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Abstract

The Riemann hypothesis is the assertion that all non-trivial zeros are
complex numbers with real part 1

2
. It is considered by many to be

the most important unsolved problem in pure mathematics. There are
several statements equivalent to the famous Riemann hypothesis. For
x ≥ 2, the function f was introduced by Nicolas in his seminal paper

as f(x) = eγ · log θ(x) ·
∏

q≤x

(
1 − 1

q

)
, where θ(x) is the Cheby-

shev function, γ ≈ 0.57721 is the Euler-Mascheroni constant and log
is the natural logarithm. In 1983, Nicolas stated that if the Riemann
hypothesis is false then there exists a real number b with 0 < b < 1

2

such that, as x → ∞, log f(x) = Ω±(x−b). In this note, using
the Nicolas criterion, we prove that the Riemann hypothesis is true.
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1 Introduction

The Riemann hypothesis is a conjecture that the Riemann zeta function has
its zeros only at the negative even integers and complex numbers with real
part 1

2 [1]. It was proposed by Bernhard Riemann (1859) [1]. The Riemann
hypothesis belongs to the Hilbert’s eighth problem on David Hilbert’s list
of twenty-three unsolved problems [1]. This is one of the Clay Mathematics
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Institute’s Millennium Prize Problems [1]. In mathematics, the Chebyshev
function θ(x) is given by

θ(x) =
∑
q≤x

log q

with the sum extending over all prime numbers q that are less than or equal
to x, where log is the natural logarithm. Leonhard Euler studied the following
value of the Riemann zeta function (1734) [2].

Proposition 1 It is known that [2, (1) pp. 1070]:

ζ(2) =

∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where qk is the kth prime number. By definition, we have

ζ(2) =

∞∑
n=1

1

n2
,

where n denotes a natural number. Leonhard Euler proved in his solution to the Basel
problem that

∞∑
n=1

1

n2
=

∞∏
k=1

q2k
q2k − 1

=
π2

6
,

where π is a well-known irrational number linked to several areas in mathematics
such as number theory, geometry, etc.

Proposition 2 For x ≥ 3 we have [3, Lemma 6.4 pp. 370]:∏
q>x

q2

q2 − 1

 ≤ exp

(
2

x

)
,

where exp(k) is the exponential function with value ek and exponent k. Indeed, Choie
and her colleagues proved that for x ≥ 3 and t ≥ 2,

log(Rt(x)) ≤
t · x1−t

t− 1
,

where Rt(x) is given as

Rt(x) =
∏
q>x

(1− q−t)−1 =
∏
q>x

qt

qt − 1
.

Therefore, this Proposition is a particular case of their result applied to the specific
value of t = 2.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant which is defined
as

γ = lim
n→∞

(
− log n+

n∑
k=1

1

k

)
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=

∫ ∞

1

(
− 1

x
+

1

⌊x⌋

)
dx.

Here, ⌊. . .⌋ represents the floor function. In number theory, Ψ(n) = n ·∏
q|n

(
1 + 1

q

)
is called the Dedekind Ψ function where q | n means the prime

q divides n. For x ≥ 2, a natural number Mx is defined as

Mx =
∏
q≤x

q.

We define R(n) = Ψ(n)
n·log logn for n ≥ 3. We also define Nk =

∏k
i=1 qi as the

primorial number of order k, where we deduce that logNk = θ(qk).

Proposition 3 Unconditionally on Riemann hypothesis, we know that [4, Proposi-
tion 3. pp. 3]:

lim
x→∞

R(Mx) =
eγ

ζ(2)
.

Actually Solé and Planat proved that

lim
k→∞

R(Nk) =
eγ

ζ(2)
.

However, we already know that Mx = Nk whenever qk ≤ x and there is no other
prime different of qk in the interval [qk, x].

The well-known asymptotic notation Ω was introduced by Godfrey Harold
Hardy and John Edensor Littlewood [5]. In 1916, they also introduced the two
symbols ΩR and ΩL defined as [6]:

f(x) = ΩR(g(x)) as x→ ∞ if lim sup
x→∞

f(x)

g(x)
> 0;

f(x) = ΩL(g(x)) as x→ ∞ if lim inf
x→∞

f(x)

g(x)
< 0.

After that, many mathematicians started using these notations in their works.
For example, the well-known mathematician Edmund Landau widely used
these symbols in his work [7]. From the last century, these notations ΩR

and ΩL changed as Ω+ and Ω−, respectively. There is another notation:
f(x) = Ω±(g(x)) (meaning that f(x) = Ω+(g(x)) and f(x) = Ω−(g(x)) are
both satisfied). Nowadays, the notation f(x) = Ω+(g(x)) has survived and it
is still used in analytic number theory as [8]:

f(x) = Ω+(g(x)) if ∃k > 0∀x0 ∃x > x0 : f(x) ≥ k · g(x)

which has the same meaning to the Hardy and Littlewood older notation. For
x ≥ 2, the function f was introduced by Nicolas in his seminal paper as [9,
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Theorem 3 pp. 376], [10, (5.5) pp. 111]:

f(x) = eγ · log θ(x) ·
∏
q≤x

(
1− 1

q

)
.

Next, we have the Nicolas Theorem:

Proposition 4 If the Riemann hypothesis is false then there exists a real num-
ber b with 0 < b < 1

2 such that, as x → ∞ [9, Theorem 3 (c) pp. 376], [10,
Theorem 5.29 pp. 131],

log f(x) = Ω±(x−b).

Putting all together yields a proof for the Riemann hypothesis.

2 Central Lemma

This is a key Lemma.

Lemma 1 If the inequality

exp

(
70000000√

x

)
≥ f(x)

holds for large enough x ∈ N, then the Riemann hypothesis is true.

Proof By Proposition 4, if the Riemann hypothesis is false, then there exists a real
number 0 < b < 1

2 for which there are infinitely many natural numbers x ≥ 2 such

that log f(x) = Ω+(x−b): Actually Nicolas proved that log f(x) = Ω±(x−b), but we
only need to use the notation Ω+ in this proof over the natural numbers. According
to the known definition, this would mean that

∃k > 0, ∀y0 ∈ N, ∃y ∈ N (y > y0) : log f(y) ≥ k · y−b.

That inequality is equivalent to log f(y) ≥
(
k · y−b · √y

)
· 1√

y , but we note that

lim
y→∞

(
k · y−b · √y

)
= ∞ > 70000000

for every possible positive value of k and b < 1
2 . Certainly, no matter how small

we can select the absolute value of k, the exponent −b + 1
2 is always greater than

0 in the expression y−b+ 1
2 = y−b · √y. For that reason, we are able to assure that

k · y−b ·√y goes to infinity whenever y tends to infinity. Thus, there must exist some
value of y′ such that for all natural numbers y > y′ we obtain that the inequality
k · y−b · √y > 70000000 always holds for an arbitrary value k > 0 that we could
choose: we pick up the number of 70 million for just simplifying and making a small
tribute to the Chinese-American mathematician Yitang Zhang at the same time. In
this way, this implies that

∀y0 ∈ N,∃y ∈ N (y > y0) : log f(y) >
70000000

√
y

.
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Note that, the variable k disappears in our previous expression due to we do not
need it anymore. Hence, if the Riemann hypothesis is false, then there are infinitely
many natural numbers x ≥ 2 such that log f(x) > 70000000√

x
. So, if we have

70000000√
x

≥ log f(x)

for large enough x ∈ N, then the Riemann hypothesis cannot be false. In fact, we
would obtain that

70000000√
x

≥ log f(x) >
70000000√

x

under the assumption of both conditions. By Reductio ad absurdum, the proof is
done after applying the exponentiation to

70000000√
x

≥ log f(x)

in both sides of the inequality and obtain

exp

(
70000000√

x

)
≥ f(x),

since 70000000√
x

> 70000000√
x

is a clear contradiction. □

3 Main Theorem

This is the main theorem.

Theorem 1 The Riemann hypothesis is true.

Proof If the inequality

exp

(
70000000√

x

)
≥ f(x)

holds for large enough x ∈ N, then the Riemann hypothesis is true by Lemma 1.
That previous inequality is the same as

exp

(
70000000√

x

)
· 1

f(x)
≥ 1.

We claim that

exp

(
70000000√

x

)
· 1

f(x)
≥ 1

is equivalent to

exp
(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

·R(Mx) ≥ 1.

By definition, we see that

exp

(
70000000√

x

)
· 1

f(x)
= exp

(
70000000√

x

)
· 1

eγ · log θ(x) ·
∏

q≤x

(
1− 1

q

)
=

exp
(
70000000√

x

)
eγ

·

∏
q≤x

(
q

q−1

)
log θ(x)
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=
exp

(
70000000√

x

)
eγ

·

∏
q≤x

(
q+1
q · q2

q2−1

)
log θ(x)

=
exp

(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

·

∏
q≤x

(
q+1
q

)
log θ(x)

=
exp

(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

·
Mx ·

∏
q|Mx

(
1 + 1

q

)
Mx · log logMx

=
exp

(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

· Ψ(Mx)

Mx · log logMx

=
exp

(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

·R(Mx)

after making some distribution. The inequality

exp

(
70000000√

x

)
·

∏
q≤x

q2

q2 − 1

 ≥ exp

(
70000000√

x
− 1√

x

)
· ζ(2)

basically holds for large enough x ∈ N by Propositions 1 and 2. This is because of

exp

(
70000000√

x

)
≥ exp

(
70000000√

x
− 1√

x

)
· exp

(
2

x

)
≥ exp

(
70000000√

x
− 1√

x

)
·
∏
q>x

q2

q2 − 1

=
exp

(
70000000√

x
− 1√

x

)
· ζ(2)(∏

q≤x
q2

q2−1

)
for large enough x ∈ N, since the inequality

exp

(
70000000√

x

)
·

∏
q≤x

q2

q2 − 1

 ≥ exp

(
70000000√

x
− 1√

x

)
· ζ(2)

is the same as

exp

(
70000000√

x

)
≥

exp
(
70000000√

x
− 1√

x

)
· ζ(2)(∏

q≤x
q2

q2−1

) .

The following result

exp
(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

≥ exp

(
70000000√

x
− 1√

x

)
· ζ(2)

eγ

is evident as long as x increases and so,

exp
(
70000000√

x

)
·
(∏

q≤x
q2

q2−1

)
eγ

·R(Mx) ≥ 1

necessarily holds for large enough x ∈ N. Certainly, we only need to prove that

R(Mx) ≥ exp

(
−69999999√

x

)
· eγ

ζ(2)
.
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Hence, it is enough to show that

R(Mx)
eγ

ζ(2)

∼ 1 > exp

(
−69999999√

x

)
as x → ∞ by Proposition 3. In conclusion, we can affirm that the Riemann hypothesis
is true because of

exp

(
70000000√

x

)
≥ f(x)

feasibly holds for large enough x ∈ N. □

4 Conclusions

Practical uses of the Riemann hypothesis include many propositions that are
known to be true under the Riemann hypothesis and some that can be shown
to be equivalent to the Riemann hypothesis. Indeed, the Riemann hypothesis
is closely related to various mathematical topics such as the distribution of
primes, the growth of arithmetic functions, the Lindelöf hypothesis, the Large
Prime Gap Conjecture, etc. A proof of the Riemann hypothesis could spur
considerable advances in many mathematical areas, such as number theory
and pure mathematics in general.

Acknowledgments

The author would like to thank Patrick Solé and Michel Planat for providing
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