
EasyChair Preprint
№ 13514

Attack Surface Analysis for Spacecraft Flight
Software

James Curbo and Gregory Falco

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

June 3, 2024



Attack Surface Analysis for Spacecraft Flight
Software

James Curbo
Whiting School of Engineering

Johns Hopkins University
Baltimore, USA
jcurbo1@jhu.edu

Gregory Falco
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, USA

gfalco@cornell.edu

Abstract—We propose a method for enhancing cybersecurity
in spacecraft operations by analyzing and reducing the attack
surface of flight software. We advocate for reducing complexity in
the software architecture and adopting more secure architectural
principles to mitigate vulnerabilities and make spacecraft more
resilient against cyber attacks. By utilizing a systematic approach,
we scrutinize key areas, such as the real-time operating system
(RTOS) and operating system abstraction layer (OSAL), and
develop mitigations for issues we find. This study’s findings
suggest strategies for simplifying abstractions to make them
more secure, addressing implementation issues, and providing
supporting evidence for moving to a more resilient architectural
approach.

Index Terms—attack surface analysis, spacecraft flight soft-
ware, cybersecurity for space systems, operating system ab-
straction layer, real-time operating system, software security
engineering

I. INTRODUCTION

The Real-Time Operating System (RTOS) plays a pivotal
role in the operation of modern spacecraft, serving as the
foundation upon which spacecraft software engineers develop
mission flight software. It orchestrates the execution of various
tasks, manages hardware resources, and ensures that time-
critical operations are performed within stringent deadlines.
The reliability and security of the RTOS is therefore crucial for
the success of space missions, as any compromise could lead
to catastrophic mission failures or significant data losses. As
spacecraft technologies advance, the complexity of their RTOS
environments has increased, introducing a broad spectrum of
challenges for system developers and operators alike.

This burgeoning complexity in space RTOS presents a
multifaceted problem. On one hand, it reflects the growing
capabilities and functionalities of spacecraft, allowing for more
sophisticated missions and scientific explorations. It escalates
the potential attack surface, offering adversaries a wider array
of vectors to exploit. The unique operating environment of
space—characterized by remote operations, limited physical
access for maintenance or updates, and extreme operational
conditions—further amplifies these cybersecurity challenges.
Traditional approaches to securing terrestrial systems often fall
short when applied to the space domain, necessitating a more
nuanced and tailored approach to understanding and mitigating
risks.

Given the critical nature of spacecraft operations and the
unique attributes of the space environment, it becomes imper-
ative to adopt a specialized attack surface analysis approach.
Such an approach must account for the distinct operational,
technical, and environmental constraints of space systems. It
should aim not only to identify potential vulnerabilities but
also to understand the contextual significance of each in the
broader scope of space mission operations. This demands a
thorough examination of the RTOS and associated software
layers, considering both their individual complexities and their
interdependencies.

Our stance advocates for a strategic reduction in the attack
surface through simplification and a focus on secure-by-design
principles. By addressing the inherent complexities within
the RTOS and the broader flight software stack, we can
identify and mitigate potential vulnerabilities, enhancing the
cyber resilience of spacecraft. This entails a careful balance
between maintaining the functionalities for mission success
and minimizing unnecessary complexities that may introduce
security risks. Through this lens, we explore the current
landscape of RTOS in space systems, analyze the challenges
posed by their complexity, and propose methodologies for a
comprehensive attack surface analysis tailored to the unique
demands of space operations.

II. BACKGROUND AND RELATED WORK

Understanding the multifaceted nature of spacecraft systems
is crucial in increasing their cyber resilience. The complexity
of these systems and their onboard flight software is ever-
increasing, especially with spacecraft hosting high-powered
computing payloads. This sea change is transforming space-
craft into highly distributed computing systems with varied
hardware, operating systems, and application software. This
shift from historical architectures centered on a single-board
computer (SBC) is driven by the decreasing costs and size
of compute and storage resources. The emergence of prolifer-
ated spacecraft constellations, comprising dozens to thousands
of interconnected spacecraft, introduces additional distributed
system complexities.

Such complexity not only complicates secure system design
but also provides adversaries with opportunities to conceal
their activities, deceive operators, and exploit hardware and



software vulnerabilities for malicious purposes. The unique
challenges of spaceflight, the space environment, and space
system engineering further hinder the development of secure,
resilient systems. This paper aims to address these cyberse-
curity implications at a foundational level, focusing on the
operating systems that underpin spacecraft applications.

The interplay between system complexity and cybersecurity
is critical; complexity does not inherently diminish resilience,
but can obscure the full awareness of resilience properties and
the understanding of risk. Therefore, spacecraft developers
must thoroughly understand the attack surface of a system
in order to effectively reduce the risk of cyber threats and
ensure system states that are safe and secure. The following
quote from Dr. Ron Ross, NIST Fellow, succinctly sums up
the situation facing system operators.

The real cyberwar is being fought on the field of
complexity. It cannot be won with cybersecurity
frameworks, tools, controls, assessments, zero trust
concepts, or artificial intelligence alone. It will take a
bare-knuckled, pound it out on the ground a yard at a
time, systems and security engineering approach —
applying rigorous design principles and architectures
that minimize complexity and maximize assurance
and trust. If you cede control of critical components
such as operating systems to adversaries by failing
to address complexity and assurance, they will use
subversion to own the cyber battle space and turn
your high-tech into no-tech. [1]

A. Complexity in Spacecraft Computing Systems

Modern spacecraft exhibit a high level of computational
complexity. At the most basic level, a straightforward mono-
lithic design incorporates a single-board, general purpose
embedded microprocessor running an RTOS. However, this
represents just the baseline for monolithic systems; many
missions with lower risk profiles expand their core systems,
transitioning to terrestrial-style computers equipped with op-
erating systems familiar to any Linux system administrator.
Spacecraft are growing their onboard computing capabilities
in a distributed manner. Many designs now feature multiple
computing subsystems beyond the primary flight computer,
embedding sophisticated computing environments within es-
sential subsystems such as radios, guidance systems, power
management, and increasingly, completely separate hosted
payloads. Some spacecraft have shifted towards a distributed
system model, essentially comprising payloads supported by
a minimal spacecraft bus [2]. Accompanying this surge in
computing power are the interfaces, connections, and networks
that link them together. These elements enable advanced
functionality through distributed, networked computing sys-
tems—capabilities that were unavailable to earlier spacecraft
platforms.

This multiplicity of computing systems provides a vast
playground for adversaries to explore and exploit, and a tough
job for cyber defenders seeking to monitor and defend such
systems.

B. Unique Aspects of Space Systems

Adding to the computational complexity, space presents
unique challenges that cause additional complexities for re-
liable computing and networking. Thummala, Curbo, Amir, et
al. highlight these aspects in communication, high stakes, lim-
ited physical access, and constrained computing environments
[3].

Space communications, while sharing constraints with ter-
restrial IT and ICS/SCADA systems, have developed dis-
tinctly. The vast distances and sporadic nature of contact
cause architectures leaning towards Delay/Disruption Tolerant
Networking (DTN) [4]. Data formats and protocols are space-
specific, often governed by dedicated standards bodies [5].
The openness of space communications implies that any entity
capable of observing a spacecraft might attempt communica-
tion or interception. Amateurs have exploited this openness
for tracking [6] and even reviving defunct spacecraft [7],
illustrating the potential for cyber attackers to target assets
previously thought secure.

The stakes in space operations are increasingly high, with
society’s growing reliance on space assets. Losing telecom-
munications capabilities poses recognized risks [8]. The im-
portance of satellite data for weather forecasting and its
implications for national policy is gaining attention [9]. The
proliferation of GPS jammers and spoofers, available for pub-
lic purchase, affects air traffic control [10] and wide-area GPS
interference impacts global aviation and other operations [11],
highlighting the attractiveness of cyber means for adversaries
aiming to disrupt or deny services.

The absence of physical access post-launch, traditionally a
security advantage, becomes a challenge for cyber incident
response, as physical intervention for mitigation and remedia-
tion is not workable. Malicious actors may even repurpose
decommissioned, unmonitored satellites for offensive cyber
operations [12].

Lastly, the constrained computing environment aboard
spacecraft limits traditional cybersecurity approaches. The
available computational resources, memory, and networking
are insufficient for cybersecurity needs, prioritized instead for
mission-critical tasks. The unique and often proprietary nature
of spacecraft systems means general IT cybersecurity solutions
are incompatible, highlighting the need for tailored approaches
[13].

C. Mapping a Spacecraft’s Attack Surface

Operators and cyber defenders must equip themselves with
comprehensive knowledge of system vulnerabilities to counter-
act potential adversaries preemptively, because of the inherent
complexity and unique challenges of space systems. This
knowledge is pivotal not only for designing resilient systems
but also for mitigating issues during development and fortify-
ing production systems against cyber threats. The concept of
an “attack surface” encompasses the various ways an attacker
can access, influence, or communicate with a system [14]. A
critical task for system developers is to understand this surface



from both offensive and defensive perspectives, enabling the
formulation of effective countermeasures.

Recent literature has outlined methodologies for conducting
attack surface analysis specifically for space systems. The
Space Attack Research & Tactic Analysis (SPARTA) frame-
work emerges as a notable effort in this direction, offering a
structured approach to categorize and document threats spe-
cific to spacecraft [15]. This framework complements existing
threat analysis methodologies, such as Microsoft’s STRIDE
[16], the PASTA process [17], among others [18], adapting
them to the unique exigencies of space systems.

Despite these advancements, detailed attack surface studies
of spacecraft flight software and vehicles remain scarce in
public discourse. While reports on cyber incidents, like the
ViaSat attack [19] and the CYSAT demonstration [20], offer
high-level insights, they fall short of providing the granu-
lar technical detail requisite for informing cyber resilience
strategies or identifying specific architectural vulnerabilities
in spacecraft flight software.

Conversely, substantial literature exists within similarly
constrained domains employing embedded microprocessors or
cyber-physical systems (CPS). Papp, Ma, and Buttyan [21]
present a broad overview of threats and a taxonomy for attack
categorization, reflecting the principles of SPARTA. Moreover,
Easwaran, Chattopadhyay, and Bhasin [22] discuss considera-
tions for real-time systems. The automotive industry, facing
increased computing and networking demands, emphasizes
secure design and threat understanding [23] [24], including
autonomous vehicle challenges [25]. Similarly, the aviation
sector is examining avionics and control system security [26]
[27]. Among these, industrial control and SCADA systems
have arguably advanced furthest in recognizing and addressing
cybersecurity risks, as evidenced by guidelines from the U.S.
Cybersecurity and Infrastructure Security Agency (CISA) [28],
a dedicated MITRE ATT&CK framework [29], and many
resources dedicated to enhancing system cyber resilience.

III. METHODOLOGY

A. Selection of Representative System

Identifying a representative flight software stack is cru-
cial for effectively mapping the attack surface, evaluating
analysis methodologies, and pinpointing necessary mitigation
strategies. While many spacecraft systems leverage embed-
ded platforms running Real-Time Operating Systems (RTOS),
others employ more conventional computing platforms with
operating systems like Linux. Despite operational differences
between these systems, an analysis of an RTOS/embedded
platform lays the groundwork for a broad understanding appli-
cable to diverse flight software systems. The inherent software
complexity of non-embedded platforms further underscores the
importance of such an analysis, requiring a distinct investiga-
tion.

The criteria for selecting our representative system, not
prioritized, include:

• Broad use across actual space missions to ensure the
study’s relevance and applicability to real-world space
requirements and constraints.

• Public accessibility to facilitate in-depth analysis down
to the source code level.

• Comprehensive coverage of spacecraft operations, from
core hardware management to mission-specific tasks, to
encompass a wide range of software use cases.

Based on these criteria, we chose NASA’s core Flight
System (cFS) [30] operating on the Real-Time Executive for
Multiprocessor Systems (RTEMS) RTOS [31] for this study.

NASA’s cFS, with a flight heritage dating back to the early
1990s across various platforms, is an open-source, extensible
platform using a layered architecture. It supports multiple
RTOSes beyond RTEMS, such as Wind River Software’s
vxWorks [32], Linux, and FreeRTOS [33]. RTEMS, selected
for its open-source status and widespread use in the space
sector and other embedded industries, aligns well with our
selection criteria. The architecture of cFS is depicted in Fig.
1 [34, p. 54].

Fig. 1. Typical cFS Architecture

The selected stack comprises several layers, each contribut-
ing to the functionality and flexibility of the system:

• Mission and Application Layer: This layer encom-
passes applications provided by cFS developers and those
custom-developed by mission owners for specific use
cases, alongside supporting library code.

• Core Flight Executive (cFE) Core Layer: It delivers ex-
ecutive services and functions utilized by all applications,
ensuring seamless operation across the board.

• Abstraction Library Layer: Housing the Operating
System Abstraction Layer (OSAL) and cFE’s Platform
Support Library API, this layer facilitates the integration
of OS-specific functionalities.

• RTOS/Boot Layer: Including the RTOS and board sup-
port package (BSP) necessary for running cFS on suitable
hardware, this layer also accommodates any bootloaders
required for system initialization.

The OSAL [35] plays a pivotal role in the cFS frame-
work by providing seamless connectivity to the underlying
operating system. It primarily comprises OS-specific wrapper
code, which aligns the OSAL API with the corresponding OS



API (within the src/os/ directory), and BSP code for each
supported OS that configures device drivers and operating
system modules as needed (within the src/bsp/ directory).

Regarding OSAL’s compatibility with RTEMS, it currently
supports RTEMS 5.x, with advancements to accommodate
RTEMS version 6.x observed in distinct development branches
[36]. This study predominantly references RTEMS 5.3, the
latest version at the time of writing, unless specified otherwise.
RTEMS offers two APIs: the “classic” [37] and “POSIX” [38]
APIs, with the OSAL utilizing the classic API for all inter-
facing. The RTEMS BSP (src/bsp/pc-rtems/ ) manages specific
configurations and module inclusions during the RTEMS build
process.

B. Framework for Attack Surface Analysis

The representative system previously discussed features
a broad spectrum of functionalities across various software
layers. Instead of dissecting each layer uniformly, this analysis
will concentrate on the foundational elements of the software
stack, specifically the Real-Time Operating System (RTOS)
and the API infrastructure within the abstraction layer above
the RTOS. Given its pivotal role in hardware control, software-
hardware interactions, memory allocation, scheduling, and
other core system functions, the RTOS stands as a critical focal
point for initiating any attack surface analysis and bolstering
cyber resilience.

We draw inspiration from Passmore and Ignatovich’s ap-
proach to formal verification of financial algorithms [39].
While we are not dealing in formal verification of the flight
software stack yet (we plan this for future work), there is value
to consider lessons learned from Passmore and Ignatovich’s
work. In their paper, they consider a “stack of financial
algorithms” used in the processing of orders for the financial
industry that is similar in structure to many kinds of computing
systems. Higher levels of the stack rely upon abstractions and
mechanisms in lower levels of the stack, and the authors state
that “one cannot properly reason about the possible behaviors
of a system higher in the stack ... unless one has verified the
relevant properties of the supporting subsystems that will be
executing its intentions.” [39, p. 27] This is a sound principle
that guides our rationale in examining the RTOS; the rest of
the flight software system completely depends on its behavior.
Any attack on the RTOS can affect the overlying system, and
manipulation of the RTOS may not be detectable at higher
layers. Passmore and Ignatovich’s lowest level mechanisms,
order venues, deal in buy and sell orders for financial markets;
this is directly analogous to fundamental RTOS management
activities such as memory and task management. In both cases,
these facilities simply must work the way developers designed
them; without this verification, we have no firm foundation
upon which to rest any analysis of the rest of the system.
Once we have examined the lower layers of the stack, we can
map weaknesses and vulnerabilities, change designs and put
in place mitigations. Then we can turn our attention to higher
levels of the stack, which will no doubt have their own issues.

To analyze specific attack surface aspects, we employ sev-
eral methodologies. Dependency analysis explains the inter-
relations within system components, identifying those critical
for overall functionality. With this information in hand, we can
prioritize components for enhancing cyber resilience. Critical
path analysis scrutinizes essential code paths, while data flow
and interface analysis examine data movement and compo-
nent communication, targeting potential vulnerabilities in data
handling and interface use. Traditional vulnerability and code
analysis seeks language usage flaws, improper function calls,
and data management issues.

This study will prioritize dependency and critical path
analysis as foundational investigation tools, guiding further
examination with other methods. The focus will remain on
the system’s lowest layers—primarily the RTOS core, its board
support package, and the cFS abstraction layer’s OSAL and
Platform Support Package (PSP). Analyzing the interactions
between OSAL components, RTEMS managers, and device
drivers will shed light on their connectivity, relationships, and
standard configurations.

IV. RESULTS AND DISCUSSION

A. Complexity in the OSAL

The Operating System Abstraction Layer (OSAL) in the
core Flight System (cFS) enhances flexibility and separation
of concerns, but introduces complexity that cyber attackers
may exploit.

The OSAL is beneficial for cFS developers for various
reasons. It enables the use of familiar operating systems from
previous missions, supported by the OSAL, including RTEMS,
vxWorks, and Linux. Embedded software developers widely
use these operating systems, aligning with cFS’s objectives.
The Linux support within the OSAL, for instance, facilitates
rapid prototyping, testing, training, or even operational deploy-
ment for missions without stringent real-time requirements.
The OSAL standardizes the expression of cFS’s operating sys-
tem requirements through its API, simplifying system design
and integration.

However, the OSAL approach has its drawbacks, impacting
the system’s attack surface and cyber resilience. Adhering to
the principle of simplicity, which advocates for minimizing
system complexity and redundant code, is crucial for en-
hancing cyber resilience [40, p. 102]. Although developers
can make complex systems resilient against cyberattacks,
simplification aids in identifying and mitigating potential vul-
nerabilities, preventing unsafe or insecure states. The added
complexity requires more rigorous management and poten-
tially the use of automated tools for ensuring system security
and resilience.

The abstraction provided by the OSAL, through additional
layers of code and indirection, can paradoxically undermine
resilience. More code equates to more potential for errors, a
concern amplified in abstraction layers or middleware because
of their role in bridging disparate software paradigms. This
requires careful design and vigilant management to handle
the introduced complexity effectively. The increased codebase



heightens the likelihood of vulnerabilities, requiring ongoing
maintenance and adjustments in response to evolving external
interfaces or dependencies. By obscuring interactions with the
underlying system, the OSAL can also complicate the tuning
of security controls and the detection of malicious activities
within the upper layers of cFS.

The OSAL’s implementation involves wrapping the target
operating system’s functionality with C source files and func-
tions, as seen in RTEMS’s case. This approach aims to present
a uniform API to cFS, despite varying levels of operating
system support for required functions. Wrapper implementa-
tions may include disparate amounts of code and sometimes
additional logic to align the OSAL API with the operating
system’s capabilities. Such discrepancies introduce potential
for bugs and vulnerabilities, underscoring the importance of
diligent management and oversight.

B. RTEMS Execution Model

RTEMS exhibits a fairly standard architecture for a Real-
Time Operating System (RTOS), characterized by its “real-
time executive” that adopts a single process architecture [41].
In this model, all code shares a unified address space and
is statically linked, except for the instances using RTEMS’
dynamic loader. RTEMS allows task management through two
distinct execution APIs: Classic or POSIX. However, because
of its singular process architecture, RTEMS does not offer
memory protection or security isolation among tasks, leading
to a combined, statically linked binary image for the RTOS,
API, and applications.

RTEMS supports dynamic loading of executable code and
data (object files) [42], differing from conventional OS dy-
namic shared library support by integrating additional data
into the singular address space as with statically linked bi-
naries. While RTEMS’ developers caution against employing
dynamic loader functionality for real-time code—citing lack
of protections and potential for misuse—this feature’s unsafe
usage can compromise real-time constraints and induce unpre-
dictable behavior.

The absence of memory protection and task access control
within RTEMS potentially allows malicious code to operate
without restriction, enabling it to change memory and influ-
ence other tasks freely. Unlike operating systems designed
with multiple users or access levels in mind, RTEMS pri-
oritizes simplicity and efficiency, which, while aligning with
its design objectives, poses challenges for cyber resilience.
Developers must be vigilant of how malicious entities could
infiltrate and persist within an RTOS’s execution environment,
particularly in space-bound systems, and devise strategies to
counter such threats. Incidents involving vulnerabilities in
FreeRTOS, which led to remote code execution, denial of
service, and data leakage, underscore the importance of such
considerations [43].

C. The RTEMS Shell

RTEMS incorporates a shell analogous to a conventional
Unix shell, offering a range of similar commands [44]. While

this feature is invaluable for development, debugging, and test-
ing, its activation in operational spacecraft systems introduces
significant cyberattack risks. The shell’s capabilities include
file system manipulation, system information queries, memory
dumping and editing, and managing RTEMS’ dynamic loader
functions. Users can access the shell through a serial port or a
network socket, contingent upon including RTEMS network-
ing functionality in the build. RTEMS implements user and
group-based access controls for command execution, featuring
a “root” user akin to those in Unix systems. The OSAL
activates the shell within its RTEMS Board Support Package
(BSP) configuration, permitting the use of all commands [45,
line 443].

Given RTEMS’s architecture as a single address space
RTOS lacking memory protection, exploits might change the
shell’s configuration for access or operate under “root” permis-
sions. The shell’s comprehensive command set offers attackers
substantial “living off the land” capabilities, obviating the
need for external tools for analysis or access—a technique
increasingly used by cyber attackers [46].

D. RTEMS Board Support Package Configuration

RTEMS provides hardware-specific support and device
drivers through board support packages. The OSAL’s con-
figuration of the RTEMS BSP, outlined in the bsp/pc-
rtems/src/bsp start.c file, is executed using RTEMS-defined
parameters. Notably, the OSAL’s default setup merits scrutiny
from a cyber resilience perspective.

Configured to support four file systems—In-Memory File
System (ImFS), DOS (FAT) file system, device file system
(DevFS), and RTEMS File System (RFS)—ImFS serves as
the default. However, the configuration does not disable any
ImFS functionalities, though such restrictions are possible.

Attackers exploiting the file systems might alter data be-
neath an active task, leading to errors or system crashes.
Vulnerabilities within unused file system driver code, remain-
ing in memory, could serve as vectors for malicious exploits.
Disabling non-essential file systems and curbing ImFS func-
tionalities to prevent unsafe operations are advisable strategies
for enhancing system security.

E. Memory Safety Considerations

The discourse on memory safety within the realm of
spacecraft flight software, primarily developed in C, reveals
a critical vector for potential cyber threats. As identified in
our initial analysis, the traditional reliance on C introduces
notable risks due to its lack of inherent memory safety features
[47]. This susceptibility accentuates the broader issue of an
expanded attack surface within space systems, necessitating
a focused reevaluation of memory safety strategies to fortify
cyber resilience.

F. Memory Safety Considerations

The discourse on memory safety within the realm of
spacecraft flight software, primarily developed in C, reveals
a critical vector for potential cyber threats. As identified in



our initial analysis, the traditional reliance on C introduces
notable risks because of its lack of inherent memory safety
features [47]. This susceptibility stresses the broader issue of
an expanded attack surface within space systems, causing a
focused reevaluation of memory safety strategies to fortify
cyber resilience.

1) Memory Safety and Attack Surface Expansion: The
intrinsic memory safety risks associated with C—such as
buffer overflows and unmanaged pointers—directly contribute
to the expansion of a system’s attack surface. These vulner-
abilities offer attackers exploitable entry points, which can
lead to unauthorized access, data corruption, or even system
takeover. Understanding and mitigating these vulnerabilities
is paramount for reducing the attack surface of RTOS-based
space systems. Future work should include a targeted analysis
of how attackers can exploit specific memory safety issues in
space missions, identifying high-risk areas within the software
stack that require immediate attention.

2) Balancing Language Choice with Operational Needs:
While the adoption of memory-safe languages presents an ap-
pealing solution for reducing the attack surface, the transition
from C must consider operational requirements and legacy
system compatibility. Languages like Rust provide memory
safety without sacrificing performance, making them attractive
candidates for space software development. However, evaluat-
ing the implications of integrating these languages into existing
ecosystems is crucial. Future efforts should focus on practical
strategies for gradually incorporating memory-safe languages,
possibly through mixed-language projects or by prioritizing
their use in new mission-critical components.

3) Leveraging Tools for Memory Safety Assurance: En-
hancing memory safety in C through the use of static and
dynamic analysis tools represents an immediate step towards
minimizing the attack surface. These tools can identify poten-
tial vulnerabilities during the development phase, allowing for
their remediation before deployment. We propose that flight
software developers perform an in-depth assessment of tool
effectiveness specifically for their specific contexts, aiming
to establish a toolkit recommendation that balances coverage,
accuracy, and integration ease. This includes exploring auto-
mated tools that can support developers in adhering to secure
coding practices and avoiding common pitfalls that lead to
memory safety issues.

4) Guidelines and Best Practices for Secure Coding:
Developing comprehensive guidelines and best practices for
secure coding in the space sector can significantly impact
the reduction of the attack surface. This effort should dis-
till lessons learned from memory safety analyses and tool
evaluations into actionable recommendations for developers.
Emphasizing practices that prevent the introduction of memory
safety vulnerabilities from the outset aligns with a proactive
approach to attack surface management. Collaborating with
standards bodies, such as the IEEE Space System Cybersecu-
rity Working Group, to embed these practices within industry
standards could further institutionalize memory safety as a
foundational cybersecurity principle [48].

V. FUTURE WORK

The exploration undertaken in this study paves the way
for a multitude of research avenues aimed at fortifying the
cybersecurity landscape of spacecraft flight software. While
we have laid the groundwork for understanding and mitigating
the attack surface of RTOS-based systems in space missions,
the ever-changing nature of cyber threats requires ongoing
vigilance and innovation. Considering this, we propose several
specific research directions to advance the state of cybersecu-
rity in space systems. By pursuing these research directions,
the scientific and engineering communities can continue to
advance the cybersecurity of spacecraft systems, ensuring their
resilience against the sophisticated cyber threats of today and
tomorrow. This work not only contributes to the security of
vital space missions, but also supports the broader goals of
safe and sustainable space exploration and utilization.

A. Space-Specific Evaluation Framework for RTOS Cyber
Resilience

Future research should aim to develop a comprehensive
framework for evaluating the cyber resilience of various RTOS
options available for space missions. This framework would
consider factors such as memory safety, susceptibility to
common vulnerabilities, and the support for secure coding
practices. Comparative analyses conducted using this frame-
work could guide system developers in selecting the most
appropriate RTOS from a cybersecurity perspective.

B. Application of Formal Verification Methods to Space Soft-
ware Systems

Given the critical nature of space missions, there is a
pressing need to explore the feasibility and efficacy of applying
formal verification methods to space software systems. This
research direction would involve identifying suitable formal
verification tools and techniques for space software and con-
ducting case studies to assess their impact on detecting and
mitigating vulnerabilities in RTOS-based systems.

C. Secure-by-Design Architectures for Next-Generation
Spacecraft

As we advocate for a shift towards secure-by-design prin-
ciples, future work should also focus on conceptualizing
and developing next-generation spacecraft architectures that
inherently prioritize cybersecurity. This includes investigating
the integration of memory-safe programming languages, zero-
trust security models adapted for space, and built-in security
and isolation features. Research in this area could result in the
creation of a prototype space-specific RTOS that embodies
these principles. This would expand upon the work already
being carried out in the IEEE Space Cybersecurity Working
Group.

D. Cybersecurity Implications of Emerging Technologies in
Space Systems

Integrating emerging technologies, such as artificial intelli-
gence, machine learning, and blockchain into space systems



offers promising benefits but also introduces new cybersecu-
rity challenges. Future studies should aim to understand the
cybersecurity implications of these technologies, assess their
potential attack surfaces, and develop strategies to secure them
against cyber threats.

E. Adversarial Testing in Space-Specific Testbeds

To validate the effectiveness of cybersecurity measures
and to understand the practical implications of theoretical
vulnerabilities, there is a need for adversarial testing within
space-specific testbeds. Such testing should leverage findings
from code analysis and threat modeling to simulate realistic
attack scenarios. Developing offensive threat actor emulation
capabilities for these testbeds could provide valuable insights
into the resilience of space software systems against sophisti-
cated cyber attacks.

VI. CONCLUSION

Throughout this study, we have delved into the intricacies
of Real-Time Operating Systems (RTOS) in spacecraft op-
erations, highlighting the critical role they play in mission
success and the complexities they introduce. Our investigation
into the attack surface of RTOS-based systems, particularly
those used in space missions, underscores the urgent need for
cybersecurity measures tailored to the unique challenges of the
space environment. By focusing on the foundational layers of
the RTOS and the abstraction layer, we have identified signif-
icant vulnerabilities that adversaries could exploit, potentially
compromising mission integrity and data security.

The analysis presented reinforces the importance of adopt-
ing a secure-by-design philosophy in the development of
spacecraft systems. Simplification of the RTOS architecture,
alongside a conscientious effort to minimize unnecessary
complexities, emerges as a key strategy in reducing the attack
surface. Our exploration into memory safety and the utilization
of memory-safe programming languages suggests a significant
change that could significantly mitigate risks associated with
common vulnerabilities in space systems.

Looking forward, the transition towards architectures that
inherently prioritize cyber resilience stands as a necessary
recommendation. This includes reevaluating the necessity of
abstraction layers and considering the development of space-
specific RTOS solutions that embed secure-by-design princi-
ples from the outset. Introducing advanced threat modeling and
adversarial testing represents critical next steps in fortifying
spacecraft against cyber threats that will provide a deeper
understanding of adversary capabilities.

In conclusion, this study not only highlights the current
cybersecurity challenges faced by spacecraft systems but also
charts a course for future research and development efforts.
By embracing a holistic approach to security, grounded in the
unique operational realities of space missions, we can ensure
the continued success and safety of space exploration endeav-
ors. The journey towards more secure spacecraft systems is
complex and ongoing, but it is essential for safeguarding the
final frontier against growing cyber threats.

REFERENCES

[1] R. Ross. “Ron ross quote on cyber resilience.” (Nov.
2023), [Online]. Available: https://www.linkedin.com/
feed / update / urn : li : activity : 7147993287511982080/
(visited on 02/28/2024).

[2] Northrop Grumman. “ESPAStar,” Northrop Grum-
man. (n.d.), [Online]. Available: https : www .
northropgrumman . com / space / espastar (visited on
02/27/2024).

[3] R. Thummala, J. Curbo, Y. Amir, et al., “Why is space
cybersecurity unique?” Unpublished manuscript, Jan.
2024, Available upon request.

[4] “Delay/disruption tolerant networking (dtn).” (n.d.),
[Online]. Available: https : / / datatracker . ietf . org / wg /
dtn/about/ (visited on 02/27/2024).

[5] “CCSDS.org - the consultative committee for space data
systems (CCSDS).” (n.d.), [Online]. Available: https :
//public.ccsds.org/default.aspx (visited on 02/27/2024).

[6] B. Tingley. “China’s space plane apparently deployed 6
’mysterious wingmen’ in orbit,” Space.com. (Dec. 18,
2023), [Online]. Available: https : / / www. space . com /
china-space-plane-depoyed-mystery-objects (visited on
02/27/2024).

[7] A. Klein, “Meet the amateur astronomer who found
NASA’s lost satellite in space,” Washington Post,
Oct. 27, 2021, ISSN: 0190-8286. [Online]. Available:
https:/ /www.washingtonpost.com/news/inspired- life/
wp / 2018 / 02 / 01 / this - amateur - astronomer - found - a -
satellite-lost-in-space/ (visited on 02/27/2024).

[8] G. Dvorsky. “What would occur if all of our satellites
were... suddenly destroyed?” (Sep. 2015), [Online].
Available: http://satmagazine.com/story.php?number=
1854194994 (visited on 02/27/2024).

[9] U. S. Government Accountability Office. “Environmen-
tal satellites: Launch delayed; NOAA faces key deci-
sions on timing of future satellites — u.s. GAO.” (n.d.),
[Online]. Available: https://www.gao.gov/products/gao-
16-143t (visited on 02/27/2024).

[10] “Truck driver has GPS jammer, accidentally jams
newark airport,” CNET. (n.d.), [Online]. Available:
https: / /www.cnet .com/culture/ truck- driver- has- gps-
jammer-accidentally- jams-newark-airport/ (visited on
02/27/2024).

[11] “Russia behind spike in european GPS jamming, baltic
general says - bloomberg.” (n.d.), [Online]. Available:
https: / /www.bloomberg.com/news/articles/2024- 01-
31 / russia - behind - spike - in - european - gps - jamming -
baltic-general-says?leadSource=reddit wall (visited on
02/27/2024).

[12] “Hunting for space radio pirates on the US military fleet
satcom satellites,” rtl-sdr.com. (Mar. 3, 2023), [Online].
Available: https://www.rtl-sdr.com/hunting-for-space-
radio-pirates-on- the-us-military-flt- satcom-satellites/
(visited on 02/27/2024).



[13] N. Tsamis, B. Bailey, and G. Falco, “Translating
space cybersecurity policy into actionable guidance
for space vehicles,” in ASCEND 2021, eprint:
https://arc.aiaa.org/doi/pdf/10.2514/6.2021-4051,
American Institute of Aeronautics and Astronautics,
Nov. 3, 2021. DOI: 10 .2514 /6 .2021- 4051. [Online].
Available: https://arc.aiaa.org/doi/abs/10.2514/6.2021-
4051 (visited on 05/29/2023).

[14] NIST Computer Security Resource Center. “Attack sur-
face - glossary — CSRC.” (n.d.), [Online]. Available:
https : / / csrc . nist . gov / glossary / term / attack surface
(visited on 02/28/2024).

[15] The Aerospace Corporation. “Space Attack Research &
Tactic Analysis (SPARTA).” (n.d.), [Online]. Available:
https://sparta.aerospace.org/ (visited on 02/27/2023).

[16] L. Kohnfelder and P. Garg, “The threats to our prod-
ucts,” Microsoft Interface, Apr. 1, 1999. [Online]. Avail-
able: https://shostack.org/files/microsoft/The-Threats-
To-Our-Products.docx.

[17] M. Morana and T. Ucedavelez. “Risk analysis of bank-
ing malware attacks.” (Jun. 10, 2011), [Online]. Avail-
able: https://www.slideshare.net/marco morana/owasp-
app-seceu2011version1 (visited on 02/28/2024).

[18] “Threat modeling: 12 available methods.” (Dec. 2,
2018), [Online]. Available: https://insights.sei.cmu.edu/
blog/threat-modeling-12-available-methods/ (visited on
02/28/2024).

[19] N. Boschetti, N. G. Gordon, and G. Falco, “Space
cybersecurity lessons learned from the ViaSat cyber-
attack,” in ASCEND 2022, ser. ASCEND, American
Institute of Aeronautics and Astronautics, Oct. 13, 2022.
DOI: 10.2514/6.2022-4380. [Online]. Available: https:
/ /arc .aiaa .org /doi /10 .2514/6 .2022- 4380 (visited on
12/07/2023).

[20] B. Bailey and B. Roeher. “Hacking an on-orbit satellite:
An analysis of the CYSAT 2023 demo,” Aerospace
TechBlog. (May 25, 2023), [Online]. Available: https:
//medium.com/the-aerospace-corporation/hacking-an-
on-orbit-satellite-an-analysis-of-the-cysat-2023-demo-
ae241e5b8ee5 (visited on 05/29/2023).

[21] D. Papp, Z. Ma, and L. Buttyan, “Embedded systems
security: Threats, vulnerabilities, and attack taxonomy,”
in 2015 13th Annual Conference on Privacy, Security
and Trust (PST), Jul. 2015, pp. 145–152. DOI: 10 .
1109/PST.2015.7232966. [Online]. Available: https://
ieeexplore.ieee.org/abstract/document/7232966 (visited
on 02/09/2024).

[22] A. Easwaran, A. Chattopadhyay, and S. Bhasin, “A
systematic security analysis of real-time cyber-physical
systems,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC), ISSN: 2153-697X,
Jan. 2017, pp. 206–213. DOI: 10.1109/ASPDAC.2017.
7858321. [Online]. Available: https : / / ieeexplore . ieee .
org/abstract/document/7858321 (visited on 01/27/2024).

[23] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, et al.,
“Security challenges in automotive hardware/software

architecture design,” in 2013 Design, Automation &
Test in Europe Conference & Exhibition (DATE), ISSN:
1530-1591, Mar. 2013, pp. 458–463. DOI: 10 . 7873 /
DATE.2013.102. [Online]. Available: https://ieeexplore.
ieee . org / abstract / document / 6513548 (visited on
02/07/2024).

[24] J. Edwards, A. Kashani, and G. Iyer, “Evaluation
of software vulnerabilities in vehicle electronic con-
trol units,” in 2017 IEEE Cybersecurity Development
(SecDev), Sep. 2017, pp. 83–84. DOI: 10.1109/SecDev.
2017.26. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/8077811 (visited on 01/24/2024).

[25] K. Zhang and A. Olmsted, “Examining autonomous
vehicle operating systems vulnerabilities using a cyber-
physical approach,” in 2021 IEEE International Intel-
ligent Transportation Systems Conference (ITSC), Sep.
2021, pp. 976–981. DOI: 10 . 1109 / ITSC48978 . 2021 .
9564848. [Online]. Available: https : / / ieeexplore . ieee .
org/abstract/document/9564848 (visited on 01/27/2024).

[26] T. Kiesling, M. Krempel, J. Niederl, and J. Ziegler,
“A model-based approach for aviation cyber security
risk assessment,” in 2016 11th International Conference
on Availability, Reliability and Security (ARES), Aug.
2016, pp. 517–525. DOI: 10 . 1109 / ARES . 2016 . 63.
[Online]. Available: https://ieeexplore.ieee.org/abstract/
document/7784614 (visited on 02/28/2024).

[27] E. Habler, R. Bitton, and A. Shabtai, “Assessing aircraft
security: A comprehensive survey and methodology for
evaluation,” ACM Computing Surveys, vol. 56, no. 4,
96:1–96:40, Nov. 10, 2023, ISSN: 0360-0300. DOI: 10.
1145/3610772. [Online]. Available: https://dl.acm.org/
doi/10.1145/3610772 (visited on 02/28/2024).

[28] US CISA. “Seven steps to effectively defend industrial
control systems s508c.pdf.” (n.d.), [Online]. Available:
https : / / www. cisa . gov / sites / default / files / documents /
Seven % 20Steps % 20to % 20Effectively % 20Defend %
20Industrial%20Control%20Systems S508C.pdf (vis-
ited on 02/28/2024).

[29] The MITRE Corporation. “Techniques - ICS — MITRE
ATT&CK®.” (n.d.), [Online]. Available: https://attack.
mitre.org/techniques/ics/ (visited on 02/28/2024).

[30] NASA Goddard Space Flight Center. “Core flight sys-
tem.” (n.d.), [Online]. Available: https://cfs.gsfc.nasa.
gov/ (visited on 02/24/2024).

[31] The RTEMS Project. “RTEMS real time operating sys-
tem (RTOS) — real-time and real free RTOS.” (n.d.),
[Online]. Available: https://www.rtems.org/ (visited on
02/24/2024).

[32] Wind River Systems. “VxWorks — industry leading
RTOS for embedded systems.” (n.d.), [Online]. Avail-
able: https : / / www. windriver. com / products / vxworks
(visited on 02/24/2024).

[33] The FreeRTOS Project. “FreeRTOS - market leading
RTOS (real time operating system) for embedded sys-
tems with internet of things extensions,” FreeRTOS.



(n.d.), [Online]. Available: https : / /www.freertos .org /
index.html (visited on 02/24/2024).

[34] NASA Goddard Space Flight Center. “NASA core
flight system (cFS) background and overview.” (n.d.),
[Online]. Available: https : / / cfs . gsfc . nasa . gov / cFS -
OviewBGSlideDeck- ExportControl - Final .pdf (visited
on 02/24/2024).

[35] NASA Goddard Space Flight Center. “Nasa/osal: The
core flight system (cFS) operating system abstraction
layer (OSAL).” (n.d.), [Online]. Available: https : / /
github.com/nasa/osal (visited on 02/25/2024).

[36] A. Cudmore, Alanc98/rtems-cfs-demo, original-date:
2021-12-24T18:30:42Z, Jan. 21, 2024. [Online]. Avail-
able: https : / / github . com / alanc98 / rtems - cfs - demo
(visited on 02/25/2024).

[37] RTEMS Documentation Project. “RTEMS classic API
guide (5.3). — RTEMS classic API guide 5.3 (10th
february 2023) documentation.” (n.d.), [Online]. Avail-
able: https : / / docs . rtems . org / releases / rtems - 5 . 3 / c -
user/index.html (visited on 02/25/2024).

[38] RTEMS Documentation Project. “RTEMS POSIX API
guide (5.3). — RTEMS POSIX API guide 5.3 (10th
february 2023) documentation.” (n.d.), [Online]. Avail-
able: https://docs.rtems.org/releases/rtems-5.3/posix-
users/index.html (visited on 02/25/2024).

[39] G. O. Passmore and D. Ignatovich, “Formal verification
of financial algorithms,” in Automated Deduction –
CADE 26, L. de Moura, Ed., ser. Lecture Notes in Com-
puter Science, Cham: Springer International Publishing,
2017, pp. 26–41, ISBN: 978-3-319-63046-5. DOI: 10 .
1007/978-3-319-63046-5 3.

[40] R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and
R. McQuaid, “Developing cyber-resilient systems: A
systems security engineering approach,” National Insti-
tute of Standards and Technology, Gaithersburg, MD,
NIST SP 800-160v2r1, Dec. 7, 2021, NIST SP 800–
160v2r1. DOI: 10 . 6028 / NIST . SP . 800 - 160v2r1.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-160v2r1.pdf (visited
on 01/17/2023).

[41] The RTEMS Project. “1. introduction — RTEMS user
manual 5.3 (10th february 2023) documentation.” (n.d.),
[Online]. Available: https : / / docs . rtems . org / releases /
rtems - 5 . 3 / user / overview / index . html # real - time -
executive (visited on 02/29/2024).

[42] The RTEMS Project. “8.7. dynamic loader — RTEMS
user manual 5.3 (10th february 2023) documentation.”
(n.d.), [Online]. Available: https : / / docs . rtems . org /
releases / rtems - 5 . 3 / user / exe / loader. html (visited on
02/29/2024).

[43] E. Kovacs. “FreeRTOS vulnerabilities expose many
systems to attacks,” SecurityWeek. (Oct. 19, 2018),
[Online]. Available: https : / / www. securityweek . com /
freertos-vulnerabilities-expose-many-systems-attacks/
(visited on 02/29/2024).

[44] RTEMS Documentation Project. “RTEMS shell guide
(5.3). — RTEMS shell guide 5.3 (10th february 2023)
documentation.” (n.d.), [Online]. Available: https : / /
docs . rtems . org / releases / rtems - 5 . 3 / shell / index . html
(visited on 02/25/2024).

[45] NASA Goddard Space Flight Center. “Osal/src/bsp/pc-
rtems/src/bsp start.c.” (n.d.), [Online]. Available:
https : / / github . com / nasa / osal / blob /
53550cafb718f5f608da4240a8525f75ff5bb612 / src /
bsp / pc - rtems / src / bsp start . c # L65 (visited on
02/25/2024).

[46] Crowdstrike. “What are living off the land (LOTL)
attacks?” crowdstrike.com. (n.d.), [Online]. Available:
https://www.crowdstrike.com/cybersecurity-101/living-
off-the-land-attacks-lotl/ (visited on 02/25/2024).

[47] J. Curbo and G. Falco, “Memory safety in space,” Un-
published manuscript, Mar. 2024, Available by request.

[48] IEEE Standards Association. “P3349 - space system
cybersecurity working group - home.” (Mar. 2024),
[Online]. Available: https : / / sagroups . ieee . org / 3349/
(visited on 02/28/2024).


