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ABSTRACT

The Federal Reserve Bank of Kansas City has developed a new
cyberinfrastructure environment uniquely tailored to the long-tail
researchers in and around the field of economics. We based our
design on our researchers’ usage modalities and our experience
delivering advanced research computing to domains that are now
in more need of computational power and the ability to work with
large datasets.
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1 BACKGROUND

Starting in the late ’90s increased changes in environmental factors

affected research computing environments tailored for economics|[5].
Some of the changes were economic models growing in computa-
tional complexity, economic research consuming more and larger

datasets, and a larger but more sophisticated software and tooling

selection. The Center for the Advancement of Data and Research

in Economics (CADRE) at the Federal Reserve Bank of Kansas

City (FRBKC) developed a strategy that encompassed computing,

data, people and training to facilitate better research. Staff designed

our computing and data warehousing environments, introducing

multiple technology changes needed to support large distributed

memory jobs, shared memory jobs, high throughput computing

jobs and access to and the provisioning of large quantities of data.
Over the last decade, CADRE has iterated and developed a cyber-
infrastructure [1] that is tailored for long-tail [4] [6] researchers

and their co-authors inside the Federal Reserve System (FRS). The

last such iteration, an environment we call Bear, was deployed in

the 3rd quarter of 2019 and is the culmination of FRBKC’s shared

experience from working directly with our researchers and being

the leaders in offering cyberinfrastructure to researchers inside of

the FRS.

2 USAGE MODALITIES

The vast majority of our jobs are single core or single node jobs.
We have a mix of 16 and 28 core nodes for our Bear cluster. For
our interactive partitions, we have a default setting of four core
jobs, which is why the number of four core jobs is larger than
the single and dual core jobs as shown in Figure 1. One issue we
look at quite heavily is the time our researchers spend waiting in
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our queues. We are very sensitive to the time a researcher has to
wait for their research to run. Our researchers do policy work in
addition to research, and this creates a cycle in which a researcher
will only have a short window to complete their computation runs,
as shown in Figure 2. Our mean wait time has been about half an
hour, with only one very large computational run that increased
our wait time to about four and a half days over a small period of
time. Although we occasionally receive as many as 2500 jobs per
day, the typical number of daily jobs submitted is around 250. Most
of the jobs submitted to our Bear cluster need 64 GB of memory
or less. We do, however, have jobs that require 128GB or 256GB of
memory for interactive exploratory analysis, as shown in Figure
4. We surveyed our researchers and found that 80% require access
to a virtual desktop either to do prototyping or working with data
that lives within our environment. In addition, a large portion of
our researchers only want access to graphical applications such as
STATA and Matlab. Because of these usage requirements, we have
interactive desktops in our oVirt environment as well as compute
nodes strictly used for interactive computing. The type of jobs as
well as the requirements of our users has guided our decisions in
developing our environment.

3 LESSONS LEARNED AND ARCHITECTURE
3.1 Related Work

Work has been done to reach long-tail researchers by providing
access to advanced research computing that better favors their com-
putational needs. The work done by San Diego Supercomputing
Center (SDSC) in targeting allocation and scheduling policies that
help long-tail researchers is an example of this [8]. While a portion
of our long-tail researcher base can take advantage of a more tradi-
tional type of cyberinfrastructure, our researchers needs do not fit
well with how most systems are currently architected. More specif-
ically, the cyberinfrastructure needs of long-tail researchers in and
around the field of economics led to different architectures to better
facilitate research and lower the barriers of entry. One such exam-
ple is how Bently University has architected their environment to
solve this issue [9].

3.2 Improvements

For our researchers, our previous HPC environment, named Bull,
was a great introduction that allowed us to implement advanced
computing concepts. Although we added many new capabilities and
flexibility to our new cluster, Bear, we also discovered some pain
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Figure 2: Average Wait Times
points in our previous environment that needed to be addressed. first exposure through traditional laptops and desktops. The Graph-
To best understand the pain points and our solutions, it is helpful ical User Interface (GUI) is comforting and familiar, and thus an
to understand the architecture of both environments. Bull was important first step. Our goal is to help researchers spend more
more closely aligned with a more traditional High Performance time focusing on their research than learning entirely new concepts
Computing environment that one might find in academia. Users had all at once. One way the Bull cluster assisted with this was that
log-in nodes to access the cluster where they could then launch jobs we provided a web-based portal and compute resources we called
onto compute resources. Users who were adept at the command- ‘guinodes’. This helped our researchers significantly by providing
line could use nodes that were configured for just shell access, them a familiar environment in which to conduct research, proof-
users who preferred a graphical method could log into a web page of-concept ideas, test code, and prepare code before requesting
that provided graphical options. In both cases, users were then more efficient, powerful, and finite shared compute resources. To
required to submit jobs to the cluster, where different resources access these available GUI resources our researchers were required
were available in different partitions or queues. A few specific to use Java to start and connect to their desktop session, which
design choices on Bull were evaluated for improvement on Bear. would be spawned on the ‘guinodes’. There were two very common
issues that caused problems for our users and our service desk in
3.3 Interactive computing this model. The first was that we had no control or ownership of

what versions of Java were on our client-end devices. A frequent

M f hers do not h: formal training in Com- .
any of our researchers do not have any formal traming in t-om problem occurred when the client or the cluster updated Java, and

puter Science topics. The most common path to our resources is
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researchers and staff desired to move away from such a constant
issue. To avoid the ongoing Java version struggle, we investigated
several other technologies but implemented Ohio Supercomputer
Center’s “OSC Open OnDemand” platform [3]. With this platform,
we were able to eliminate the dependency of a Java solution en-
tirely, since all functionality is HTML5 driven. We retained the GUI
web interface our researchers enjoyed while adding and enhancing
many of the features at the same time.

3.4 Need for Better Interactive Isolation

Another common issue with our Bull cluster was resource con-
straints when using Linux cgroups (“control group based traffic con-
trol filter”) pertaining to our available GUI nodes. We successfully
set limits on our ‘guinodes’ processes governing CPU resources;
however, we did not implement cgroups for memory. Many of our
researchers did not have a firm grasp on their applications’ mem-
ory requirements. This is even more apparent when they were still

in the early stages of proof-of-concept testing and working with
large datasets. When memory cgroups were enforced, applications
requiring more memory than allocated by their cgroup would be
terminated by the Linux kernel by the process known as "Out of
Memory Killer" or oom-killer. When this kernel process was en-
acted, it often left the researchers confused about what happened.
Not only did this increase the number of issues filed with our ser-
vice desk, but it also enabled the feeling among the researchers that
the Bull cluster was "unstable". To minimize these initial issues and
allow researchers the freedom to refine their code without issue,
we removed the memory cgroup which left the Bull environment
open to other consequences. Primarily, these consequences were
situations in which a user exhausted the available memory and con-
sumed swap space of a shared ‘guinode’, which eventually affected
all users with processes running on that node. While this was not
ideal, it was the more acceptable issue in our environment. Using
Zabbix, an open-source monitoring solution, we monitored each



node and enabled it to take some preventative measures, which
sometimes alleviated the situation. Still, a researcher would occa-
sionally render a ‘guinode’ unusable. Because of the very nature
of these ‘guinode’ resources, we lacked any features to move pro-
cesses or users affected by such events to another node, resulting
in an occasional loss of research progress. Addressing the memory
limitations were more challenging. We did not have the resources
to give a dedicated physical desktop system to each of our users,
and every technology we explored for sharing physical systems
had similar limitations for our scenario. Thus, we looked to virtual
systems to address the “cgroup” issue. By implementing Red Hat’s
oVirt open source virtualization management platform into our
new Bear environment, we could provision each researcher a single
desktop virtual machine (VM). This provided our researchers the
flexibility when they created their virtual desktops to choose and
set CPU and memory selections for the work they would need. We
configured the maximum values they are allowed to request and
should they crash their VM, they only affected themselves. The
infrastructure remained scalable on the back-end, and no single
user could demand enough resources to affect the whole oVirt sys-
tem. This technology has given us the ability to do live migrations
within the oVirt infrastructure addressing resource contention and
usage issues that can arise in a shared environment. By moving the
desktop virtualization away from compute hardware, we were able
to free up resources while also solving our issue of not being able
to migrate, load balance, and isolate our researchers from affect-
ing each other. This not only improved system administration but
also improved the researchers’ mentality toward the system, giving
them the perception that it is more stable and available.

3.5 Parallel Filesystem Choice

Another difficulty with the Bull cluster was with our ‘Out of the
Box’ storage solution that lacked flexibility and performance in
certain areas. Although this storage solution was able to scale in
performance and capacity, doing so required us to expand in a
manner that was cost prohibitive. In addition, one thing that caused
frequent concern was that implementing updates to the filesystem
required downtime of the entire cluster, reducing our researchers
availability to conduct research. These primary difficulties shaped
many choices for our next HPC environment, as we not only wished
to address these struggles but also to introduce new and developed
technologies to enhance the research computing experience. We
moved to the Open Source Ceph file-system, commonly referred
to as CephFS, and it has been a very welcomed change. Not only
are we given much more flexibility in tuning the performance to
fit our resources and needs, but the Ceph storage cluster is very
resilient when doing rolling updates or against the failure of a
node or a disk. The Ceph storage cluster can be upgraded, one host
at a time, without cluster downtime. Ceph is also easier for us to
achieve flexible performance tuning by replacing parts or expanding
Ceph storage blocks on an as-needed basis for a significantly more
reasonable price. Moving to CephFS allowed us to have a filesystem
that is both cost competitive, but, more importantly, open source,
and allowing greater fine tuning for our specific use cases. Lastly,
being able to do rolling updates with almost no downtime allows
us to have minimal impact on our researchers workflows.
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4 TRAINING
4.1 Related Work

It’s not enough to have good technology or resources. Researchers
also need good training in how to use it. A lot of work has been
done to solve the issues around teaching long-tail researchers to
effectively use advanced research computing, both as for-credit
courses [12] or as workshops for faculty and students [10] [2].
While most of the work done focuses on students, faculty, or staff
in academia, we found a lot of this work relevant for our training as
well. We have used these ideas as guideposts and are in the process
of developing more tailored training.

4.2 Current Training

We focus and tailor our cluster and data ecosystem to the long-tail
researchers and their development workflows. Over time, we have
found that the cluster and data ecosystem are applicable to other
business units within the FRS. The primary user base consists of
PhD research economists, economists, research assistants, and data
and computer scientists that leverage the systems for academic
research. The four related workflows are iterative interactive pro-
gramming, batch submissions, pipeline and CI/CD. The need for
ad-hoc SQL access to research data hosted in the environment is
also an important factor. The secondary user base represents more
traditional business units performing research and other activities
particular to risk modelers, quants, data analysts and data engi-
neers. These users also require the same types of workflows. The
technical skill sets required for users to efficiently leverage the
cyberinfrastructure ranges from beginner to experienced. Because
of these different experience levels we went through an iterative
process that CADRE has developed with the following methods for
meeting the training needs of it’s disparate user base:

e Documentation with examples: We found documentation
alone was not enough. Some users required real examples
to make the leap from documentation to implementation.

e Lunch-n-Learns: We designed One-hour demonstrations on
new or existing technology or tools for users who did not
have a lot of time to spare. The key to successful lunch-
n-learns has been polling the users to find a topic that is
interesting, useful, and timely for our user base. Selecting
topics from the perspective of a Cyberinfrastructure Engi-
neer or ACI-REF [7] did not appeal to our user base and
resulted in low attendance and very low retention.

e One-on-one training: While not realistic or efficacious for
training large groups, we have found one-on-one training
produce the best results and retention. Training at this level
allows for personalization of the material, often using the
trainees’ code to demonstrate a concept, skill or tool. This
personalization leaves the user with real examples they can
apply to their daily work, which aids in retention. Person-
alized material from one-on-one training provides specific
examples for documentation.

e Software Carpentry Workshops (SWC): Hands-on work-
shops like those provided by the Software Carpentry Founda-
tion [11] are fantastic for teaching large groups, particularly
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large groups of people who are new to the topics being cov-
ered. However, SWC workshops and workshops in general
become less effective when participants have some degree
of knowledge on the topics being presented.

Training benefits our user base in many ways, but our primary goal
is to enable research. For example, before working one-on-one with
a Research Assistant (RA), the RA’s software was limited to using
a single core and would take hours to complete. After showing
them how and where to parallelize their code, the RA’s cluster
use changed to using multiple cores which would complete in a
shorter period of time which resulted in getting faster results and
increased research productivity. After demonstrating Slurm [13]
job arrays and providing examples, their cluster use increased again
until they were using their max allocation on the cluster (Figure
5). We determine our success and the training efficacy based on
a researcher’s increase in cluster use after the training. We also
look at continued use of the cluster in conjunction with continued
requests for assistance.

Cluster Usage
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Figure 5: Training Impact

Working with users in the programming language they are fa-
miliar with, rather than trying to introduce them to a possibly
more efficient programming language, has also improved use and
retention. We found most users had little interest in learning a
new language unless they could see significant benefits. The added
complexity of learning a new language plus the new skill to ac-
celerate their research proves to be too much for most. Enabling
research is not the only benefit of our training, as it also provides
personal growth opportunities for each user. As an example, the
environment prepares RAs to be fluent in navigating and efficiently
leveraging most cyberinfrastructures in the country. The entry-
level training we provide, a modified Software Carpentry lesson
called HPC Carpentry, gives the RAs basic fundamentals that will
help them succeed when they leave to pursue their PhD or enter
an industry.

5 CONCLUSION

CADRE has a long and storied tradition of continually evolving and
improving our environment to meet our researchers’ needs within
the FRS. Our new Bear environment is a continuation of our success
as a leader in providing advanced research capabilities to the FRS.
Having the unique position of being inside the FRS and working
solely with our long-tail researchers has allowed us to specialize
and focus on providing an environment that is both unique and
well-positioned to continue to give researchers the tools necessary
for their work.

6 FUTURE WORK
6.1 Reproducibility

On top of the great work we have already done, we still have
more planned to enhance the environment we have built for our
long-tail researchers. We see a need to enhance our environment by
giving our researchers the ability to access containerization both for
workflow management and to help solve issues around reproducible
science. In the last few years, several of our researchers started to
use containerization. The technology those researchers and our
cyberinfrastructure team uses is Singularity, the same technology
used in many national centers and academic institutions. Our first
adopters of Singularity are those which have built containers using
more sophisticated methods than our average user base. Because of
this, we see a need to have Singularity containers built on our cluster
with an intuitive, easy-to-use interface that will lower the barrier
of adoption. In addition to workflow management, we see more
researchers using machine learning and data science techniques.
Using readily available containers created by upstream projects has
been the method of choice for most of these researchers. The ability
to obtain containers with pre-set environments already set up and
then converting those into Singularity containers that can run
inside of our environment reduces the burden on our researchers
to build the complex environments required to conduct research.
Another reason for using containers is that our researchers have
co-authors at different academic institutions and Reserve Banks
who want to share a single file that contains their work without the
hassle of setting up and replicating the environment to do research.

6.2 Further Research

Training is another key area in which we can improve. We have been
teaching HPC Carpentry courses to our researchers for a few years.
We want to expand our training beyond what we currently have
and more directly target training that will enable our researchers to
advance their research. To achieve this goal, we need to understand
our researchers’ computational skill level as well as the software
stacks they use for their research. We will be conducting a survey
to achieve these goals.
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