
EasyChair Preprint

№ 113

Forward to a Promising Future

Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren and
Huu-Phuc Vo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 6, 2018

Forward to a Promising Future

Kiko Fernandez-Reyes, Dave Clarke, Elias Castegren, and Huu-Phuc Vo?

Dept. of Information Technology
Uppsala University
Uppsala, Sweden

Abstract. In many actor-based programming models,1 asynchronous
method calls communicate their results using futures, where the fulfil-
ment occurs under-the-hood. Promises play a similar role to futures,
except that they must be explicitly created and explicitly fulfilled; this
makes promises more flexible than futures, though promises lack fulfil-
ment guarantees: they can be fulfilled once, multiple times or not at all.
Unfortunately, futures are too rigid to exploit many available concur-
rent and parallel patterns. For instance, many computations block on a
future to get its result only to return that result immediately (to fulfil
their own future). To make futures more flexible, we explore a construct,
forward, that delegates the responsibility for fulfilling the current im-
plicit future to another computation. Forward reduces synchronisation
and gives futures promise-like capabilities. This paper presents a formal-
isation of the forward construct, defined in a high-level source language,
and a compilation strategy from the high-level language to a low-level,
promised-based target language. The translation is shown to preserve
semantics. Based on this foundation, we describe the implementation of
forward in the parallel, actor-based language Encore,2 which compiles
to C.

1 Introduction

Futures extend the actor programming model to express call-return synchroni-
sation of message sends [1]. Each actor is single-threaded, but different actors
execute concurrently. Communication between actors happens via asynchronous
method calls (messages), which immediately return a future; futures are place-
holders for the eventual result of these asynchronous method calls. An actor
processes one message at a time and each message has associated a future that
will be fulfilled with the returned value of the method. Futures are first-class
values, and operations on them may be blocking, such as getting the result out

? We are grateful to Joachim Parrow and Johannes Borgström for their comments
regarding the bisimulation relation. We also thank the anonymous referees for their
useful comments. The underlying research was funded by the Swedish VR project:
SCADA.

1 This paper focuses on futures. From this perspective we consider the actor-, task-,
and active object-based models as synonymous.

2 https://github.com/parapluu/encore

of the future (get), or asynchronous, such as attaching a callback to a future.

This last operation, known as future chaining (f
x
 e), attaches a closure λx.e

to the future f and immediately returns a new future that will contain the result
of applying the closure to the value eventually stored in future f .

Consider the following code (in the actor-based language Encore [2]) that
implements the broker delegation pattern: the developer’s intention is to connect
clients (the callers of the Broker actor) to a pool of actors that will actually
process a job (lines 6–7):

1 active class Broker
2 val workers: Buffered[Worker]
3 var current: uint
4
5 def run(job: Job): int
6 val worker = this.workers[++this.current % workers.size()]
7 val future : Fut[int] = worker!start(job)
8 return get(future)
9 end

10 end

The problem with this code is that the connection to the Broker cannot be com-
pleted immediately without blocking the Broker’s thread of execution: returning
the result of the worker running the computation requires that the Broker blocks
until the future is fulfilled (line 8). This implementation makes the Broker the
bottleneck of the application.

One obvious way to avoid this bottleneck is by returning the future, instead
of blocking on it, as in the following code:

1 def run(job: Job): Fut[int]
2 val worker = this.workers[++this.current % workers.size()]
3 return worker!start(job)
4 end

This solution removes the blocking from Broker, but returns a future, which
results in the client receiving a future containing a future Fut (Fut int), cluttering
client code and making the typing more complex.

Another way to avoid the bottleneck is to not block but yield the current
thread until the future is fulfilled. This can be done using the await command [3,
2], which frees up the Broker to do other work:3

1 def run(job: Job): int
2 val worker = this.workers[++this.current % workers.size()]
3 val future = worker!start(job)
4 await(future)
5 return get(future)
6 end

This solution frees up the Broker, but can result in a lot of memory being
consumed to hold the waiting instances of calls Broker.run().

Another alternative is to use promises [4]. A promise can be passed around
and fulfilled explicitly at the point where the corresponding result is known.

3 The essential difference between get and await is that get blocks an actor, whereas
await blocks only the current method invocation and frees up the actor.

Passing a promise around is akin to passing the responsibility to provide a par-
ticular result, thereby fulfilling the promise.

1 def run(job: Job, promise: Promise[int]): unit
2 val worker = this.workers[++this.current % workers.size()]
3 worker!start(job, promise)
4 end
5
6 class Worker
7 def start(job: Job, promise: Promise[int]) : unit
8 // actually do job
9 promise.fulfil(result)

10 end
11 end

Promises are problematic because they diverge from the commonplace call-return
control flow, there is no explicit requirement to actually fulfil a promise, and care
is required to avoid fulfilling multiple times. This latter issue, fulfilling a promise
multiple times, can be solved by a substructural type system, which guarantees a
single writer to the promise [5, 6]. Substructural type systems are more complex
and not mainstream, which rules out adoption in languages such as Java and
C#. Our solution relies on futures and is suitable for mainstream languages.

The main difference between promises and futures are that developers ex-
plictly create and fulfil promises, whereas futures are implictly created and ful-
filled. Promises are thus more flexible at the expense of any fulfilment guarantees.

This paper explores a construct called forward that retains the guarantees of
using futures, while allowing some degree of delegation of responsibility to fulfil
a future, as in promises. This construct was first proposed a while ago [7], but
only recently has been implemented in the language Encore [2].

With forward, the run of Broker method now becomes:

1 def run(job: Job): int
2 val worker = this.workers[++this.current % workers.size()]
3 forward(worker!start(job))
4 end

Forward delegates the fulfilment of the future that run will put its result in, to the
call worker!start(job). Using forward frees up the Broker object, as run com-
pletes immediately, though the future is fulfilled only when worker!start(job)

produces a result.

The paper makes the following contributions:

– a formalisation and soundness proof of the forward construct in a concise,
high-level language (Section 2);

– a formalisation of a low-level, promise-based language (Section 3),

– a translation from the high-level language to the low-level language, a proof
of program equivalence, between the high-level language and its translation
to the low-level language (Section 4); and

– microbenchmarks that compare the get-and-return and await-and-get pat-
tern versus the forward construct (Section 5).

2 A Core Calculus of Futures and Forward

This section presents a core calculus that includes tasks, futures and opera-
tions on them, and forward. The calculus consists of two levels: expressions and
configurations. Expressions correspond to programs and what tasks evaluate.
Configurations capture the run-time configuration; they are collections of tasks
(running expressions), futures, and chains. This calculus is much more concise
than the previous formalisation of forward [7].

The syntax of the core calculus is as follows:

e ::= v | e e | async e | e x
 e | if e then e else e | forward e | get e

v ::= c | f | x | λx.e

Expressions include values (v), function application (e e), spawning asynchronous

computations (async e), future chaining (e
x
 e′), which attaches λx.e′ onto a

future to run as soon as the future produced by e is fulfilled, if-then-else ex-
pressions, forward, and get, which extracts the value from a future. Values are
constants (c), futures (f), variables (x) and lambda abstractions (λx.e). The cal-
culus has neither actors nor message sends/method calls. For our purposes, tasks
play the role of actors and spawning asynchronous computations is analogous to
message sends.

Configurations, config , give a partial view on the system and are (non-empty)
multisets of tasks, futures and chains. They have the following syntax:

config ::= (futf) | (fut f v) | (task f e) | (chainf f e) | config config

Future configurations are (futf) and (fut f v), representing an unfulfilled future
f and a fulfilled future f with value v. Configuration (task f e) is a task running
expression e that will write the result of e in future f.4 Configuration (chainf g e)
denotes a computation that waits until future g is fulfilled, applies expression e
to the value stored in g in a new task whose result will be stored in future f .

The initial configuration for program e is (task f e) (futf), where the result
of e will be written into future f at the end result of the program’s execution.

2.1 Operational Semantics

The operational semantics use a small-step semantics with reduction-based, con-
textual rules for evaluation within tasks. Evaluation contexts E contains a hole
• that denotes where the next reduction step happens [8]:

E ::= • | E e | v E | E x
 e | forward E | get E | if E then e else e

4 A reviewer suggested that (futf), (fut f v), and (task f e) could be combined into
a single configuration component. We have considered this conflation in the past.
While it would reduce the complexity of the calculus, it would also make compilation
into the target calculus and the proofs of correctness more complex.

(Red-If-True)

(task f E[if true then e else e′]) −→ (task f E[e])

(Red-β)

(task f E[λx.e v]) −→ (task f E[e[v/x]])

(Red-If-False)

(task f E[if false then e else e′]) −→ (task f E[e′])

(Red-Fwd-Fut)

(task f E[forward h]) −→ (chainf h λx.x)

(Red-Chain-Run)

(chaing f e) (fut f v) −→ (taskg (e v)) (fut f v)

(Red-Get)

(task f E[get h]) (futh v) −→ (task f E[v]) (futh v)

(Red-Fut-Fulfil)

(task f v) (futf) −→ (fut f v)

(Red-Async)

fresh f

(taskg E[async e]) −→ (futf) (task f e) (taskg E[f])

(Red-Chain-Create)

fresh g

(task f E[h
x
 e]) −→ (futg) (chaing h λx.e) (task f E[g])

Fig. 1: Reduction Rules. f, g, h range over futures.

config → config ′′

config config ′ → config ′′ config ′

config ≡ config ′ config ′ → config ′′ config ′′ ≡ config ′′′

config → config ′′′

Fig. 2: Configuration evaluation rules. Equivalence ≡ (omitted) captures the fact
that configurations are a multiset of basic configurations.

The evaluation rules are given in Fig. 1. The evaluation of if-then-else expres-
sions and functions applications proceed in the standard fashion (Red-If-True,
Red-If-False, and Red-β). The async construct spawns a new task to execute
the given expression, and creates a new future to store its result (Red-Async).
When the spawned task finishes its execution, it places the value in the desig-
nated future (Red-Fut-Fulfil). To obtain the contents of a future, the blocking
construct get stops the execution of the task until the future is fulfilled (Red-
Get). Chaining an expression on a future results immediately in a new future
that will eventually contain the result of evaluating the expression, and a chain
configuration storing the expression is connected with the original future (Red-
Chain-Create). When the future is fulfilled, any chain configurations become
task configurations and start evaluating the stored expression on the value stored
in the future (Red-Chain-Run). Forward applies to a future where the result of
the future computation will be the result of the current computation, stored in
the future associated with the current task. Forwarding to future h throws away
the remainder of the body of the current task and chains the identity function
on the future, the effect of which is to copy the eventual result stored in h into
the current future (Red-Fwd-Fut).

The configuration evaluation rules (Fig. 2) describe how configurations make
progress, which is either by some subconfiguration making progress, or by rewrit-
ing a configuration to one that will make progress using the equations of multi-
sets.

Example and Optimisations The following example illustrates some aspects
of the calculus.

(task f E[async (forward h)]) (futh 42)

Red-Async−−−−−−−→ (task f E[g]) (futh 42) (futg) (taskg forward h)

Red-Fwd-Fut−−−−−−−−→ (task f E[g]) (futh 42) (futg) (chaing h λx.x)

Red-Chain-Run−−−−−−−−−−→ (task f E[g]) (futh 42) (futg) (taskg (λx.x) 42)

Red-β−−−−→ (task f E[g]) (futh 42) (futg) (taskg 42)

Red-Fut-Fulfil−−−−−−−−−−→ (task f E[g]) (futh 42) (futg 42)

Firstly, a new task is spawned with the use of async. This task forwards the
responsibility to fulfil its future to (the task fulfilling) future h, i.e. future g gets
fulfilled with the value contained in future h.

Two special cases of forward can be given more direct reduction sequences,
which correspond to optimisations performed in the Encore compiler. The first
case corresponds to forwarding directly to another method call, which is the pri-
mary use case for forward, namely, forwarding to another method forward(e!m()).
The optimised reduction rule is

(task f E[forward (async e)])→ (task f e)

For comparison, the standard reduction sequence5 is

(task f E[forward (async e)])→ (task f E[forward g]) (taskg e) (futg)

→ (chainf g λx.x) (taskg e) (futg)→∗ (chainf g λx.x) (taskg v) (futg)

→ (chainf g λx.x) (futg v)→ (task f (λx.x) v) (futg v)→ (task f v) (futg v)

This can be seen as equivalent to the reduction sequence

(task f E[forward (async e)])→ (task f e)→∗ (task f v)

because the future g will no longer be accessible.
Similarly, forwarding a future chain can be reduced directly to a chain con-

figuration:
(task f E[forward (h

x
 e)])→ (chainf h λx.e)

In both cases, forward can be seen as making a call-with-current-future.

5 →∗ is the reflexive, transitive closure of the reduction relation →.

(T-Constant)

c is a constant of type τ

Γ `ρ c : τ

(T-Future)

f : Fut τ ∈ Γ
Γ `ρ f : Fut τ

(T-Variable)

x : τ ∈ Γ
Γ `ρ x : τ

(T-Abstraction)

Γ, x : τ `• e : τ ′

Γ `ρ λx.e : τ → τ ′

(T-Application)

Γ `ρ e1 : τ → τ ′ Γ `ρ e2 : τ

Γ `ρ e1 e2 : τ ′

(T-If-Then-Else)

Γ `ρ e : bool Γ `ρ e′ : τ Γ `ρ e′′ : τ
Γ `ρ if e then e′ else e′′ : τ

(T-Get)

Γ `ρ e : Fut τ

Γ `ρ get e : τ

(T-Async)

Γ `τ e : τ
Γ `ρ async e : Fut τ

(T-Chain)

Γ `ρ e : Fut τ Γ, x : τ `τ ′ e′ : τ ′

Γ `ρ e
x
 e′ : Fut τ ′

(T-Forward)

Γ `ρ e : Fut ρ ρ 6= •
Γ `ρ forward e : τ

Fig. 3: Typing Rules

2.2 Static Semantics

The type system has basic types, K, and future types:

τ ::= K | Fut τ

The typing rules (Fig. 3) define the judgement Γ `ρ e : τ , which states
that in the typing environment Γ , which gives the types of futures and free
variables, expression e has type τ , where ρ is the expected task type, the result
type of the task in which the expression appears. ρ ranges over both types τ
and symbol • which is not a type. • is used to prevent the use of forward in
contexts where the expected task type is not clear, specifically within closures,
as a closure can be passed between tasks and run in a context different from their
defining contexts. The types of constants are assumed to be provided (Rule T-
Constant). Variables and futures types are defined in the typing environment
(Rules T-Variable and T-Future). Function application and abstraction have
the standard typing rules (Rules T-Application and T-Abstraction), except
that within the body of a closure the expected task type is not known. When
async is applied to an expression e, a new task is created and the expected task
type changes to the type of the expression. The result type of the async call is
a future type of the expression’s type (Rule T-Async). Chaining is essentially
mapping for the Fut type constructor, and rule T-Chain reflects this fact. In
addition, because chaining ultimately creates a new task to run the expression,
the expected task type ρ changes to the return type of the expression. Getting
the value from a future of some type results in a value of that type (Rule T-
Get). Forwarding requires the argument to forward to be a future of the same
type as the expected task type (Rule T-Forward). As forward does not return
locally, the result type is arbitrary.

Well-formed configurations, Γ ` config ok, are typed against environment, Γ ,
that gives the types of futures (Fig. 4). The type rules depend on the following
definitions.

(Fut)

f ∈ dom(Γ)

Γ ` (futf) ok

(F-Fut)

f : Fut τ ∈ Γ Γ `• v : τ

Γ ` (fut f v) ok

(Task)

f : Fut τ ∈ Γ Γ `τ e : τ
Γ ` (task f e) ok

(Chain)

f : Fut τ ∈ Γ g : Fut τ ′ ∈ Γ Γ `τ e : τ ′ → τ

Γ ` (chainf g e) ok

(Config)

Γ ` config1ok Γ ` config2ok

defs(config1) ∩ defs(config2) = ∅
writers(config1) ∩ writers(config2) = ∅

Γ ` config1 config2 ok

Fig. 4: Configuration typing

Definition 1. The function defs(config) extracts the set of futures present in a
configuration config .

defs((futf)) = defs((fut f v)) = {f}
defs((config1 config2)) = defs(config1) ∪ defs(config2)

defs() = ∅

Definition 2. The function writers(config) extracts the set of writers to futures
in configuration config.

writers((chainf g e)) = writers((task f e)) = {f}
writers(config1 config2) = writers(config1) ∪ writers(config2)

writers() = ∅

Rules Fut and F-Fut define well-formed future configurations. Rules Task
and Chain define well-formed task and future chaining configurations and set
the expected task types. Rule Config defines how to build larger configurations
from smaller ones. Each future may be defined at most once and there is at most
one writer to each future.

The rules for well-formed configurations apply to partial configurations. Com-
plete configurations can be typed by adding extra conditions to ensure that all
futures in Γ have a future configuration, there is a one-to-one correspondence
between tasks/chains and unfulfilled futures, and dependencies between tasks
are acyclic. These definitions have been omitted and are similar to those found
in our earlier work [9].

Formal Properties The proof of soundness of the type system follows standard
techniques [8]. The proof of progress requires that there is no deadlock, which
follows as there is no cyclic dependency between tasks [9].

Lemma 1 (Type preservation). If Γ ` config ok and config → config ′, then
there exists a Γ ′ such that Γ ′ ⊃ Γ and Γ ′ ` config ′ ok

Proof. By induction on the derivation of config → config ′. ut

Definition 3 (Terminal Configuration). A complete configuration config is
terminal iff every element of the configuration has the shape: (fut f v).

Lemma 2 (Progress). For a complete configuration config , if Γ ` config ok,
then config is a terminal configuration or there exists a config ′ such that config →
config ′.

Proof. By induction on a derivation of config → config ′, relying on the invari-
ance of the acyclicity of task dependencies. ut

3 A Promising Implementation Calculus

The implementation of forward in the Encore programming language is via com-
pilation into C, linking with Pony’s actor-based run-time [10]. At this level, En-
core’s futures are treated like promises in that they are passed around to the
place where the result of a method call is known in order to be fulfilled. To model
this implementation approach, we introduce a low-level target calculus based on
tasks and promises. This section presents the formalised target calculus, and
the next section presents the compilation strategy from the source to the target
language.

The syntax of the target language is as follows:

e ::= v | e e | Task(e, e) | stop | e; e | Prom | fulfil(e, e) | get e
| Chain(e, e, e) | if e then e else e

v ::= c | f | x | λx.e | ()

Expressions consist of values, function application (e e), sequential composition
of expressions (e; e), the spawning and stopping of tasks (Task(e, e) and stop),
the creation, fulfilment, reading, and chaining of promises (Prom, fulfil(e, e),
get e, and Chain(e, e, e)) and the standard if-then-else expression. Values are
constants, futures, variables, abstractions and unit (). The main differences with
the source language are that tasks have to be explicitly stopped, which captures
non-local exit, and promises must be explicitly created and fulfilled.

3.1 Operational Semantics

The semantics of the target calculus is analogous to the source calculus. The
evaluation contexts are:

E ::= • | E e | v E | E; e | get E | fulfil(E, e) | fulfil(v,E)

| Task(E, e) | Chain(e, E, e) | Chain(E, v, e) | Chain(v, v, E)

| if E then e else e

(RI-If-True)

(task E[if true then e else e′]) −→ (task E[e])

(RI-ERROR)

(prmf v) (task E[fulfil(f, v′)]) −→ ERROR

(RI-If-False)

(task E[if false then e else e′]) −→ (task E[e′])

(RI-Promise)

freshf

(task E[Prom]) −→ (prmf) (task E[f])

(RI-Statement)

(task E[v; e]) −→ (task E[e])

(RI-Chain)

(task E[Chain(f, g, (λx.e))]) −→ (chain g e[f/x]) (task E[f])

(RI-β)

(task E[(λx.e) v]) −→ (task E[e[v/x]])

(RI-Fulfil)

(prmf) (task E[fulfil(f, v)]) −→ (prmf v) (task E[()])

(RI-Stop)

(task E[stop]) −→ ε

(RI-Task)

(task E[Task(f, (λx.e))]) −→ (task E[f]) (task e[f/x])

(RI-Config-Chain)

(chain g e) (prmg v) −→ (task (e v)) (prmg v)

(RI-Get)

(task E[get h]) (prmh v) −→ (task E[v]) (prmh v)

Fig. 5: Target reduction rules

Configurations are multisets of promises, tasks, and chains:

config ::= ε | (prmf) | (prmf v) | (task e) | (chain f e) | config config

The empty configuration is represented by ε, an unfulfilled promise is written as
(prmf) and a fulfilled promise holding value v is written as (prmf v).

Tasks and chains work in the same way as in the source language, except that
they work now on promises (Fig. 5). Promises are handled much more explicitly
than futures are, and need to be passed around like regular values. The creation
of a task needs a promise and a function to run; the spawned task runs the
function, has access to the passed promise and leaves the promise reference in
the spawning task (RI-Task). Stopping a task just finishes the task (RI-Stop).
The construct Prom creates an empty promise (RI-Promise). Fulfilling a promise
results in the value being stored if the promise was empty (RI-Fulfil), or an
error otherwise (RI-Error). Promises are chained in a similar fashion to futures:
the construct Chain(f, g, e) immediately passes the promise f to expression e —
the intention being that f will hold the eventual result; the chain then waits on
promise g, and passes the value it receives into expression (e f) (RI-Chain and
RI-Config-Chain). The target language borrows the configuration evaluation
rules from the source language (Fig. 2).

Example For illustration purposes we translate the example from the high-level
language, (futf) (task f E[forward (async e)]) shown in Section 2, and show the
reduction steps of the low-level language:

(prmf) (task E[Chain(f, Task(Prom, (λd
′
.fulfil(d

′
, e); stop)), λd

′
.λx.fulfil(d

′
, x); stop); stop])

−→ (prmf) (prmg) (task E[Chain(f, Task(g, (λd
′
.fulfil(d

′
, e); stop)), λd

′
.λx.fulfil(d

′
, x); stop); stop])

−→ (prmf) (prmg) (task E[Chain(f, g, λd
′
.λx.fulfil(d

′
, x); stop); stop]) (task fulfil(g, e); stop)

−→ (prmf) (prmg) (task E[f ; stop]) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, e); stop)

−→ (prmf) (prmg) (task E[stop]) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, e); stop)

−→ (prmf) (prmg) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, e); stop)

−→∗ (prmf) (prmg) (chain g (λx.fulfil(f, x); stop)) (task fulfil(g, v); stop)

−→ (prmf) (prmg v) (chain g (λx.fulfil(f, x); stop)) (task (); stop)

−→ (prmf) (prmg v) (chain g (λx.fulfil(f, x); stop)) (task stop)

−→ (prmf) (prmg v) (chain g (λx.fulfil(f, x); stop))

−→ (prmf) (prmg v) (task (λx.fulfil(f, x); stop) v)

−→ (prmf) (prmg v) (task fulfil(f, v); stop)

−→ (prmf v) (prmg v) (task (); stop)

−→ (prmf v) (prmg v) (task stop)

−→ (prmf v) (prmg v)

We show how the compilation strategy proceeds in Section 4.

3.2 Static Semantics

The type system has basic types, K, and promise types defined below:

τ ::= K | Prom τ

The type rules define the judgment Γ ` e : τ which states that, in the en-
vironment Γ , which records the types of promises and free variables, expression
e has type τ . The rules for constants, promises, and variables, if-then-else, ab-
straction and function application are analogous to the source calculus, except
no expected task type is recorded. The unit value has type unit (TI-Unit);
the stop expression finishes a task and has any type (TI-Stop). The creation
of a promise has type Prom τ (TI-Promise-New); the fulfilment of a promise
fulfil(e, e′) has type unit and requires the first parameter to be a promise
and the second to be an expression that matches the type of the promise (TI-
Fulfil). To spawn a task (Task(e, e)), the first argument of the task must be
a promise and the second a function that takes a promise having the same type
as the first argument (TI-Task); promises can be chained on with functions
that run if the promise is fulfilled: Chain(e, e′, e′′) has type Prom τ and e and
e′ are promises and e′′ is an abstraction that takes arguments of the first and
second promise types. Both task and chain constructors return the promise that
is passed to them, for convenience in the compilation scheme.

Soundness of the type system is proven using standard techniques.

(TI-Constant)

c is a constant of type τ

Γ ` c : τ

(TI-Promise)

f : Prom τ ∈ Γ
Γ ` f : Prom τ

(TI-Variable)

x : τ ∈ Γ
Γ ` x : τ

(TI-Unit)

Γ ` () : unit

(TI-Stop)

Γ ` stop : τ

(TI-Promise-New)

Γ ` Prom : Prom τ

(TI-If)

Γ ` e : bool Γ ` e′ : τ Γ ` e′′ : τ
Γ ` if e then e′ else e′′ : τ

(TI-Statement)

Γ ` e1 : τ ′ Γ ` e2 : τ

Γ ` e1; e2 : τ

(TI-Abstraction)

Γ, x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′

(TI-App)

Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

(TI-Fulfil)

Γ ` e : Prom τ Γ ` e′ : τ
Γ ` fulfil(e, e′) : unit

(TI-Task)

Γ ` e : Prom τ Γ ` e′ : Prom τ → τ ′

Γ ` Task(e, e′) : Prom τ

(TI-Get)

Γ ` e : Prom τ

Γ ` get e : τ

(TI-Chain)

Γ ` e : Prom τ Γ ` e′ : Prom τ ′ Γ ` e′′ : Prom τ → τ ′ → τ ′′

Γ ` Chain(e, e′, e′′) : Prom τ

(Prom)

f ∈ dom(Γ)

Γ ` (prmf) ok

(F-Prom)

f : Prom τ ∈ Γ
Γ ` (prmf v) ok

(Chain-Target)

Γ ` f : Prom τ Γ ` e : τ → τ ′′

Γ ` (chain f e) ok

(Task-Target)

Γ ` e : τ
Γ ` (task e) ok

(Config-Target)

Γ ` config1 ok Γ ` config2 ok

Γ ` config1 config2 ok

Fig. 6: Typing rules for expressions and configurations in the target language

4 Compilation: From Futures and Forward to Promises

This section presents the compilation function from the source to the target
language and outlines a proof that it preserves semantics. The compilation
strategy is defined inductively (Fig. 7); the compilation of expressions, denoted
CJeKdestiny, takes an expression e and a meta-variable destiny which holds the
promise that the current task should fulfil, and produces an expression in the
target language.

Futures are translated to promises, and most other expressions are trans-
lated homomorphically. The constructs where something interesting happens are
async, forward and future chaining; these constructs adopt a common pattern
implemented using a two parameter lambda abstraction: the first parameter,
variable destiny′, is the promise to be fulfilled and the second parameter is
the value that fulfils the promise. The best illustration of how forward be-
haves differently from a regular asynchronous call is the difference in the rules

CJeKdestiny Compilation Strategy

CJfKdestiny = f CJxKdestiny = x CJcKdestiny = c

CJλx.eKdestiny = λx.CJeKdestiny
CJe1 e2Kdestiny = CJe1Kdestiny CJe2Kdestiny
CJget eKdestiny = get CJeKdestiny

CJasync eKdestiny = Task(Prom, (λdestiny′.fulfil(destiny′, CJeKdestiny′); stop))

CJforward eKdestiny = Chain(destiny, CJeKdestiny, λdestiny′.λx.fulfil(destiny′, x); stop); stop

CJe x
 e′Kdestiny = Chain(Prom, CJeKdestiny, (λdestiny′.λx.fulfil(destiny′, CJe′Kdestiny′); stop))

CJeKdestiny Optimised Compilation Strategy

CJforward(async(e))Kdestiny =

Task(destiny, (λdestiny′.fulfil(destiny′, CJeKdestiny′); stop)); stop

CJforward (e
x
 e′)Kdestiny =

Chain(destiny, CJeKdestiny, λdestiny′.λx.fulfil(destiny′, CJe′Kdestiny′); stop); stop

T Jconfig K Configuration Compilation Strategy

T J(futf)K = (prmf) T J(task f e)K = (task fulfil(f, CJeKf); stop)

T J(fut f v)K = (prmf CJvKf) T Jconfig config ′K = T JconfigK T Jconfig ′K

T J(chainf g e)K = (chain g (λx.fulfil(f, CJeKf x); stop))

where x is fresh

T J(task f e)K = (task (fulfil(f, CJeKf); stop))

CJτK Type translation

CJokK = ok CJKK = K

CJFut τK = Prom CJτK CJτ → τ ′K = CJτK → CJτ ′K

T JΓ ` f : τK Environment Translation

T JΓ `ρ configK = CJΓ K ` T JconfigK CJ∅K = ε

CJΓ, f : Fut τK = CJΓ K, CJf : Fut τK CJx : τK = x : CJτK
CJΓ, x : τK = CJΓ K, CJx : τK CJf : Fut τK = f : CJFut τK

Fig. 7: Compilation strategy of terms, configurations, types and typing rules

for async e and the optimised rule for forward (async e). The translation of
async e creates a new promise to store e’s result value, whereas the translation
of forward(async e) reuses the promise from the context, namely the one passed
in via the destiny variable.

The compilation of configurations, denoted T Jconfig K, translates configura-
tions from the source language to the target language. For example, the com-
pilation of the source configuration (futf) (task f forward (async e)) compiles
into:

T J(futf) (task f forward (async e))K =

T J(futf)K T J(task f forward (async e))K =

(prmf) (task fulfil(f, CJforward (async e)Kf))

The optimised compilation of CJforward (async e)Kf is:

(prmf) (task E[Task(f, (λd′.fulfil(d′, CJeKd′); stop)); stop])

For comparison, the base compilation gives:

(prmf) (task E[Chain(f, Task(Prom, (λd
′
.fulfil(d

′
, CJeKd′); stop)), λd

′
.λx.fulfil(d

′
, x); stop); stop])

Types and typing rules are compiled inductively (Fig. 7). The following lemmas
guarantee that the compilation strategy does not produce broken target code
and state the correctness of the translation.

4.1 Correctness

The correctness of the translation is proven in a number of steps.
The first step involves converting the reduction rules to a labelled transition

system where communication via futures is made explicit. This involves splitting
several rules involving multiple primitive configurations on the left-hand side
to involve single configurations, and labelling the values going into and out of
futures. For example, (task f v) (futf)→ (fut f v) is replaced by the two rules:

(task f v)
f↓v−−→ ε (futf)

f↓v−−→ (fut f v)

The other rules introduced are:

(fut f v)
f↑v−−→ (fut f v) (task f E[get h])

h↑v−−→ (task f E[v])

(chaing f e)
f↑v−−→ (taskg e[v/x])

Label f ↓ v captures a value being written to a future, and label f ↑ v captures
a value being read from a future, both from the future’s perspective. Labels
f ↓ v and f ↑ v are the duals from the perspective of the remainder of the con-
figuration. The remainder of the rules are labelled with τ to indicate that no
observable behaviour occurs. The same pattern is applied to the target language.

It is important to note that the values in the labels of the source language are
the compiled values, while the values in the labels of the target language remain
the same.6 This is needed so that labelled values such as lambda abstraction
match during the bisimulation game.

The composition rules are adapted to propagate or match labels in the stan-
dard way. For instance, the rule for matching labels in parallel configurations
is:

config
l−→ config ′′ config ′

l−→ config ′′′

config config ′
τ−→ config ′′ config ′′′

The following theorems capture correctness of the translation.

Theorem 1. If Γ ` config ok, then CJΓ K ` T Jconfig K ok.

Theorem 2. If Γ ` config ok, then config ∼ T Jconfig K.

The first theorem states that translating well-typed configurations results in
well-typed configurations. The second theorem states that any well-typed con-
figuration in the source language is bisimilar to its translation. The precise notion
of bisimilarity used is bisimilarity up-to expansion [11]. This notion of bisimi-
larity compresses the administrative, unobservable transitions introduced by the
translation.

The proof involves taking each derivation rule in the adapted semantics for
the source calculus (described above) and showing that each source configuration
is bisimilar to its translation. This is straightforward for the base cases, because
tasks are deterministic in both source and target languages, and at most two un-
observable transitions are introduced by the translation. To handle the parallel
composition of configurations, bisimulation is shown to be compositional, mean-
ing that if config ∼ T Jconfig K and config ′ ∼ T Jconfig ′K, then config config ′ ∼
T Jconfig config ′K; now by definition T Jconfig config ′K = T Jconfig K T Jconfig ′K,
hence config config ′ ∼ T Jconfig K T Jconfig ′K.

5 Experiments

We benchmarked the implementation of forward by comparing it against the
blocking pattern get-and-return and an implementation that uses the await-
and-get (both described in Section 1). The micro-benchmark used is a variant of
the broker pattern with 4 workers, compiled with aggresive optimisations (-O3).
We report the average time (wall clock) and memory consumption of 5 runs of
this micro-benchmark under different workloads (Fig. 8). The processing of each
message sent involves complex nested loops with quadratic complexity (in the
Workload value) written in such a way to avoid the compiler optimising them
away — the higher the workload, the higher the probability that the Broker

actor blocks or awaits in the non-forward implementations.

6 We have omitted the notation from the translation to keep it simple to read

Performance (in seconds)

Workload Get Await+Get Forward

100 0.03 0.03 0.00

500 0.47 0.25 0.02

1000 1.85 0.94 0.06

3000 16.55 8.29 0.39

5000 45.77 23.01 1.03

7500 103.43 51.62 2.26

10000 183.04 91.86 4.02

Memory consumption (in kilobytes)

Workload Get Await+Get Forward

100 12697 49446 7334

500 12292 49676 6608

1000 12451 49927 6832

3000 12222 49070 7793

5000 12427 48584 7269

7500 12337 48016 7853

10000 12484 48316 8475

Fig. 8: Elapsed time (left) and memory consumed (right) by the Broker mi-
crobenchmark (the lower the better).

The performance results (Fig. 8) show that the forward version is always
faster than the get-and-return and await-and-get version. In the first case,
this is expected as blocking prevents the Broker actor from processing messages,
while the forward version does not block. In the second case, we also expected
the forward version to be faster than the await-and-get: this is due to the
overhead of the context switching operation performed on each await statement.

The forward version consumes the least amount of memory, while the await-
and-get version consumes the most (Fig. 8). This is expected: forward creates
one fewer future per message sent than the other two versions; the await-and-get
version has around 5 times more overhead than the forward implementation, as
it needs to save the context (stack) whenever a future cannot immediately be
fulfilled.

Threats to validity The experiments use a microbenchmark, which pro-
vides useful information but is not as comprehensive as a case study would be.

6 Related work

Baker discovered futures in 1977 [12]; later Liskov introduced promises to Ar-
gus [4]. Around the same time, Halstead introduced implicit futures in Multil-
isp [13]. Implicit futures do not appear as a first-class construct in the program-
ming language at either the term or type level, as they do in our work.

The forward construct was introduced in earlier work [7], in the formalisa-
tion of an extension to the active object-based language Creol [14]. The main
differences with our work are: our core calculus is much smaller, based on tasks
rather than active objects; our calculus includes closures, which complicate the
type system, and future chaining; we defined a compilation strategy for forward,
and benchmark its implementation.

Caromel et al. [15] formalise an active object language that transparently
handles futures, prove determinism of the language using concepts similar to
weak bisimulation, and provide an implementation [16]. In contrast, our work
uses a task-based formalism built on top of the lambda calculus and uses fu-

tures explictly. It is not clear whether forward can be used in conjunction with
transparent futures.

Proving semantics preservation of whole programs is not a new idea [17–22].
We highlight the work from Lochbihler, who added a new phase to the veri-
fied, machine-checked Jinja compiler [23] that proves that the translation from
multi-threaded Java programs to Java bytecode is semantics preserving, using
a delay bisimulation. In contrast, our work uses an on-paper proof using weak
bisimilarity up-to expansion, proving that the compilation strategy preserves the
semantics of the high-level language.

Ábrahám et al [5] present an extension of the Creol language with promises.
The type system uses linear types to track the use of the write capability (ful-
filment) of promises to ensure that they are fulfilled precisely once. In contrast
to the present work, their type system is significantly more complex, and no
forward operation is present. Curiously, Encore supports linear types, though
lacks promises and hence does not use linear types to keep promises under con-
trol.

Niehren et al [6] present a lambda calculus extended with futures (which are
really promises). Their calculus explores the expressiveness of programming with
promises, by using them to express channels, semaphores, and ports. They also
present a linear type system that ensures that promises are assigned only once.

7 Conclusion

One key difference between futures, futures with forward and promises is that
the responsibility to fulfil a future cannot be delegated. The forward construct
allows such delegation, although only of the implicit future receiving the result
of some method call, while promises allow arbitrary delegation of responsibility.
This paper presented a formal calculus capturing the forward construct, which
retains the static fulfilment guarantees of futures. A translation of the source
calculus into a target calculus based on promises was provided and proven to
be semantics preserving. This translation models how forward is implemented
in the Encore compiler. Microbenchmarks demonstrated that forward improves
performance in terms of speed and memory overhead compared to two alternative
implementations in the Encore language.

References

1. Frank De Boer, Vlad Serbanescu, Reiner Hähnle, Ludovic Henrio, Justine Rochas,
Crystal Chang Din, Einar Broch Johnsen, Marjan Sirjani, Ehsan Khamespanah,
Kiko Fernandez-Reyes, and Albert Mingkun Yang. A survey of active object lan-
guages. ACM Comput. Surv., 50(5):76:1–76:39, October 2017.

2. Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes,
Einar Broch Johnsen, Ka I Pun, Silvia Lizeth Tapia Tarifa, Tobias Wrigstad, and
Albert Mingkun Yang. Parallel objects for multicores: A glimpse at the parallel
language Encore. In Marco Bernardo and Einar Broch Johnsen, editors, Formal

Methods for Multicore Programming - 15th International School on Formal Methods
for the Design of Computer, Communication, and Software Systems, SFM 2015,
Bertinoro, Italy, June 15-19, 2015, Advanced Lectures, volume 9104 of Lecture
Notes in Computer Science, pages 1–56. Springer, 2015.

3. Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin
Steffen. ABS: A core language for abstract behavioral specification. In Bernhard K.
Aichernig, Frank S. de Boer, and Marcello M. Bonsangue, editors, Formal Methods
for Components and Objects - 9th International Symposium, FMCO 2010, Graz,
Austria, November 29 - December 1, 2010. Revised Papers, volume 6957 of Lecture
Notes in Computer Science, pages 142–164. Springer, 2010.

4. Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient asyn-
chronous procedure calls in distributed systems. In Richard L. Wexelblat, editor,
Proceedings of the ACM SIGPLAN’88 Conference on Programming Language De-
sign and Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988, pages
260–267. ACM, 1988.

5. Erika Ábrahám, Immo Grabe, Andreas Grüner, and Martin Steffen. Behavioral
interface description of an object-oriented language with futures and promises. J.
Log. Algebr. Program., 78(7):491–518, 2009.

6. Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda
calculus with futures. Theor. Comput. Sci., 364(3):338–356, 2006.

7. Dave Clarke, Einar Broch Johnsen, and Olaf Owe. Concurrent objects à la carte.
In Dennis Dams, Ulrich Hannemann, and Martin Steffen, editors, Concurrency,
Compositionality, and Correctness, Essays in Honor of Willem-Paul de Roever,
volume 5930 of Lecture Notes in Computer Science, pages 185–206. Springer, 2010.

8. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Inf. Comput., 115(1):38–94, 1994.

9. Kiko Fernandez-Reyes, Dave Clarke, and Daniel S. McCain. ParT: An asyn-
chronous parallel abstraction for speculative pipeline computations. In Alberto
Lluch-Lafuente and José Proença, editors, Coordination Models and Languages -
18th IFIP WG 6.1 International Conference, COORDINATION 2016, Held as
Part of the 11th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceed-
ings, volume 9686 of Lecture Notes in Computer Science, pages 101–120. Springer,
2016.

10. Sylvan Clebsch and Sophia Drossopoulou. Fully concurrent garbage collection of
actors on many-core machines. In Antony L. Hosking, Patrick Th. Eugster, and
Cristina V. Lopes, editors, Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31,
2013, pages 553–570. ACM, 2013.

11. Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation proof
method. In Davide Sangiorgi and Jan Rutten, editors, Advanced Topics in Bisim-
ulation and Coinduction. Cambridge University Press, 2012.

12. Henry G. Baker and Carl Hewitt. The incremental garbage collection of processes.
SIGART Newsletter, 64:55–59, 1977.

13. Robert H. Halstead Jr. Multilisp: A language for concurrent symbolic computation.
ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

14. Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: A type-safe object-
oriented model for distributed concurrent systems. Theor. Comput. Sci., 365(1-
2):23–66, 2006.

15. Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. Asynchronous sequential
processes. Inf. Comput., 207(4):459–495, 2009.

16. Denis Caromel, Christian Delbe, Alexandre Di Costanzo, and Mario Leyton.
ProActive: an integrated platform for programming and running applications on
grids and P2P systems. Computational Methods in Science and Technology, 12:is-
sue 1, 2006.

17. Xavier Leroy. A formally verified compiler back-end. J. Autom. Reasoning,
43(4):363–446, 2009.

18. Xavier Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In J. Gregory Morrisett and Simon L. Peyton Jones,
editors, Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2006, Charleston, South Carolina, USA,
January 11-13, 2006, pages 42–54. ACM, 2006.

19. Andreas Lochbihler. Verifying a compiler for Java threads. In Andrew D. Gordon,
editor, Programming Languages and Systems, 19th European Symposium on Pro-
gramming, ESOP 2010, Held as Part of the Joint European Conferences on The-
ory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6012 of Lecture Notes in Computer Science, pages 427–447.
Springer, 2010.

20. Adam Chlipala. A certified type-preserving compiler from lambda calculus to as-
sembly language. In Jeanne Ferrante and Kathryn S. McKinley, editors, Proceed-
ings of the ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation, San Diego, California, USA, June 10-13, 2007, pages 54–65.
ACM, 2007.

21. Mitchell Wand. Compiler correctness for parallel languages. In John Williams,
editor, Proceedings of the seventh international conference on Functional program-
ming languages and computer architecture, FPCA 1995, La Jolla, California, USA,
June 25-28, 1995, pages 120–134. ACM, 1995.

22. Xinxin Liu and David Walker. Confluence of processes and systems of objects.
In Peter D. Mosses, Mogens Nielsen, and Michael I. Schwartzbach, editors, TAP-
SOFT’95: Theory and Practice of Software Development, 6th International Joint
Conference CAAP/FASE, Aarhus, Denmark, May 22-26, 1995, Proceedings, vol-
ume 915 of Lecture Notes in Computer Science, pages 217–231. Springer, 1995.

23. Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like
language, virtual machine, and compiler. ACM Trans. Program. Lang. Syst.,
28(4):619–695, 2006.

