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ABSTRACT 

Big integers are very essential in many applications. Cryptography is one of these applications. There is 
an introduction to multiple byte fractions which can do good for accountants. In this study, the objective 
is to create a multiple byte integer type, with its arithmetic operations defined. The operations are: 
addition, subtraction, multiplication, division and modular exponentiation are overloaded, to work on this 
multiple byte integer type. The creation of the multiple byte integer is done by using doubly linked lists, a 
well known technique in data structure. The reason is that doubly linked lists enable us to create integer 
of unlimited size. That is, you do not have to pre-specify the size of the arrays storing these integers. This 
is done by dynamically allocating the memory to store the digits constructing the integers. The operations 
on these integers are defined using the simple and straight forward techniques, learnt in school. The 
results obtained are satisfactory and reliable. The type could be extended to help define multiple-byte 
floating point numbers. In this work, an improvement has been made to the work of BH Flowers. 
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1. INTRODUCTION 
The computer consists of bits and bytes [1]. The important thing in computer is its word size 

which can be data or some computer operation, represented by an integer for everything. The 
largest integers we have been able to work with have been confined to short, an int or a long. In 
C++ language, for example, these are one byte, two bytes and four bytes long, respectively. For 
all types, advanced arithmetical operations are made standard for only that domain of type, 
otherwise the compiler just ignore the function output, no overflow message. 

In principle, however, there is no reason to confine an integer to a specific number of bytes: 
the concept of a list allows us to work with any number of bytes, dynamically determined 
according to the transient needs of the program. 

Integers limit in size made files vulnerable to attacks, even thought they were encrypted, 
because the size of the private key is limited. Also in real life, the size of amounts of large 
integers is limited to just more than 4 millions. 

 

2. Multiple Byte Integers 

The lists we have discussed so far have been singly linked: each node contains a single pointer to the 
succeeding node in the list. Multiple byte integers, however, are not efficiently dealt with by means of 
single linkages: we shall find it necessary to scan a list both forwards and backwards, and this is most 



easily done if each node contains a pointer to the previous node as well as a pointer to the succeeding 
node. Moreover, it is no longer desirable to work with pointers to the elements of a fixed data array: since 
we do not know in advance the number of bytes required by an integer, it would be most inconvenient to 
work with fixed arrays; we need to work with the bytes themselves. 

An 8-bit byte, unsigned, can accommodate the integers 0, 1, …, 255. If we set B = 256, we may 
represent any non-negative integer N as a polynomial in B: 

N = amBm + … + a1B + a0, 

Or N =(am, …, a1, a0)B, 

Where, in the second formula, we have recognized B as the radix, and the integer coefficients ai, which 
must obey the restriction 0 < ai < B, as the digits of the integer to the base B. There may in principle be 
any number digits. If B were equal to 10, we should have the usual decimal representation, but we shall 
take B to be 256. 

If we define a digit to be a node containing a byte b and two pointers, a multiple byte integer (which 
we shall call mult) may be represented by a list of digits. In diagrammatic form as shown in figure 1. [2]: 

 
 
 
 
 
 

Figure 1. Multiple byte number format. 

2. Computer Operations with Integers 

Before computers were invented mathematicians did computations either by hand or by using 
mechanical devices. Either way, they were only able to work with integers of limited size. Many number 
theoretic computations, such as factoring and primality testing, require computations with integers with as 
many as 50 or even 100 digits. In this section we will study some of the basic algorithms for doing 
computer arithmetic. Then we will study the number of basic computer operations required to carry out 
these algorithms. 

It had been mentioned that computers internally represent numbers using bits, or binary digits. 
Computers have a built-in limit on the size of integers that can be used in machine arithmetic. This upper 
limit is called the word size, which we denote by w. The word size is usually a power of 2, such as 235, 
although sometimes the word size is a power of 10 [3]. 

To do arithmetic with integers larger than the word size, it is necessary to devote more than one word to 
each integer. To store an integer n > w, we express n in base w notation, and for each digit of this 
expansion we use one computer word. For instance, if the word size is 235, using ten computer words we 
can store integers as large as 2350 - 1, since integers less than 2350 have no more than ten digits in their 
base 235 expansions. Also note that to find the base 235 expansion of an integer, we need only group 
together blocks of 35 bits [3]. 

The first step in discussing computer arithmetic with large integers is to describe how the basic 
arithmetic operations are methodically performed. 

We will describe the classical methods for performing the basic arithmetic operations with integers in 
base r notation where r > 1 is an integer. These methods are examples of algorithms (The word 
"algorithm" has an interesting history, as does the evolution of the concept of an algorithm. "Algorithm" 
is a corruption of the original term "algorism" which originally comes from the book Kitab Al Jabr w'Al-
Maqabala {Rules of Restoration and Reduction} written by Abu Ja’far Mohammed ibn Musa Al-
Khowarizmi, in the ninth century. The word "algorism" originally referred only to the rules of performing 
arithmetic using Arabic numerals. The word "algorism" evolved into "algorithm" by the eighteenth 
century. With growing interest in computing machines, the concept of an algorithm became more general, 
to include all definite procedures for solving problems, not just the procedures for performing arithmetic 
with integers expressed in Arabic notation). 

Definition: An algorithm is a specified set of rules for obtaining a desired result from a set of input [3]. 
We will describe for performing addition, subtraction, and multiplication of two n-digit integers a = (an 

 



– 1 an – 2 … a1 a0)r and b = (bn – 1 bn – 2 … b1 b0)r. The algorithms described are used both for binary 
arithmetic with integers less than the word size of a computer, and for multiple precision arithmetic with 
integers larger than the word size w, using w as the base [3]. 

The implementation of asymmetrical cryptographic schemes often requires the use of numbers that are 
many times larger than the integer data types that are supported natively by the compiler. In this article, 
we give an introduction to the implementation of arithmetic operations involving large integers. 

Implementation Details: The most common way of representing numbers is by using the positional 
notation system. Numbers are written using digits to represent multiples of powers of the specified base. 
The base that we are most familiar with and use every day, is base 10. When we write the number 12345 
in base 10[2], [4] and [5], it actually means 

1234510= 1x104 + 2x103 + 3x102 + 4x101 + 5x100 

Similarly, if the same number is specified in base 16, then 

1234516= 1x164 + 2x163 + 3x162 + 4x161 + 5x160 

Hence, it is important to know the base that the number is specified in, since the same representation 
could represent different values when interpreted in different bases. In general, a positive number can be 
written as a polynomial of order k, where k is non-negative and ak != 0. 

n = akbk + ak-1bk-1 +... + a1b1 + a0 

b represents the base with 0 <= a <= b-1. 
For base 10 representation, b = 10 and the digits allowed at each position is 0 <= a <= 94. But to get 

full advantage of these multiple byte integers, as the weight is set as byte, the best radix (b) is 256 and the 
digits allowed at each node is 0 <= a <= 255 [2]. 

2.1. Addition of Multiple Byte Integers 
The addition of two numbers can be represented as the addition of two lists (polynomials) as shown 

below. 
Let 

n = akbk + ak-1bk-1 +... + a1b1 + a0 m = ckbk + ck-1bk-1 +... + c1b1 + c0 

Then 

n + m = (ak + ck)bk + (ak-1 + ck-1)bk-1 +... + (a1 + c1)b1 + (a0 + c0)[2] 

They don’t have to be equal in length; i.e., n has k while m has j, and k != j. But the radix is the same, 
for all arithmetical operations done. 

However, it is often easier to visualize the addition of two large numbers as the digit-by-digit addition 
at each position. When we add the digits at a particular position, the largest resulting value is 2b – 2[6]. 

Proof: Since the maximum value of each digit is b - 1, we have 

(b - 1) + (b - 1) = 2b - 2 

Since 2b - 2 < 2b, the maximum value that we have to carry over to the next higher position is 1. For 
example, if we add 9 and 9 in base 10, we get 18, where 8 remains in the current position and the 1 gets 
carried on to the next higher position. When adding the two digits in the next position, we must 
remember to add the carry as well[6]. 

We first discuss the algorithm for addition. When we add a and b, we obtain the sum 

a + b = ∑௡ିଵ
௝ୀ଴ ajrj + ∑௡ିଵ

௝ୀ଴ bjrj = ∑௡ିଵ
௝ୀ଴ (aj + bj)rj, 

To find the base r expansion of a + b, first note that by the division algorithm, there are integers C0 and 
s0 such that 

a0 + b0 = C0r + s0, 0 ≤ s0 < r. 

Because a0 and b0 are positive integers not exceeding r, we know that 0 ≤ a0 + b0 ≤ 2r – 2, so that C0 = 



0 or 1; 
here C0 is the carry to the next place. Next, we find that there are integers C1 and s1 such that 

a1 + b1 + C0 = C1r + s1, 0 ≤ s1 < r. 

Since 0 ≤ a1 + b1 + C0 ≤ 2r – 1, we know that C1 = 0 or 1. Proceeding inductively, we find integers Ci 

and si for 1 ≤ I ≤ n – 1 by 

ai + bi + Ci – 1 = Cir + si, 0 ≤ si < r, 

with Ci = 0 or 1. Finally, we let sn = Cn – 1, since the sum of two integers with n digits has n + 1 digits 
when there is a carry in the nth place. We conclude that the base r expansion for the sum is a + b = (sn sn – 1 

… s1 s0)r. 
When performing base r addition by hand, we can use the same familiar technique as is used in 

decimal addition[5]. 
The two number lists must be traversed from right to left; i.e., from the smallest weight, adding the two 

corresponding nodes and the carry digit, what is greater than the radix is then added to the next nodes 
sum. Every addition result is inserted into a node of the resultant number list. Finally if there is also a 
carry, a node is again inserted and attached at the front of the list representing the sum of the two number 
lists. 

This is precisely what happens in the definition of the operator+(). 
mult& mult::add(mult ms1, mult ms2)  // [7] & [8] 
     { 
      int a;  // The value of adding the two digits.   

 int carry = 0;// The carry of if the sum of the two digits is greater than the radix, initially is zero. 
 mult ms3; // The product list of addition. 

      multscan thisptr(ms1, NEXT);// Traverse from right to left, the first is the most smallest weight    
            dgtp pr1; 
            multscan thatptr(ms2, NEXT); 
            dgtp pr2; 
          while(((pr1 = thisptr()) != 0) && ((pr2 = thatptr()) != 0))    // While both are equal in length.  
            { 
   a = int(pr1 -> dgt) + int(pr2 -> dgt) + carry;   //[9], [10]  & [11] 

if(((pr1 -> dgt) + (pr2 -> dgt) + carry) >= radix) 
                { 
   carry = a / radix; 
                                a = a % radix; 
                } 
               else carry = 0; 
              ms3.append(a); 
            } 
         if(ms1.numdgt > ms2.numdgt)// If I didn't do this loop, the next digit of the first list will be lost.  
            { 
             a = int(pr1 -> dgt) + carry; 
                   if(((pr1 -> dgt) + carry) >= radix) 
   { 
   carry = a / radix; 
   a = a % radix; 
   } 
  else carry = 0; 
             ms3.append(a); 
            } 
 while((pr1 = thisptr()) != 0) // While the first list is greater in length than the second list. 

{ 
           a = int(pr2 -> dgt) + carry; 
           if(a >= radix) 
  { 



  carry = a / radix; 
  a = a % radix; 
  } 
   else carry = 0; 
             ms3.append(a); 
            } 
          if(carry >= 1)  ms3.append(carry); // If the last digit addition carry is not zero, an attached node. 
 // Is appended to the product list. 

if((ms1.sgn == -1) && (ms2.sgn == +1))// Checking if the two lists, doesn't have the same sign. 
               { 

      ms1.sgn = ms2.sgn = +1;  // Changing the signs first. 
      ms3 = ms2 - ms1;  // A SWAP is done with a subtraction, but the sign will be negative. 

                ms1.sgn = -1;   // The product will have a negative sign. 
               cout << "  The Result value : "; 
               printmult(ms3); 

    exit(0); 
            } 
         if((ms1.sgn == +1) && (ms2.sgn == -1))  
// Checking if the two lists, doesn't have the same sign. 
          { 
           ms1.sgn = ms2.sgn = +1; // Changing the signs first. 
           ms3 = ms1 - ms2; // A subtraction is done here. 
           ms2.sgn = -1;   // The product will have a negative sign. 
           cout << "  The Result value : "; 
           printmult(ms3); 
           exit(0); 
           } 
cout << "\n The addition : \n  "; 
rs = ms3; // I need two variables, because sometimes in an addition, I also perform a subtraction. 
printmult(ms3); // One is local and the other is global to return the result. 
return rs; 
} 
The inline operator does the inline + operator between two multiple-Byte integers, where m1 is the first 

number list, m2 is the second number list, pa is a temporary resultant number list. 
inline mult operator + (mult m1, mult m2) { return (pa.add(m1, m2)); } 
The lists in number1 and number2 are traversed from right to left using list <Byte int> reverse iterators 

that are moved through the lists synchronously by using the increment operator. The carry digit and the 
blocks at each position of the iterator are added, the new carry digit and sum block are calculated, and the 
sum block inserted at the front of the list in sum using list’s insert() operator. 

Sign Test for Addition 
a) If the sign of the first number list is positive and the sign of the second number list is positive, a 

normal addition will be done with the resultant sign, will be positive. 
b) If the sign of the first number list is negative and the sign of the second number list is positive, a 

subtraction operation is done using the subtraction operator, after treating that both signs are 
positive and the first number list will be the second number list for the subtraction operation; i.e., 
reversing numbers. 

c) If the sign of the first number list is positive and the sign of the second number list is negative, a 
subtraction operation is done after treating that both signs are positive. 

d) The length of numbers can be tested here as addition is no good as subtraction for the subtraction 
has a fixed rule the state: 

(i). If first’s sign is negative and second’s sign is negative for for subtraction, the resultant sign will be 
negative and the operation will be subtraction. 

(ii). If first’s sign is negative and second’s sign is positive for subtraction, the resultant sign will be 
negative and the operation will be addition. 

(iii). If first’s sign is positive and second’s sign is negative for subtraction, the resultant sign will be 



positive and the operation will be addition. 
(iv). If first’s sign is positive and second’s sign is positive for 
subtraction, the resultant operation will depend on the length of each of the number lists size. If the 

second length is greater, the resultant sign will be negative otherwise it will be positive. 

2.2. Subtraction of Multiple Byte Integers 
The subtraction of two numbers is very similar to addition and can be easily implemented as byte-by-

byte subtraction. However, when subtracting two digits, we often encounter the situation where the first 
digit is smaller than the second. In this case, we have to borrow 1 from the digit in the next position. This 
is actually done by subtracting 1 from the digit in the next higher position and adding the value of the 
base to the current digit[6]. 

We consider 

a – b = ∑୬ିଵ
୨ୀ଴ ajrj - ∑௡ିଵ

௝ୀ଴ bjrj = ∑௡ିଵ
௝ୀ଴ (aj – bj)rj, 

Where we assume that a > b. Note that by the division algorithm, there are integers B0 and d0 such that 

a0 – b0 = B0r + d0, 0 ≤ d0 < r, 

and since a0 and b0 are positive integers less than r, we have 

-(r – 1) ≤ a0 – b0 ≤ r – 1. 

When a0 – b0 ≥ 0, we have B0 = 0. Otherwise, when a0 – b0 < 0, we have B0 = -1; B0 is the borrow, 
from the next place of the base r expansion of a. We use the division algorithm again to find integers B1 
and d1 such that 

a1 – b1 + B0 = B1r + d1, 0 ≤ d1 < r. 

From this equation, we see that the borrow B1 = 0 as long as a1 – b1 + B0 ≥ 0, and B1 = -1 otherwise, 
since –r ≤ a1 – b1 + B0 ≤ r – 1. We proceed inductively to find integers Bi and di, such that 

ai – bi + Bi – 1 = Bir + di, 0 ≤ di ≤ r 

with Bi = 0 or -1, for 1 ≤ i ≤ n – 1. We see that Bn – 1. We see that Bn – 1 = 0, since a > b. We can 
conclude that 

a – b = (dn – 1 dn – 2 … d1 d0)r. 

When performing base r subtraction by hand, we use the same familiar technique as is used in decimal 
subtraction[3]. 

The two number lists must be traversed from right to left; i.e., from the smallest weight, subtracting the 
two corresponding nodes and the borrow digit if the result is negative, will be taken a radix in size from 
the exceeding first number digit; i.e., will be subtracted from the next subtraction of the other two 
corresponding digits. 

mult& mult::sub(mult mt1, mult mt2) // [7] & [8] 
{ 
int borrow = 0; // The borrow if the first list digit was smaller than the second list digit, 

//initially is zero. 
          int at; // The value of subtracting the two digits.   
          mult mt3, buf; // The buf is needed when the second list length is greater than the first list. 
          multscan thisptr(mt1, NEXT);// Traverse from right to left, the first is the most smallest weight    
           dgtp pt1; 
           multscan anotherptr(mt2, NEXT); 
          dgtp pt2; 

while(((pt1 = thisptr()) != 0) && ((pt2 = anotherptr()) != 0)) 
            { 
            at = int(pt1 -> dgt) - int(pt2 -> dgt) - borrow; 

if((pt1 -> dgt) < (pt2 -> dgt)) 
                    { 



               at = at + radix; 
         borrow = 1; 
               } 
               else borrow = 0; 
            mt3.append(at); 
                  } 
           if(mt1.numdgt > mt2.numdgt) 
           { 
             at = int(pt1 -> dgt) - borrow; 
             if(at == 0) 
                { 
   at = at + radix; 
                   borrow = 1; 
           } 

 else borrow = 0; 
 
             if(at <= 0) borrow = 1; 
             mt3.append(at); 
           } 
           while((pt1 = thisptr()) != 0)   // While the first list is greater in length than the second list. 
           { 
             at = int(pt1 -> dgt) - borrow; 
             if(at <= 0) borrow = 1; 
             mt3.append(at); 
           } 
   mt3.sgn = +1; 
   if((mt1.sgn == -1) && (mt2.sgn ==  -1))  mt3.sgn = -1; 
// The product will have a negative sign. 
          mt3 = rs; 
         } 
        if((mt1.sgn == +1) && (mt2.sgn == -1))// Checking if the two lists, doesn't have the same sign. 
             { 
                mt1.sgn = mt2.sgn = +1; // Changing the signs first. 
                mt3 = mt1 + mt2;  // Addition is done here. 
                mt3.sgn = +1;  // The product will have a positive sign. 
                mt3 = rs; 
             } 
  if(mt1.numdgt < mt2.numdgt) // If the second list length is greater than the first list. SWAP 
            { 
             mt3 = mt2 - mt1; 
             mt3.sgn = -1; 
 // The product will have a negative sign. 
             mt3 = rs; 
            } 
        cout << "\n The subtraction : \n  "; 
        rs = mt3; 
        printmult (mt3); 
        return rs; 
          } 

Sign Test for Subtraction 
If the sign of the first number list is negative and the sign of the second number list is positive, an 

addition operation is done after treating both signs as positive. The resultant sign will be set to negative. 
a) If both signs were negative, then the sign of the resultant is also negative. 
b) If the sign of the first number list is positive and the sign of the second number list is negative, an 

addition operation is done after treating both signs as positive. The sign of the resultant is set to 



positive. 
c) If the length of the first number list is less than that of the first, then a message will appear and the 

numbers will be swapped; i.e., the first will be the second for the subtraction operation. The 
resultant will have a negative sign. 

d) If the length of the first number list is less than that of the first, then a message will appear and the 
numbers will be swapped; i.e., the first will be the second for the subtraction operation. The 
resultant will have a negative sign. 

2.3. Multiplication of Multiple Byte Integers 
The simplest way to implement multiplication is by using repeated addition. To compute a * b, we set 

the result to 0, then we repeatedly add a to the result for b number of times. Although this approach is 
simple, its complexity is O(b) large integer additions and is equivalent to O(bn) byte-by-byte additions, 
where n is the number of digits in the large integer. For large b, O(bn) > O(n2). Hence, this approach does 
not scale to large multipliers. 

The next easiest approach is by using techniques that we have learnt in elementary schools. More 
precisely, we multiply a by the each digit of b and sum the partial results4. It is clear that the time 
complexity of multiplying two large integers is O(n2) byte multiplications where n is the number of digits 
in the number. The process of adding the partial results has a complexity of O(n) large integer additions, 
equivalent to O(n2) byte additions. Thus, the total complexity is O(n2) byte multiplications and O(n2) byte 
additions4. But before discussing multiplication, we describe shifting. To multiply (an – 1 … a1 a0)r by rm, 
we need only shift the expansion left m places, appending the expansion with m zero digits. 

Example: To multiply (101101)2 by 25, we shift the digits to the left five places and append the 
expansion with five zeros, obtaining (10110100000)2. □ 

To deal with multiplication, we first discuss the multiplication of an n-place integer by a one-digit 
integer. To multiply (an – 1 … a1 a0)r, we first note that 

a0b = q0r + p0, 0 ≤ p0 < r, and 0 ≤ q0 ≤ r – 2, since 0 ≤ a0b ≤ (r – 1)2. Next, we have 
a1b + q0 = q1r + p1, 0 ≤ p1 < r, and 0 ≤ q1 ≤ r – 1. In general, we have 
aib + qi – 1 = qir + pi, 0 ≤ pi < r and 0 ≤ qi ≤ r – 1. Furthermore, we have pn = qn – 1. This yields (an – 1 … 

a1 a0)r (b)r = (pn pn – 1 … p1 po)r. 
To perform a multiplication of two n-place integers we write 

ab = a ∑௡ିଵ
௝ୀ଴ bjrj = ∑௡ିଵ

௝ୀ଴ (abj)rj, 

For each j, we first multiply a by the digit b1, then shift to the left j places, and finally add all of the n 
integers we have obtained to find the product. 

We multiplying two integers with base r expansion, we use the familiar method of multiplying decimal 
integers by hand[3]. 

Again the two number lists were traversed from right to left, taking the first digit of the second number 
list and multiply it with each digit of the first number list. Each multiplication if greater than the radix, a 
carry digit will be added to the next proceeding nodes’ result. A node will be created when the last digit of 
the first number list is reach and there was a carry, at the front of the list. The next multiplication of the 
next digit of the second number list will be done in the same way except that a zero digit will be inserted 
first at the most right node of the result. The next other ones, every time an increment is done; i.e., two 
zero’s will be inserted in the most right nodes of the result, and so one, using an iterator. Every resultant 
of each multiplication of a digit of the second number list is added to the one before it, and the sum will 
be the final resultant of the multiplication operation. The addition operator will be used here, but without 
the sign test. Both signs will be treated as positive. 

The Sign Test results only in the final resultant sign, and if the sign of the two numbers lists were 
different, then the resultant sign will be negative, otherwise it is positive. 

 
mult& mult::mul(mult m1, mult m2) // [7] & [8] 
    { 
  int carrym; 
      long unsigned int x, count = 0; 
      long int ssum; 
      mult mmp, mb; // mb to store each last addition of the multiplications done. 



multscan anotherptr(m2, NEXT);// Traverse from right to left, the first is the most smallest 
//weight    

            dgtp p2; 
               while((p2 = anotherptr()) != 0) 
// For every digit of the second list, it multiple all the first list. 
            { 
             carrym = 0; 
             mult ma;  // Each time, a new initiated variable list is needed. 
     for(x = 0; x < count; x++)   ma.append(0); // Shifting the first leading zeros. 
              multscan otherptr(m1, NEXT); 
                       dgtp p1; 
                 while((p1 = otherptr()) != 0) 
                { 

ssum = int(p1 -> dgt) * int(p2 -> dgt) + carrym; 
   if(ssum >= radix) 
   { 
  carrym = ssum / radix; 
  ssum = ssum % radix; 
                   } 
        else carrym = 0; 

ma.append(ssum); 
      } 
if(carrym >= 1) ma.append(carrym); // Attaching the last carry to the product list. 
if(count == 0) mmp = ma; // Initiale addition to the multiplication. 
  else  // Else adding every last multiplications to the next one. 

{ 
             mmp = ma + mb; 
             mmp = rs; 
            } 
         count++;  // The shifting of the leading zeros is incremented. 
         mb = mmp;  // The value of storing additions, is updated. 
           printmult(mmp); 
     } 
      mmp.sgn = +1; 
      if((m1.sgn == -1) && (m2.sgn == +1))  mmp.sgn = -1;  // Only the sign will be negative. 
     if((m1.sgn == +1) && (m2.sgn == -1))  mmp.sgn = -1; 
     if((m1.sgn == -1) && (m2.sgn == -1))  mmp.sgn = +1; 
      cout << "\n The multiplication : \n  "; 
      rs = mmp; 
      printmult(mmp); 
      return rs; 
 } 

2.4. Division of Integers 
We now discuss integer division. We wish to find the quotient q in the division algorithm 

a = bq + R, 0 ≤ R < b. 

If the base r expansion of q is q = (qn – 1 qn – 2 … q1 q0)r, then we have 

a = b ∑௡ିଵ
௝ୀ଴ qjrj + R, 0 < R < b. 

To determine the first digit qn – 1 of q, notice that 

a – bqn – 1 r n – 1 = b ∑௡ିଶ
௝ୀ଴ qjrj + R 

The right-hand side of this equation is not only positive, but also less than brn – 1, 



Since ∑௡ିଶ
௝ୀ଴ qjrj ≤ ∑௡ିଶ

௝ୀ଴ (r – 1)rj = ∑௡ିଵ
௝ୀ଴ rj - ∑௡ିଶ

௝ୀ଴  rj= rn – 1 – 1. 
Therefore, we know that 

0 ≤ a – bqn – 1 rn – 1 < brn – 1. 

This tells us that 

qn – 1 = [a / (brn – 1 )]. 

We can obtain qn- 1 by successively subtracting brn – 1 from a until a negative result is obtained, and then 
qn – 1 is one less than the number of subtractions. 

To find the other digits of q, we define the sequence of partial remainders Ri by R0 = a and 
For i = 0, this is clearly correct, since R0 = a = qb + R. Now assume that 

Rk = ∑௡ି௞ିଵ
௝ୀ଴ qjrj b + R. 

Ri = Ri – 1 – bqn – 1 rn – i 

For i = 1, 2, …, n. By mathematical induction, we show that 

Ri = ∑௡ି௜ିଵ
௝ୀ଴ qjrj b + R. 

Then 

Rk + 1 = Rk – bqn – k – 1 rn – k – 1 

= ∑௡ି௞ିଵ
௝ୀ଴ qjrj b + R – bqn – k – 1 rn – k – 1 

= ∑௡ି(௞ାଵ)ିଵ
௝ୀ଴ qjrj b + R. 

establishing *, which by it, we see that 0 ≤ Ri < rn – i b, for i = 1, 2, …, n, since ∑௡ି௜ିଵ
௝ୀ଴   qjr j ≤ rn – i – 1. 

Consequently, since Ri = Ri – 1 – bqn – i rn – i and 0 ≤ Ri < rn – 1 b, we see that the digit qn – i is given by [Ri – 1 
/ (brn – i)] and can be obtained by successively subtracting brn – i from Ri – 1 until a negative result is 
obtained, and then qn – i is one less than the number of subtractions. This is how we find the digits of q[5]. 

Again the two number lists must be traversed from right to left, subtracting the two corresponding 
digits. Here I’m not using the subtraction operator because I need a flag, which after each subtraction if 
there was a negative result, the flag is set to positive, indicating the end of the operation. The second 
number list is then subtracted from the resultant of the last subtraction until the flag is positive. The 
number of these subtractions while the flag is negative is the final resultant, been converted to a list itself; 
i.e., each time this iterator which count these subtraction is reach the radix size, a node of the final 
resultant is created and the modulo of the division of this iterator is inserted into a new node, creating the 
final division number list. The iterator was declared as long as to be able to present as large as possible 
for a really big integers as it can be for the resultant. 

mult& mult::dvd(mult mr1, mult mr2)  // [7] & [8] 
     { 
 int borrow = 0, d2, d1;  
 long unsigned int n = 0;  
 int ar, ps = 0;  
 mult mr3, mdval, buff = mr1;  
           if(mr2.numdgt > buff.numdgt) // If the second list length was greater than the first list.         

  {  
fp = 1; // This is a flag to show that the result will contain floating points.                

 cout << "\n Float division not integers \n";  
  mr3 = mdval = 0; // The result will be zero.  
  ps = 1;  // To terminate this operation, and not to go to next loop.               

  n = 0;  
  }  

while(ps == 0)  
{ // Traverse from right to left, the first is the most smallest weight                  



multscan thisptr(mr1, NEXT);      
  dgtp ptr1;  
    multscan anotherptr(mr2, NEXT);  
     dgtp ptr2; // I didn't use the subtraction operator because I needed a flag.              

while(((ptr1 = thisptr()) != 0) && ((ptr2 = anotherptr()) != 0))       
{  

   d2 = int(ptr2 -> dgt);  
   d1 = int(ptr1 -> dgt);  
   ar = d1 - d2 - borrow;  
   if((ptr1 -> dgt) < (ptr2 -> dgt))     

{ 
ar = ar + radix; 

              if(ptr1 -> next == 0) ar = 0;       
borrow = 1;                       
}  

    else borrow = 0;  
   ptr1 -> dgt = ar;  
   if(ar < 0) ps = 1; // The flag is on if the result is negative.                

}  
if(mr1.numdgt > mr2.numdgt)// When the first list is greater than the second. 

{   // Not to lost the next digit of the first list.                 
ar = int(ptr1 -> dgt) - borrow; 

                    if((ptr1 -> next != 0) && (ar == 0))        
                      {  
      ar = ar + radix; 
                         if(ptr1 -> next == 0) ar = 0; 

                       borrow = 1;                     
                       }  
     else borrow = 0;  

if(ar <= 0) borrow = 1;  
       ptr1 -> dgt = ar; // Change the first list digit.                  

if(ar < 0) ps = 1;  
}  

while((ptr1 = thisptr()) != 0) // When the first list is greater than the second.  
      {  

ar = int(ptr1 -> dgt) - borrow;  
ptr1 -> dgt = ar;  
 borrow = 0;  
}  

if(fp == 1)  // A suggested loop for Floating Point operation.             
        {  

mult buf;  
multscan thisptr(mr1, NEXT);  
dgtp ptrf;  
buf.sgn = mr2.sgn;  
buf.append(0);  // Shifting the first list to increase it.                
while((ptrf = thisptr()) != 0) 
 { 

         buf.append(int(ptrf -> dgt));  
          mr1 = buf;  

cout << "Fractional mult is ";  
printmult(mr1);  // if(n == 65000) ps = 1;  
} 

n = n + 1;  // Counting the number of subtractions.          
   



if((mr1.numdgt == mr2.numdgt) && (d2 > ar))  ps = 1; // Floating Point.  
  if((buff.numdgt == mr2.numdgt) && (d2 > d1))               

   {  
ps = 1;  
n = 0;  

   }  
if(ar <= 0) mr1.numdgt = mr1.numdgt - 1; // If last digit is less than zero,          

 if(mr1.numdgt == 0) ps = 1;  // then the length of it decreases.          
 if(mr1.numdgt < mr2.numdgt) ps = 1; // Floating Point result...           

}  
         mdval = mr1; 
         mdval.sgn = +1;   // The sign of the modulo is always positive.  
         pr = mdval; 
         mr1 = buff; 

while(n > 0) // Converting the decimal number of the counting into a multiple Byte List. 
{  

             ar = n % radix; 
             n = n / radix; 

mr3.append(ar); 
} 

         mr3.sgn = +1; 
       if((mr1.sgn == -1) && (mr2.sgn == +1)) mr3.sgn = -1; // Only the sign changes.  
    if((mr1.sgn == +1) && (mr2.sgn == -1)) mr3.sgn = -1; 
          if((mr1.sgn == -1) && (mr2.sgn == -1)) mr3.sgn = +1; 
         cout << "\n The module : \n  "; 
         //if(fp == 1) mdval = 0; 
         printmult (mdval); 
         cout << "\n The dividor : \n  "; 
         rs = mr3; 
         if(fp == 1) // A suggested loop for Floating Point operation. 
            { 

cout << "  This is a fraction : 0."; 
for(n = 0; n < fc; n++) cout << "0"; 
} 

printmult(mr3); 
if(fp == 1) cout << "  Sorry but this fraction can not be returned. This opens up a new research. \n"; 

return rs; 
    } 
A test is done first to see if the second number length of nodes is greater than the first. If it is so, a 

message will appear, telling that there will be a Floating-Point result, which is another research to be 
done. If both numbers’ lengths are equal, traverse from left to right, here is the advantage or ‘use’ of the 
doubly-linked list structure reason of being there, to check if the second number is greater than the first; 
again there is the message of a Floating-Point research. 

The Sign Test results only in the final resultant sign, and if the signs of the two numbers’ lists were 
different, then the resultant sign will be negative, otherwise it is positive. Just like multiplication. 

(i). Floating Point Numbers 
There are two problems with integers; they cannot express fractions, and the range of the number is 

limited to the number of bits used. An efficient way of storing fractions is called the floating point 
method, which involves splitting the fraction into two parts, an exponent and a mantissa.  

The exponent represents a value raised to the power of 2.  
The mantissa represents a fractional value between 0 and 1.  
Consider the number  
   12.50  
The number is first converted into the format[3]  
  2n * 0.xxxxxx  



Where n represents the exponent and 0.xxxxx is the mantissa.  
The computer industry agreed upon a standard for the storage of floating point numbers. It is called the 

IEEE 754 standard, and uses 32 bits of memory (for single precision) called float in C family languages 
and real or real*4 in Fortran language: gives significant precision 24 bits and accuracy to approximations 
7 decimal digits, or 64 bits (for double precision accuracy) called double in C family languages and 
double precision or real*8 in Fortran language: occupied 64 bits and has significant precision to 53 bits 
which gives accuracy to approximations 16 decimal digits. The single precision format looks like,  

 
Figure 2. Floating point number format. 

Figure 2 [12], shows the way fractions are stored in the computer. 
The sign bit is 1 for a negative mantissa, and 0 for a positive mantissa.  
The exponent uses a bias of 127.  
The mantissa is stored as a binary value using an encoding technique.  
Working out the Floating Point bit patterns: The number we have are 12.5, which expressed as fraction 

to the power of 2 is,  
  12.5   / 2 = 6.25  
 6.25   / 2 = 3.125  
 3.125 / 2 = 1.5625  
 1.5625 / 2 = 0.78125  
NOTE: Keep dividing by 2 till a fraction between 0 and 1 result. The fraction is the mantissa value; the 

number of divisions is the exponent value.  
Thus our values now are,  
  0.78125 * (2*2*2*2) (comment: this is 2 to the power of 4) 
The exponent bit pattern is stored using an excess of 127. This means that this value is added to the 

exponent when storing (and subtracted when removing).  
The exponent bit pattern to store is,  
  4 + 127 = 131 = '10000011'  
 As the mantissa is a positive value, the sign bit is 0.  
The mantissa is a little more complicated to work out. Each bit represents 2 to the power of a negative 

number. It looks like,  
 1st bit of mantissa = 0.5  
 2nd                       = 0.25  
 3rd                       = 0.125  
 4th                       = 0.0625  
 5th                       = 0.03125  
 etc  
The mantissa number value we have is 0.78125, which in binary is  
 11001000000000000000000 (0.5 + 0.25 + 0.03125)  
  
How-ever, to make matters even more complicated, the mantissa is normalized, by moving the bit 

patterns to the left (each shift subtracts one from the exponent value) till the first 1 drops off[12].  
The resulting pattern is then stored.  
The mantissa now becomes  
 10010000000000000000000  
And the exponent is adjusted to become  
 131 - 1 = 130 = '10000010'  
The final assembled format is,  



 

Now let’s convert the following storage format back into a decimal number. 

 

This gives a negative number with an exponent value of,  

131 - 127 = 4 

And, a mantissa value of,  

1.0 + 0.5 + 0.0625 = 1.5625 

(The 1.0 comes from the bit which was shifted off when the mantissa was normalized), thus the number 
is,  

-1.5625 * 2^4 = -25.0 

The numeric range for floating point numbers using the IEEE-754 [12]method, using 32 bits, is  

+- 0.838860808 * 2-128 to +- 0.838860808 * 2127 

or, in decimal[12],  

2.4652 * 10-39 to 1.4272 * 1038 

(ii). The Advantages of Storing Floating Point Numbers in This Way 
a. Multiplication is performed by adding exponents and mantissas.  
b. Division is performed by subtracting exponents and mantissas.  
c. It is easy to compare two numbers to see which is the greater or lesser.  
d. Large number ranges are stored using relatively few bits.  

(iii). The Disadvantages of the Storage Format  
a. Errors are created by moving the mantissa bits.  
b. Conversion backwards and forwards takes time.  
c. There are fractions in the real world that can not be represented binary like 1/3. 
d. There are also fractions so very small found in the real world applications approximated but they are 

important and cause big differences. 
e. Sometimes the fraction occupies a small number of bits than the one set wasting space. 
f. Approximations done for smallest of space causes inaccuracies that make fractions equal while in 

real thing they are not. That is why the comparisons operations are not accurate. 

2.5. Exponential Operation 
Here the first number list is multiplied by itself, using the multiplication operator, according to the 

second number digits times. The second number is traverse from right to left, each digit is multiplied by 
the radix raised to its weight, and this result number control the number of iteration of the multiplication 
of the first number list. This number if it is greater that the maximum of integers for the mathematic 
function then there will be a problem as these functions were built on integers, log or pow, which raise the 
radix to its coefficient. 



mult& mult::expo(mult me1, mult me2) // [7] & [8]  
{  long unsigned int x, count = 0; 

mult me3; 
me3 = me1; 
multscan thatptr(me2, NEXT);// Traverse from right to left, the first is the most smallest weight 
dgtp pe2; 

while((pe2 = thatptr()) != 0) 
{ 
for(x = 0; x < ((int(pe2 -> dgt) * (exp((count) * (log(radix))))) - 1); x++) 
me3 = me3 * me1; count++; 
} 

if(me2.sgn == -1) 
{ 
me3 = 0;    cout << "This is a fractional, beyond this research \n"; 
} 

cout << "\n The exponential: \n "; 
rs = me3; 
printmult(me3); 
return rs; 
} 
Warning: The second number digit if it is zero and length one, is trivially known that any number, 

raised to zero is one. No need to do it here. 
The second number sign can not be negative as Floating-Point numbers are outside this scope of 

research. 

2.6. Comparison Operation 
Here, the lengths of the two numbers are compared, if their signs are the same. The larger is the big 

one. 
mult& mult::cmp(mult mc1, mult mc2) // [7] & [8] 

{ 
int pr = 0, d2, d1; 
mult mc3; 
multscan (mc2, LAST); // Traverse from left to right, the first is the most greatest weight 
dgtp p2;   // Here shows why it was a doubly-linked list 
multscan otherptr(mc1, LAST); 
dgtp p1; 
if((mc1.sgn == +1) && (mc2.sgn == -1))     

{ 
pr = ptrgt = 1; // A flag so as not to perform the next loop. 

     mc3 = mc1; // The greatest will be the first list. 
    } 

if((mc1.sgn == -1) && (mc2.sgn == +1) 
  { 

   pr = ptrlt = 1; // A flag of the less than is set on.     
  mc3 = mc2; // The greatest will be the second list. 

} 
if((mc1.numdgt < mc2.numdgt) && (mc1.sgn == mc2.sgn) 

{ 
pr = ptrlt = 1; 
mc3 = mc2; 
} 

if((mc1.numdgt > mc2.numdgt) && (mc1.sgn == mc2.sgn)) 
{ 
pr = ptrgt = 1; 
mc3 = mc1; 
} 



if((mc1.numdgt == mc2.numdgt) && (mc1.sgn == mc2.sgn)) 
{ 
while(((p1 = otherptr()) != 0) && ((p2 = anotherptr()) != 0)) 

{ 
d2 = int(p2 -> dgt); 
d1 = int(p1 -> dgt); 
cout << "D1 " << d1 << " D2 " << d2 << "\n"; 
if(d2 > d1) 

{ 
pr = ptrlt = 1; 
mc3 = mc2; 
cout << "M2 > M1 \n";  
} 
else if(d2 < d1) 

{ 
pr = ptrgt = 1; 
mc3 = mc1; 
cout << "M1 > M2 \n"; 
} 

} 
if(pr == 0) 

{ 
cout << "They are Equal 'But': "; 
if(mc1.sgn == mc2.sgn) mc3 = 0; 
ptreq = 1; // A flag of the equal than is set on. 
} 

cout << "\n The Greater is: \n "; 
if(mc3.sgn == +1) ch = '+'; 

else ch = '-'; 
rs = mc3; 
printmult(mc3); 
return rs; 

} 
If one is negative, then it is trivially that the other number is the bigger whatever is the length is of its 

nodes. 
If the lengths are equal, same sign, here the number lists are traversed from left to right, digits are 

compared, and the first one which is bigger than the other, then this one is the bigger. If there are all the 
same, then these numbers are equal, totally. 

2.7. Binary Conversion 
Multiple byte integers is usually based on 256 or the radix is 256. So to convert this number to binary, 

each digit is converted to 8 digits of binary[13] and [14]. 

3. Results 

These are some examples done by my program: 
Addition: 
{+, 56, 78, 98, 245, 160} + {+, 45, 3, 68} = {+, 101, 81, 166, 245, 160} 
In decimal = + 435161593248. 
{+, 34, 120, 36, 86} + {-, 100, 200} = {+, 190, 175, 35, 86} ≡ + 3199148886. 
{-, 34, 25, 78, 90, 200} + {+, 200, 220, 98} = {-, 90, 60, 235, 89, 200} ≡ - 387569113544.  {-, 

120, 38, 98} + {-, 36, 200} = {+, 156, 238, 98} ≡ + 10284642. 
Subtraction: 
{+, 200, 39, 87, 65, 55} – {+, 48, 98, 120} = {+, 152, 197, 222, 64, 55} ≡ + 656154705975.  {-, 46, 

24, 33, 78, 200} – {+, 47, 75, 98} = {-, 93, 99, 131, 78, 200} ≡ - 401101508296. 
{+, 40, 39, 28, 36, 20} – {-, 200, 180} = {+, 240, 219, 28, 36, 20} ≡ + 1034468205588. 



{-, 230, 48, 170, 78} – {-, 49, 160, 120, 35, 84} = {-, 75, 111, 206, 212, 83} ≡ - 323998372947. 
Multiplication: 
{+, 160, 147, 222} * {+, 250, 59} = {+, 64, 10, 98, 37, 52} ≡ + 275052111156. 
{+, 20, 49, 120, 223} * {-, 98, 78, 57} = {-, 168, 225, 106, 24, 47, 6, 50} 
{-, 206, 187, 135} * {+, 24, 69, 47} = {-, 
80, 33, 102, 203, 146, 51} ≡ - 
88104388760115. 
{-, 201, 167, 96, 58} * {-, 222, 189, 49} = 
{+, 78, 229, 41, 25, 204, 87, 11} 
Division & Modulus: 
{+, 222, 190, 211} / {+, 208, 199} = {+, 16, 1} ≡ + 4097. 
{+, 222, 190, 211} % {+, 208, 199} = {+, 221, 113, 0} ≡ + 14512384. 
Exponential: 
{+, 87, 75, 129, 89, 221} ^ {+, 4} = {+, 33, 96, 31, 76, 246, 132, 214, 67, 181, 98, 89, 82, 83, 
145, 234, 146, 69, 220, 24, 143} ≡ + 190540291944837396024051783373730745330450568591. 
Comparison: 
{+, 39, 67, 128, 226} < {-, 87, 75, 129, 89, 221} = Greater {+, 39, 67, 128, 226} 
< False. 

4. Related Work 

4.1. BH Flowers’s Work 

Double linked list were used to store the digits, used to define the integers. The power of C++ is used 
to define functions to construct list. A decimalizing constructor is made that convert any stored list in 
decimal number. This number is returned as strings as the limit of integers were exceeded. There are also 
forward and backward constructors, traversing of these lists. 

4.1.1. Future Work 
(i). Arithmetic operators on multiple byte integer. 
(ii). Multiple byte float point numbers and they arithmetic operations. 

4.1.2. Conclusion 
The sign character is not showing in the final result of the decimal string. The Boolean type BH 

Flowers made, did not work for me. If the first digit of the string is zero, the decimal will be zero. The 
error message function contains errors on the standard .h header file. 

4.2. Chew Keong Tan’s Work 

The implementation of asymmetrical cryptographic schemes often requires the use of numbers that are 
many times larger than the integer data types that are supported natively by the compiler. In this article, 
an introduction was given to the implementation of arithmetic operations involving large integers. No 
attempt was tried to give a full coverage of this topic since it is both complex and lengthy. For a more 
detailed treatment, the reader is referred to the listed references of his[6]. 

The source code that accompanies his article implements the Big Integer class supporting large integer 
arithmetic operations. Overloaded operators includes +, -, *, /, %, >>, <<, ==, !=, >, <, >=, <=, &, |, ^, ++, 
-- and ~. Other additional features such as modular exponential, modular inverse, pseudo prime 
generation and probabilistic primality testing are also supported. 

4.2.1. Features 
1) Arithmetic operations involving large signed integers in 2's complement representation.  
2) Prime number tests using Fermat's Little Theorem, Rabin Miller's method and Solovay Strassen's 

method.  
3) Modular exponential with Barrett reduction.  
4) Modular inverse.  
5) Random Pseudoprime generation.  
6) Random Coprime generation.  



7) Greatest common divisor. 

4.2.2. Future Work 
(i). Faster implementation of arithmetic operations.  
(ii). More robust primality testing methods.  
(iii). Faster pseudo prime generation  

4.2.3. Conclusion 
In his article, he has provided a short introduction to the topic of large integer arithmetic. Then he has 

looked at how large integer addition, subtraction and multiplication can be implemented. Also he 
examined the problem of primality testing and introduced the concept of primality testing based on 
Fermat's Little Theorem. His implementation of BigInteger class can be downloaded from his page and 
provides the overloading of most arithmetic operators. He has pointed out the limitations of his 
implementations of primality testing and is working towards more robust primality testing methods and 
faster implementation of arithmetic operators. 

5. Conclusion and Recommendation 

The new data type described in this study combines the advantages of algorithm of double-linked lists 
and the precision is more than the decimal system. The concept of a list preserves space and memory 
space which the integer has to hold.  

The sign test is taken from the way it is done in calculators. I noticed that the subtraction showed a rule 
that is fixed for all types of conditions, which can be used in addition also. 

We created our own Boolean type using the same way as BH Flowers did. 
I do recommend a further work to complete the definition of multi-precision type for floating point 

representation of real numbers. Also the basic operations should overload.  
The working overall program is in my book[15]. 

 
 

References 
[1] Bits and Bytes, Sun Microsystems, at http://www.java.sun.com, accessed on 27 March 2007. 

[2] B. H. Flowers, An Introduction to Numerical Methods in C++, Oxford University Press, 1995. 

[3] Kenneth H. Rosen, Elementary Number Theory and its Applications, AT&T Bell laboratories and Kenneth H. 
Rosen, 1993. 

[4] Greg Goebel, Computer Numbering Formats, at http://www.vertorsite.net, accessed on 12 June 2005. 

[5] Paul N. Hilfinger, Numbers, University of California, Department of Electrical Engineering and computer 
sciences, computer sciences division, C561B, Fall 1999. 

[6] Chew Keong Tan, The Code Project – C# BigInteger Class – C# Programming, 2002, at 
http://www.codeproject.com, accessed on 6 August 2005. 

[7] Bjarne Stroustrup, AT&T, The C++ Programming Language, Addison-Wesley Longman Inc.(1997), Third 
Edition. ISBN: 0-201-88954-4. 

[8] Michael A. Smith, Object-Oriented Software in C++, Chapman & Hall(1993), First Edition, ISBN: 0 412 55380 
5. 

[9] Ellis Horowitz and Sartaj Sahri, Fundamentals of Data Structures, Computer Science Press, Inc., 1983. 

[10] Neil Dale, C++ Plus Data Structures, By Jones and Bartlett Publishers, inc., 1999. 

[11] Mark Allen Weiss, Data Structure And Algorithm Analysis in C++, Pearson College Div; 3rd Edition (March 1, 
2006), ISBN-10  :  032144146X,  ISBN-13  :  978-0321441461. 

[12] Brian Brown, Data Structures and Number Systems, 1984-2000, at http://goforit.unk.edu, accessed on 3 
December 2007. 

[13] Ishraga Allam, Binary(2007), DOI: 10.13140/RG.2.2.22717.74727, 



https://www.researchgate.net/publication/360454701_Binarypdf. A C++ program to change decimal numbers 
into binary numbers & Binary numbers change them into decimal numbers. 

[14] Wikipedia, the free encyclopedia, Computer numbering formats – at http://en.wikipedia.org, accessed on 3 May 
2007. 

[15] A research on The Development of Arithmetic Operations on Multiple Byte Integers, done by Ishraga Mustafa 
Awad Allam at University of Khartoum, Faculty of Mathematical Sciences, edited 2007, defied 2009 and 
published 2010. It is also available as a book Arithmetic Operations on Multiple Byte Integers, done by Ishraga 
Allam, published by Lambert Academic Publishing. Telefax: +371 686 20455, email: info@omniscriptum.com, 
www.lap-publishing.com. Isbn 978-620-0-47586-2. 

[16] A Thesis(2009): The Development of Arithmetic Operations on Multiple Byte Integers 

DOI: 10.13140/RG.2.2.28857.24163 

https://www.researchgate.net/publication/281372705_The_Development_of_Arithmetics_Operations_on_Multi
ple_Byte_Integers 

[17] A preprint: (1996). Arithmetic Operations on Multiple Byte Integers and an Introduction to 
Multiple Byte Fractions. DOI: 10.15140/RG.2.2.14146.09920 

https://www.researchgate.net/publication/351603614_Arithmetic_Operations_on_Multiple_Byte_Integers_and_
an_Introduction_to_Multiple_Byte_Fractions 

 

Authors 

Master in Computer and Mathematics Sciences: 
 .Joint Honour on Computer and Statistics 

Sciences. 
 


