
EasyChair Preprint
№ 9224

Static Code Analysis for C and C++ Using
VectorCAST Lint Tool

Veeresh Havalad, K J Priyanka, B Shweta, R Muttanna,
S Gokulan, A Mohammed and Yogendra C Dasar

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 3, 2022

Static Code Analysis for C and C++ using VectorCAST lint tool

 Veeresh Havalad, Priyanka K J, Shweta B, Muttanna R, Gokulan, Mohammed A, Yogendra C Dasar

Mando Softtech India [SW Verification]

Abstract:

VectorCAST/Lint uses the Industry Standard Lint Analysis Engine for C/C++ source code. Lint analysis identifies coding and logic

errors in code that is otherwise syntactically correct. VectorCAST/Lint can examine individual source files or an entire application

and provides comprehensive reporting capabilities. The VectorCAST/Lint tool is preconfigured to provide out-of-the box checking

for the MISRA C, MISRA C 2004, and MISRA C++ 2008 standards. The VectorCAST/Lint message browser makes it easy to

review errors and warnings in the context of the source file where they occur. Additionally, VectorCAST/Lint’s message browser

displays detailed explanations of the concepts behind the analysis. VectorCAST/Lint merges the technology of two industry

standard tools into a single IDE providing unprecedented efficiency for embedded developers.

Keywords: VectorCAST, MISRA Guidelines, Static Testing

1. INTRODUCTION

Static Testing is a software testing technique

which is used to check defects in software application

without executing the code. Static testing is done to avoid

errors at an early stage of development as it is easier to

identify the errors and solve the errors. It also helps finding

errors that may not be found by Dynamic Testing.

The two main types of static testing techniques are

Manual examinations: Manual examinations include

analysis of code done manually, also known as REVIEWS.

Automated analysis using tools: Automated analysis are

basically static analysis which is done using tools.

VectorCAST provides ways to integrate the tools

you already use to enforce coding standards, define

requirements, and build your applications. The VectorCAST

embedded software testing platform is a family of products

that automates testing activities across the software

development lifecycle.

VectorCAST is integrated with Gimpel Software's

Lint source code analysis engine. Lint is a static source code

analyzer that performs module-based or whole-program

source code analysis on C/C++ codebases and automatically

identifies problems at their source, prior to compiling. The

VectorCAST/Lint integration is configured for checking

MISRA C (C1), MISRA C (C2), MISRA C (2012), and

MISRA C++ standards, and includes an extensive list of

embedded compiler option files. The VectorCAST/Lint

integration is available in C/C++ environments and Cover

environments.

The costs of fixing a bug depends on the phase of

the software development the issue is discovered. Even

though the actual reported numbers vary in the literature, it

is a common understanding that the costs are heavily

increasing with every development stage. Logically, in order

to reduce cost and to increase quality, testing activities are

brought forward in the process as much as possible.

Fig 1: Development life cycle

2. HOW DOES STATIC ANALYSIS WORK?

Static code analyzers use a compiler-like front-end to

build a syntactic and semantic model of the software. The

syntactic model is then analyzed against a set of rules or

“checkers” to see if the code is in violation. These checkers

use pattern-matching algorithms to detect errors such as poor

use of language constructs, use of insecure functions, and

violations of coding guidelines. The specific set of checkers

used is configurable by the user. Pre-set configurations are

provided for convenience, for instance for coding standards

such as MISRA C. More sophisticated checkers employ

semantic analysis that uses data and control flow to detect

complex bugs and security vulnerabilities. To do this, the

static analyzer builds an execution model of the software,

considers possible paths through the code, and evaluates use

of data as it flows from source (like user input) to its

destination (such as an API call or system call). Analyzing

every single possible condition and path would be too time

consuming, so the analyzer uses heuristics to detect the most

likely paths for evaluation.

 Fig 2: Static analysis work flow

This is the systematic process of analyzing the source

code of the software without actually executing it. In this

process, the source code for the software is analyzed for

different parameters. This testing aims to detect errors in the

execution phase helps in the prevention of errors at later

stages.

 Whether or not the code meets the industry coding

standards?

 Are there any loopholes in the dry run of the code?

 Is the syntax correct?

 Is the source code optimized or needs more

optimizations?

 Is there any dead code or unreachable code?

 Are there any unassigned variables?

 Infinite loops present in the code.

 Fig 3: Life cycle of static analysis

3. TYPES OF ERRORS

Some of the major static errors found in the static

analysis using lint tool in the early stage are listed below.

 Indexing beyond arrays.

 Dereferencing null pointers.

 (Potentially) dangerous data type combinations.

 Unreachable code.

 Non-portable constructs.

Fig 4: Error analysis using lint

The Lint Analysis Results window has three parts:

 Source Code tab, which displays lint_example.c

 Lint Messages, which displays the issues found in

the unit INTEGRATING LINT 294.

 Message Detail, which shows the path to the unit,

and displays details about a particular message,

when one is selected. We are going to correct each

Warning issue, and then re-analyze.

Most error messages have an associated error number. By

looking up the number in the list below you can obtain

additional information about the cause of the error.

Fig 5: Error messages number

4. USING VECTORCAST/LINT’S MISRA

COMPLIANCE CHECKING

The Motor Industry Reliability Association (MIRA)

released a programming guideline for C in 1998 (sometimes

referred to as MISRA C1), and a revised version was

released in 2004 (MISRA C2). In 2008, MIRA released

guidelines for C++ (MISRA C++). PC-Lint/FlexeLint have

supported checks for the available MISRA guidelines since

early 2001, and we intend for Lint to provide ongoing and

increasing support for these guidelines.

MISRA violation rules can be viewed in the below

figure in VectorCAST\Lint

 Fig 6: MISRA Violation message

5. ADVANTAGES OF STATIC TESTING

USING LINT

 Identify a wide range of defects and vulnerabilities

 Deep analysis to find potential bugs and suspicious

code

 Quickly identify root cause and provide actionable

fixes

 Support for coding Standards such as MISRA,

AUTOSAR, and CERT C

 Certified for ISO 26262 and IEC 61508

 Early detection and correction of any coding

errors.

 Reduces cost in early stages of development in

terms of the amount of rework needed to fix any

errors.

 Reduced timescales for development.

6. CONCLUSION

Throughout this paper static analysis tools have been

discussed in depth. These tools are today irreplaceable in the

development cycle and very important in verification

activities. Each phase of the development cycle can benefit

from the use static analysis tools, ultimately resulting in a

better and safer product. Static analysis tools are beneficial

to the software production and verification processes,

although the way they are deployed and used may be

different. They help keep development costs down by
finding issues as early as possible in the development cycle.

References

 PC-lint Plus | Static Code Analysis for C and C++

| Vector
 VCAST6.4.6/Lint/Docs/flexelint.pdf

 VCAST6.4.6/docs/PDF/vcast_interactive_tutorial

s.pdf

https://www.vector.com/int/en/products/products-a-z/software/pc-lint-plus/
https://www.vector.com/int/en/products/products-a-z/software/pc-lint-plus/

