

ே

௜ୀଵ

 (1)

where:

𝑤௜ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (2)

and N is number of classes in the dataset.

Balanced Accuracy is defined as the average of recall
obtained on each class, i.e. the macro average of recall
scores per class (as implemented in Python scikit-learn
library):

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

𝑁
෍ 𝑅𝑒𝑐𝑎𝑙𝑙௜ (3)

ே

௜ୀଵ

By using Weighted F1 Score we want to assign greater
contribution of class with more examples in the dataset.
Alternatives can be Macro F1 Score to treat all classes
equally. Micro F1 Score has the same value as Accuracy in
the case of multi-class classification. Balanced Accuracy is
a good choice of metric in case true negatives have the same
importance as true positives, while F1 Score doesn’t care
about true negatives. In the case of a balanced dataset,
Balanced Accuracy is equal to Accuracy.

The baseline ML model we started with is Multilayer
Perceptron (MLP), a class of Artificial neural networks
(ANN). Since our baseline MLP network manifested a
generalization problem (model overfits training data set),
we applied some techniques for better generalization [14],
namely: adding Dropout Layers and using Weight
Constraints. We didn’t use any hyperparameter tuning
techniques, we heuristically tried a few hyperparameter
combinations and choose one with the best evaluation
metrics. Other ML algorithms we used were Extreme
Gradient Boosting (XGBoost) and Light Gradient Boosted
Machine (LightGBM).

All ML algorithms were modified and tested with
techniques that take class imbalance in the count. Those
techniques encompass configuring algorithms themselves,
or additional pre-processing of data (undersampling and
oversampling of training data for example). Output
variables are also required to be numbers, so we perform
output label transformation, depending on the algorithm
used. Table 4 shows ML models along with configurations
and techniques used. Although the terms algorithm and
model can be used interchangeably, we can think about the
algorithm as a process of learning from data, and the model
as a specific representation learned from data [15].

TABLE 4. MACHINE LEARNING MODELS USED

Model
No

Algorithm Configuration

Additional
configuration

and
preprocessing

1 MLP Layers 512 + 256 + 9
nodes

None

Loss
function

Categorical
Crossentropy

Optimizer Adam

2 MLP Layers 512 + 256 + 9
nodes

Keras class
weight

parameter Loss
function

Categorical
Crossentropy

Optimizer Adam

3 MLP Layers 512 + 256 + 9
nodes with
Dropout

Keras kernel
constraint and
bias constraint

parameters Loss
function

Categorical
Crossentropy

Optimizer Adam

4 MLP Layers 512 + 256 + 9
nodes

Oversampling:
SMOTEa,

Undersampling:
Tomek Links

Loss
function

Categorical
Crossentropy

Optimizer Adam

5 MLP Layers 512 + 256 + 9
nodes with
Dropout

Keras kernel
constraint and
bias constraint

parameters.
Oversampling:

SMOTE,
Undersampling:

Tomek Links

Loss
function

Categorical
Crossentropy

Optimizer Adam

6 XGBoost Objective multi:softma
x

XGBClassifier
parameters max

depth,
subsample and

colsample
bytree

Booster DART

7 XGBoost Objective multi:
softmax

XGBClassifier
parameters max

depth,
subsample and

colsample
bytree.

Oversampling:
SMOTE,

Undersampling:
Tomek Links

Booster DART

8 LightGBM Objective multiclass LGBMClassifier
parameters max

depth,
subsample and

colsample
bytree.

Booster DARTb

a Synthetic Minority Oversampling Technique
b Dropouts meet Multiple Additive Regression Trees

IV. RESULTS

Table 5 shows the results of the evaluation of different
machine learning models on the test data set.

TABLE 5. RESULT TABLE

Model
Number

Accuracy
Weighted F1

Score
Balanced
Accuracy

1 0.60 0.58 0.17

2 0.54 0.56 0.20

3 0.67 0.55 0.12

4 0.51 0.54 0.19

5 0.25 0.33 0.27

6 0.68 0.60 0.15

7 0.53 0.57 0.21

8 0.68 0.59 0.15

Higher results are achieved using boosted tree algorithms –
XGBoost and LightGBM when compare to MLP. Although
performance on the training set was great, as a consequence
of overfitting (bad generalization) our models didn’t
achieve results above 0.7 (for Accuracy and Weighted F1
Score) on the validation (test) set. More attention to
techniques for better generalization must be paid.

V. CONCLUSION AND FUTURE WORK

This paper proposed a methodology for predicting the
severity of aircraft accidents if such already happened.
Severity was categorized into 9 classes based on the highest
injury in the event, and the damage level of the aircraft. We
have tested 3 different ML algorithms through 8 different
ML models.

In the process of predictive modeling, we faced a very
common problem in practice – imbalanced multiclass
classification. Our models didn’t exhibit very high results,
and there is a lot of room for improvement. Results can be
improved by using more accurate evaluation techniques
like K-fold Cross Validation. Also, algorithms can be
improved by hyperparameter tuning procedures using
Python libraries like Scikit-learn’s Grid Search, Keras
Tuner, or Optuna.

Better results can be reached using Ensemble learning
algorithms, or primitive ensemble methods for multiclass
classification represented as a set of binary classification
problems – One-vs-Rest and One-vs-One strategies [16].
Dimensionality reduction techniques can also improve the
performance of models in some cases, and that can be the

subject of future work. Some popular techniques for
Dimensionality reduction are Principal Component
Analysis (PCA), t-distributed stochastic neighbor
embedding (t-SNE), and Autoencoders. Considering the
[17] regarding the use of computers and software in search
and rescue operations, as well as their planning, and
especially regarding crisis management and the need to
help managers in quick decision-making, further
development of software based on this methodology would
be a great step forward for science and practice.

REFERENCES

[1] “EASA Preliminary Safety Review—2017”, EASA, 2018.

[2] “AI in air traffic management”, SESAR joint undertaking, 2018.

[3] Phil Kim, “MATLAB Deep Learning: With Machine Learning,
Neural Networks and Artificial Intelligence”, 2017.

[4] Jay Mehta, Vaidehi Vatsaraj, Jinal Shah, Anand Godbole, “Airplane
crash severity prediction using machine learning”, 12th ICCCNT,
2021.

[5] Ved Prakash Gupta, M Sajid Mansoori, Jitendra Shreemali, Payal
Paliwal, “Predicting Causes of Airplane Crashes using Machine
Learning Algorithms”, International Journal of Recent Technology
and Engineering (IJRTE), 2020.

[6] Likita J. Raikar, Sayali Pardeshi, Pritam Sawale, “Airplane Crash
Analysis and Prediction using Machine Learning”, International
Research Journal of Engineering and Technology (IRJET), 2020.

[7] Xiaoge Zhang, Sankaran Mahadevan, “Ensemble machine learning
models for aviation incident risk prediction”, Decision Support
Systems Volume 116, January 2019, Pages 48-63

[8] Jason Brownlee, “Data Preparation for Machine Learning”, 2020.

[9] Jason Brownlee, “Machine Learning Mastery With Python”, 2016.

[10] Nathan George, “Practical Data Science with Python”, Packt
Publishing, 2021.

[11] Andrew Ng, “Machine Learning Yearning”, 2018.

[12] Dr. Adrian Rosebrock, “Deep Learning for Computer Vision with
Python, Practitioner Bundle”, PyImageSearch, 2017.

[13] Jason Brownlee, “Imbalanced Classification with Python”, 2020.

[14] Jason Brownlee, “Better Deep Learning”, 2019.

[15] Jason Brownlee, “Master Machine Learning Algorithms”, 2016.

[16] Jason Brownlee, “Ensemble Learning Algorithms With Python”,
2021.

[17] ICAO, International Aeronautical and Maritime Search and Rescue
Manual, 9th ed., vol. 2, 2022.

