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Abstract—In this work we present the variance-gamma driven
state-space model (VGSSM) - a linear vector stochastic differen-
tial equation driven by the variance-gamma (VG) Lévy process,
and propose a novel inference framework in such systems. There
are closed form expressions for the first four moments of the
marginals of the VG process, allowing for more flexible mod-
elling than Brownian motion (BM), retaining BM as a limiting
case. The conditionally Gaussian formulation of the variance-
gamma process lends itself well to the use of a marginalised
particle filter (MPF) which can include the estimation of model
parameters as part of the sampling framework. As an example
we present a state-space formulation of Langevin dynamics in
the VGSSM for estimation of both the observed and the latent
first-order dynamics of a system. We apply this specific Langevin
formulation to synthetically generated data to validate the results
of the MPF, followed by an application to foreign-exchange tick
data to demonstrate the method for trend tracking in data sets
that are irregularly sampled in time.

Index Terms—non-Gaussian stochastic process, sequential
Monte Carlo, nonlinear filtering, particle filter, Lévy process,
stochastic differential equation

I. INTRODUCTION

There has been recent interest in modelling dynamic sys-
tems subject to uncertainty and randomness through stochastic
differential equations (SDEs) such as in [1], [2]. These mod-
els provide a continuous-time representation of a randomly
evolving system and are applicable to all data patterns, in
particular to irregularly sampled data sets. Typically it is
assumed that the random noise process can be characterised
by a Brownian motion term through Central-limit theorem
arguments. However it is well-known that many real world
systems exhibit non-symmetric and heavy tailed behaviour that
require an extended model for the noise process, such as in
financial systems [3], communications [4], signal processing
[5], image analysis [6], audio processing [7], [8], and in
climatological sciences. In such systems a Lévy process can
generalise the stochastic driving noise to include behaviour
ranging from Poisson processes to α-stable processes.

In this work we study linear vector stochastic differential
equation models [9] driven by a variance-gamma (VG) process
[10], [11]

dXptq “ AXptqdt` hdZptq (1)

where Zptq is the Background-Driving Lévy process (BDLP)
[12] characterised by a VG process, Xptq is a state vector

containing the system variables at time t; A and h are system
matrices which define the interactions between states over time
and the driving process. Recent work in such models using the
α-stable process can be found in [13]–[15]. In contrast with
the stable process which has infinite variance and typically
undefined mean, the VG process is attractive in practice since
the first four moments of the marginal distribution are finite
and exist in closed form.

The three parameter VG process is studied in [10], [11]
as a time-changed Brownian motion Vptq “ BpΓptqq where
Bpt;µ, σ2q is a Brownian motion with drift, scale parameters
µ, σ respectively and a subordinator Γpt;α, βq characterised
by a gamma Lévy process with drift, rate parameters α, β.
In the case of VG processes the drift rate α is set to 1 which
represents a prior assumption on the system dynamics that will
be discussed in Section II. Extending our model to include
other values of α is straightforward and leads to the more
general case of normal-gamma processes.

Many different and useful models can be adapted to the
general structure of (1), by defining particular forms for A
and h in (2), including the continuous-time autoregressive
(CAR), the CAR moving-average (CARMA) [16], [17] and
the Ornstein-Uhlenbeck (OU) processes [18], as well as all of
the standard spatial linear tracking models [1]. As a specific
case, consider the following formulation of Langevin dynamics

d 9Xptq “ θ 9Xptqdt` dZptq

that finds application in physics and biological sciences. The
rate of reversion to zero is proportional to the magnitude of
9Xptq and the (usually negative) decay parameter θ. We will

interpret 9Xptq as a latent trend process for the data, which
is typically observed only partially through its integral Xptq.
The following state-space formulation forms the basis of our
model

„

dXptq

d 9Xptq

ȷ

“

„

0 1
0 θ

ȷ „

Xptq
9Xptq

ȷ

dt`

„

0
1

ȷ

dZptq (2)

using the fact that dXptq “ 9Xptqdt by definition.
Here we develop a novel framework for inference of states

in the general dynamical model of (1) driven by a VG
process, defined as the variance-gamma driven state-space
model (VGSSM), and use the Langevin dynamics as a specific
case. The new methods are structured similarly to those in



[14] with alterations to deal with the specifics of the VG
driving process. The paper is organised as follows. In Section
II we review the probabilistic background required for Lévy
processes and subordinators and then present gamma processes
and VG processes along with their simulation algorithms.
In Section III we review some fundamental results on the
simulation of vector SDEs. In Section IV we present novel
formulations of Langevin dynamics as a Lévy state-space
model together with the design of a marginalised particle filter
for inference. In Section V we present the application of the
Langevin model to synthetic and real datasets, providing an
initial demonstration of the new methods. Lastly, in Section
VI we review the methods studied in this work and discuss
potential extensions to our model and inference algorithm.
A code repository for the application of VGSSMs is made
available in Python1.

II. THEORETICAL BACKGROUND

In this section we review the series representation of Lévy
processes and present simulation algorithms for the gamma
and variance-gamma process.

Let tZptq : t ě 0u be a pure jump Lévy process having
no drift or Brownian motion part. According to the Lévy-
Khintchine representation, the characteristic function ϕZps, tq
can be expressed as ( [19], Corollary 13.8)

ϕZps, tq :“ E
“`

exp
`

isZptq
˘‰

“ exp ptψpsqq

where the characteristic exponent is

ψpsq :“

ż

Rzt0u

pexp pisxq ´ 1 ´ isxIt|x| ă 1uqQpdxq

Here It¨u denotes the indicator function and Qpdxq is the
Lévy measure satisfying

ş

Rzt0u
minp1, x2qQpdxq ă 8 which

defines the law of the random jump sizes J .
In this work we are also interested in a more constrained

class of non-negative, non-decreasing, pure jump Lévy pro-
cesses W ptq called subordinator processes where the charac-
teristic exponent simplifies to

ψW psq “

ż 8

0

peisx ´ 1qQW pdxq

with the more restrictive requirement that
ş8

0
minp1, xqQW pdxq ă 8. Subordinators are in general used

to measure the level of underlying activity in a system by
changing the effective rate of passage of a Brownian motion
which result in non-Gaussian heavy-tailed behaviour.

A. The gamma process

The VG process is defined as a subordinated Brownian
motion where the subordinator is a gamma process Γpt;α, βq

with the two parameter Lévy measure

QΓpdxq “
α2

β
x´1 exp

ˆ

´
β

α
x

˙

dx, x ą 0

1https://github.com/jj2249/vglm

and gamma distributed marginals with shape parameter α2t
β ,

rate parameter α
β and density fΓ such that

fΓpγ; t, α, βq “
1

Γpα2t
β q

´α

β

¯
α2t
β

γ
α2t
β ´1e´ α

β γ , γ ą 0

corresponding to a drift rate α and a variance rate β, i.e.
E rfΓpγ; t, α, βqs “ αt, Var rfΓpγ; t, α, βqs “ βt, where Er¨s

is the expectation operator.
Both gamma and VG processes are examples of infinite ac-

tivity Lévy process such that
ş

Qpdxq Ñ 8. The simulation of
such processes are in general intractable because they possess
an infinite number of small jumps in any finite time interval.
For infinite activity processes with non-negative increments
the inverse Lévy (IL) method provides a way to model the
process as an infinite series of decreasing random variables
and simulate the underlying jumps by truncating the series
after a finite number of terms [20]. The IL method requires
the associated tail mass of the Lévy density to be an invertible
function, this method is generalised in [21] through the use of
rejection sampling methods to include intractable densities,
and the random Poisson truncations of these infinite series are
studied in [22]. This formulation is known as the generalised
shot noise method and will be used throughout this work for
the simulation of the driving VG process.

For a Lévy jump process Zptq with Lévy measure Q,
we define the upper tail density as Πpxq :“

ş8

x
Qpdxq.

The IL method [21] utilises the inverse upper tail density
Π´1pyq “ inftx P R : Πpxq ă yu to write the following
series representation for Zptq

Zptq “

8
ÿ

i“1

Π´1pEiqItVi ď tu (3)

where tEiu
8
i“1 are the epochs of a unit rate Poisson process,

straightforwardly generated as a cumulative sum of exponen-
tial random variables, and tViu

8
i“1 are random arrival times

of the jumps, uniform on r0, T s. The thinning or rejection
sampling method circumvents the need to invert Πpxq for these
intractable processes by simulating jumps from a dominating
process with a Lévy measure Q0pdxq satisfying Qpdxq

Q0pdxq
ď

1, @x ě 0. Each jump is then accepted with probability
apxq “

Qpxq

Q0pxq
(assuming the existence of density functions

for each measure).
For gamma processes, a dominating Lévy measure with

density Q0pdxq can be defined as [21]

Q0pdxq “
α2

β

´

1 `
α

β
x

¯´1

dx

which has closed form inverse tail density

Π´1
0 pyq “

„

α

β

ˆ

exp

ˆ

β

α2
y

˙

´ 1

˙ȷ´1

(4)

and acceptance (thinning) probability

apxq “

ˆ

1 `
α

β
x

˙

exp

ˆ

´
α

β
x

˙

ă 1 (5)



Algorithm 1 Simulation of sample paths of a Gamma process
tΓpt;α, βq : 0 ď t ď T u.

1) Generate Gs exponential random variables, teiu
Gs
i“1 with

rate parameter 1
T

2) Calculate the cumulative sum of teiu
Gs
i“1 to give Poisson

epochs tEiu
Gs
i“1

3) Calculate jump sizes tdΓiu
Gs
i“1 “ tΠ´1

0 pEiqu
Gs
i“1 accord-

ing to (4)
4) Calculate acceptance probabilities taiu

Gs
i“1 =

tapdΓiqu
Gs
i“1 according to (5)

5) For each jump dΓi, accept with probability ai leaving
Ns accepted samples td̃Γiu

Ns
i“1

6) For each accepted sample, generate a corresponding
jump time tViu

Ns
i“1

iid
„ Ur0, T s

7) Return tpd̃Γi, Viqu
Ns
i“1,

8) Optionally, form Γpt;α, βq “
řNs

i“1 d̃ΓiItVi ď tu
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Fig. 1: Samples from the gamma process, Γpt; 1, βq. Six
samples each for β “ 0.1, 0.5.

A summary of the simulation procedure is shown in Alg.
1. Fig. 1 shows independent samples from the gamma process
with α “ 1. The process moves by distinct positive jumps
arriving at random times with β controlling both the rate
of arrival, and the size of the largest jumps. The number
of samples required for proper convergence of the processes
increases for decreasing β.

B. The variance-gamma process

The variance-gamma process is constructed as a time-
changed Brownian motion, or subordinated process, with
subordinator Γpt; 1, βq. Setting the drift rate as α “ 1
can be interpreted as a prior modelling assumption where
ErΓpt; 1, βqs “ t. The VG process Vpt;µ, σ2, βq can be
expressed in terms of a standard Brownian motion and a
gamma process as

Vpt;µ, σ2, βq “ µΓpt; 1, βq ` σBpΓpt; 1, βq; 0, 1q

where the rate parameter β controls excess kurtosis over
Brownian motion, σ controls scale and µ controls skewness.

The Lévy measure of the pure jump VG process is defined
as

QVpdxq “
exp

`

µ
σ2x

˘

β|x|
exp

˜

1

σ

d

2

β
`
µ2

σ2
|x|

¸

dx, x P R

The marginal distribution of the VG process, the variance-
gamma distribution can be expressed in terms of a Bessel
function as [11]

fVpv; t, µ, σ2, βq “
2 exp

`

µv
σ2

˘

βt{β
?
2πσ2Γp t

β q

´v2

δ

¯τ{2

Kτ

´

|v|

σ2

?
δ
¯

where v P R, τ “ t
β ´ 1

2 , δ “ 2σ2

β `µ2 and Kν is the modified
Bessel function of the second kind with index ν. The first four
moments of the VG distribution are known in closed form as
[11]

E
“

fVpv; t, µ, σ2, βq
‰

“ µt

Var
“

fVpv; t, µ, σ2, βq
‰

“ µ2βt` σ2t

S
“

fVpv; t, µ, σ2, βq
‰

“ 2µ3β2t` 3σ2µβt

K
“

fVpv; t, µ, σ2, βq
‰

“ 3σ4βt` 12σ2µ2β2t` 6µ4β3t

` 3σ4t2 ` 6σ2µ2βt2 ` 3µ4β2t2

The process is symmetric for µ “ 0 and the sign of µ controls
whether the skew is positive or negative. In the unskewed
case, the variance and kurtosis expressions simplify to σ2t and
3σ4tpβ ` tq respectively. The effects of these parameters on
the marginal distribution is visualised in Fig. 2. When β Ñ 0
we recover Brownian motion since Γptq Ñ t; thus Brownian
motion can be viewed as a special limiting case of the VG
process.

The inverse tail density for the VG process does not admit
a closed form expression. Instead we use the normal variance-
mean mixture representation [23] of the jumps of the VG
process2 where tdViu

8
i“1 can be directly written in terms of

the jumps of a gamma subordinator tdΓiu
8
i“1 as

dVi|dΓi „ N pµdΓi, σ
2dΓiq (6)

Our algorithm for simulation of the VG process is outlined
in Alg. 2. Note that the conditionally Gaussian form in (6) is

2Here and elsewhere we use a minor abuse of notation in that tdViu (resp.
tdΓiu) denotes the set of non-zero increments of Vptq (resp. Γptq), i.e. its
jumps.
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Fig. 2: Marginal distributions of the VG process at time t “ 1
with scale σ2 “ 1. Blue: high excess kurtosis, β “ 0.75.
Purple: positive skew, β “ 0.75, µ “ 1. Red: low excess
kurtosis, β “ 0.05 with standard normal dashed-black for
comparison.

Algorithm 2 Simulation of sample paths of a VG process
tVpt;µ, σ2, βq : 0 ď t ď T u.

1) Sample a single set of jump sizes and times from the
gamma process, tpdΓi, Viqu

Ns
i“1, using Alg. 1

2) Sample Ns jumps from the conditional in Eq. (6)
3) Form Vpt;µ, σ2, βq “

řNs

i“1 dViItVi ď tu

particularly useful for efficient inference algorithms and will
be extensively used in this work. Note also that the general
form of the conditionally Gaussian jump distribution in (6) is
different from the one required for the α-stable Lévy process
considered in [14].

Example sample paths from the VG process are shown in
Fig. 3 where a fixed number Ns of jumps were generated.
Adaptive schemes can be incorporated as discussed in [24].

III. SIMULATION OF VECTOR SDES

In this section, we review the basics of simulating vector
SDEs driven by pure jump Lévy processes. The interested
reader can refer to [9] for a more detailed study on SDEs.

The discrete equivalent of (1) will be familiar to many
systems engineers, often driven by Gaussian white noise.
The noise process Zptq in our model is a continuous-time
stochastic process, therefore the solution for the state at time
t is itself a continuous-time stochastic process defined by a
stochastic integral and an initial condition Xp0q

Xptq “ eAtXp0q `

ż t

0

eApt´uqhdZpuq (7)

The first term is deterministic and the second term is the
cumulative effect of passing the full history of the noise pro-
cess through the linear system. Define the following stochastic
process

Ipftq :“

ż 8

0

ftpuqdZpuq (8)
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Fig. 3: Samples from the VG process, Vpt;β, 0, 1q. Three
samples each for β “ 0.1, 0.5.

with ftpuq :“ eApt´uqhItu ď tu. Then (7) can be expressed
as

Xptq “ eAtXp0q ` Ipftq

which is the sum of a deterministic and a stochastic process.
This formulation is key to the inference algorithms in Section
IV. We propose that when Zptq is the VG process, Vptq, we
can rewrite Ipftq in the following form

Ipftq “

8
ÿ

i“1

ftpViqdVi “
ÿ

i:ViPp0,ts

eApt´ViqhdVi (9)

A full proof of this proposal, to be presented in a subsequent
publication, follows a similar procedure to Theorem 6.4 in [25]
by considering the limit of the point process representation of
Vptq in terms of its jumps tpdVi, Viqu

Vpnqptq “

n
ÿ

i“1

dViItVi ď tu

which converges uniformly on p0, T s to the VG process as
n Ñ 8, i.e.

n
ÿ

i“1

ftpViqdVi
nÑ8
Ñ

ż 8

0

ftpuqdVpuq

with which we have recovered a discrete sum (albeit countably
infinite) representation for the continuous time process Ipftq.



In contrast to [14] who substitute the shot-noise representation
of the general Lévy process shown in (3) into (9) to find an
expression for Ipftq in terms of Poisson epochs, we express
the formulae directly in terms of the jumps of the VG process.
We hereinafter write the state at time t, Xptq, as Xt for the
sake of brevity.

An iterative formula to simulate a sample path from (1)
starts from X0 “ 0 and simulates increments on each interval
ps, ts as

Xt “ eApt´sqXs `
ÿ

i:ViPps,ts

eApt´ViqhdZi (10)

This is natural when modelling observed data sequences with
possibly non-uniform arrival times, for which a prediction
at the time of the incoming observation can be made with
knowledge of t ´ s and Xs only. This representation cannot
be simulated exactly since we must truncate the small jumps
at some finite value in each sub-interval. However, our meth-
ods provide a monotonically decreasing set of random jump
sizes which ensures that only the smallest jumps less than a
threshold of say c are excluded from the resulting series. The
accuracy of the approximation Icpftq depends on the threshold
c and the moments of the residual error from this calculation
Rc

t “ Ipftq´Icpftq may be characterised exactly (see also [14],
[22]) and used to generate approximations to the residual as
in [24].

IV. THE VARIANCE-GAMMA DRIVEN STATE-SPACE
MODEL (VGSSM)

This section presents the novel formulation of the VG-driven
SDE as a Lévy state-space model. In order to design inference
algorithms using the model, we first illustrate how to forward
simulate from the model by sampling from the conditional
distribution of Xt given Xs, s ă t.

A. Forward simulation

Simulation of the VGSSM is rendered simple by the linear
Gaussian form (6), which states that the conditional dVi|dΓi

is a Gaussian random variable, so that Ipftq is also Gaussian.
We can sample Ipftq in (9) by evaluating its mean vector m
and covariance matrix S, as follows:

Ipftq|tVi, dΓiu
8
i“1 „ N pm,Sq

where we have used the fact that conditional on observing the
jump times, ftpViq is deterministic so that

m “ E rIpftqs “

8
ÿ

i“1

ftpViqµVi
dΓi (11)

S “ Var rIpftqs “

8
ÿ

i“1

ftpViqftpViq
Tσ2

Vi
dΓi (12)

which can be broken down into partial sums on each interval
ps, ts; we write these as mps,ts, Sps,ts.

Algorithm 3 Sampling from the VGSSM, tXpt;µ, σ2, β, θq :
0 ď t ď T u.

1) Generate an increasing set of N random observation
times, ttiu

N
i“1, e.g. as exponential arrivals,

2) Initialise X0 =
“

0 0
‰T

, t0 “ 0
3) For i “ 1, . . . , N ,

‚ Generate Ns jumps from a Gamma process using
Alg. 1 on the interval p0, ti ´ ti´1s

‚ Calculate truncated sums m̃ and S̃ for this set of
jumps, Eqs. (11, 12)

‚ Sample from the bivariate normal distribution, n „

N pµm̃, σ2S̃q

‚ Increment and store Xti “ eApti´ti´1qXti´1 ` n

4) Return the discrete path tXtiu
N
i“1

At this stage we assume that both µ and σ2 are static
parameters, then define m :“ µm̃ and S :“ σ2S̃. The full
conditional form for (10) becomes

Xt|Xs, m̃ps,ts, S̃ps,ts „ N peApt´sqXs ` µm̃ps,ts, σ
2S̃ps,tsq

(13)
Applying this to the Langevin model, we provide m̃ and S̃
when A and h are as shown in (2). The analytical forms
for eApt´sq, ftpViq and ftpViqftpViq

T , expressed in terms of
ftpxq “ eθpt´xq are

eApt´sq “

„

1 1
θ pftpsq ´ 1q

0 ftpsq

ȷ

ftpViq “

„

1
θ pftpViq ´ 1q

ftpViq

ȷ

ftpViqftpViq
T “

»

–

1
θ2 pftpViq ´ 1q

2 1
θftpViq pftpViq ´ 1q

1
θftpViq pftpViq ´ 1q ftpViq

2

fi

fl

which are subsequently substituted into (10), (11) and (12).
The algorithm for generation of sample paths from this state-
space process Xt “ Xpt;µ, σ2, β, θq is presented in Alg. 3.

B. Filtering in the state-space model

In this section we present our novel inference procedure for
VG driven systems. The linear and conditionally Gaussian sub-
structure of the model lends itself well to the marginalised par-
ticle filter (MPF) (otherwise known as the Rao-Blackwellised
(RB) filter) (see [26]) for inference in the VGSSM. The aim
here is to compute the posterior distribution of a latent state xt
given a causal set of observations y1:t, πpxt|y1:tq. A basic non-
marginalised particle filter could be used to generate posterior
samples by proposing from the prior gamma process and
then using the conditional in (13) to propose the states. The
particles would then be weighted according to their likelihood
under additive white Gaussian noise

gpyt|xtq
d
“ N pyt;xt, σ

2κvq (14)

so that κv scales the noise relative to the variance of the
process. Our improved MPF follows the general approach



of [14] by extending the state vector to include the skew
parameter µ, αt “

“

xt 9xt µ
‰T

, so that (13) becomes

αt „ N pAps,tsαs, σ
2DS̃ps,tsq

where Aps,ts is the 3 ˆ 3 matrix

Aps,ts “

„

eApt´sq m̃ps,ts

01ˆ2 1

ȷ

and D is the 3 ˆ 2 matrix

D “

„

I2ˆ2

01ˆ2

ȷ

In this extended state-space µ is modelled as a state variable,
allowing its distribution to be computed directly as part of the
particle filtering scheme. A possible generalisation to time-
varying skew in the model will be studied in future work.

The MPF (see [26]), allows for a significant improvement
over this basic case. It proposes random paths directly from
the underlying gamma process and uses the conditionally
Gaussian sub-structure of the state αt and the Kalman filter to
compute marginal weights, with no requirement to simulate αt

itself. This is best understood by considering the case where
we know the position and size of the jumps in the underlying
gamma process (in the case of synthetic data, say): then the
remainder of the model could be solved exactly for αt using
the Kalman filter.

Given the full history of the jumps, the Kalman filter starts
from prior state ppα1q

d
“ N pα1;a1|1,C1|1q, then proceeds by

recursive prediction and correction of the parameters for each
incoming observation. A prediction is made at each step using
Jt, then, a correction is made for yt. The Kalman prediction
based on all information available up until time s and the new
jumps Jt is

ppαt|J1:t, y1:sq
d
“ N pαt;at|1:s,Ct|1:sq

and the subsequent correction upon observing yt is

ppαt|J1:t, y1:tq
d
“ N pαt;at|1:t,Ct|1:tq

The means and covariances can be derived by rewriting
observation density (14) as

yt “ Hαt ` vt, with vt „ N p0, σ2κvq

where H “
“

1 0 0
‰

. Then, the Kalman prediction equations
from time s to time t are

at|1:s “ Aps,tsas|1:s (15)

Ct|1:s “ Aps,tsCs|1:sAT
ps,ts ` σ2DS̃ps,tsDT (16)

noting that Aps,ts is implicitly a function of Jt. The correction
step is based on the Kalman gain Kt

Kt “ Ct|1:sHT pHCt|1:sHT ` σ2κvq´1 (17)

then the Kalman correction equations are

at|1:t “ at|1:s ` Ktpyt ´ Hat|1:sq (18)
Ct|1:t “ Ct|1:s ´ KtHCt|1:s (19)

The MPF estimates the jumps by marginalising them from the
posterior, πpαt, Jt|y1:tq using a set of Np weighted samples
tpω

piq
t , J

piq
1:t qu

Np

i“1 from the gamma process, to give

πpαt|y1:tq «

Np
ÿ

i“1

ω
piq
t ppαt|J

piq
1:t , y1:tq (20)

with ppαt|J
piq
1:t , y1:tq coming from each particle’s Kalman

filter. This limits the problem to principled estimation of the
jumps of the gamma subordinator, thereby reducing the total
Monte Carlo variance of the resulting estimators [26]. The
weight update for the MPF is

ωt
piq 9 ωpiq

s ppyt|y1:s, J
piq
1:t , σ

2q, s.t.
ÿ

i

ωt
piq “ 1

where the conditional likelihood ppyt|y1:s, J
piq
1:t , σ

2q is

ppyt|y1:s, J
piq
1:t , σ

2q “ N pyt;Ha
piq
t|1:t,HC

piq
t|1:tH

T ` σ2κvq

(21)
which can be readily evaluated upon the arrival of each
new observation. Weight degeneracy in the particle filter
is monitored using estimated sample size and the standard
multinomial resampling with uniform post-selection weights
is used [26]. Since the jump proposal density does not depend
on scale, we follow the work in [14] to implement full
conjugate analysis for σ2. We can marginalise scale from the
full likelihood in (21) to remove the dependence of the weight
updates on σ2. A natural choice of prior for σ2 is the inverse-
gamma prior, ppσ2q

d
“ IGpσ2; ρ, ηq with ρ “ η “ 10´5 which

provides a closed form posterior distribution for σ2.
(20) is a mixture-of-Gaussians representation of the pos-

terior density, with ω
piq
t the weight of the ith Gaussian

component. Its mean and covariance are thus

amix
t|1:t “ Epαt|y1:tq «

Np
ÿ

i“1

ω
piq
t a

piq
t|1:t (22)

Cmix
t|1:t «

Np
ÿ

i“1

ω
piq
t

`

C
piq
t|1:t ` a

piq
t|1:ta

piqT
t|1:t

˘

´ amix
t|1:ta

mix
t|1:t

T
(23)

V. EXPERIMENTS

In this section we demonstrate the proposed inference
algorithm on synthetic data, followed by an application to real
data from foreign exchange markets. We use the Langevin for-
mulation to estimate both the dynamics of the observed price
and the latent trends in the market, which are fundamental
to momentum-based algorithmic trading strategies such as in
[27].

In our synthetic example the data generating model, as in
(2), is driven by a VG process with µ “ 1, σ2 “ 1, β “ 0.5
and a decay parameter θ “ ´2. The observed positions x
are measured under Gaussian noise with variance σ2κv where
κv “ 10´5. The Kalman filter priors were initialised using a
standard Gaussian a1|1 “ 03ˆ1, C1|1 “ I3ˆ3.

We run the MPF using the true data generating process
as a proposal (i.e. using the correct β, θ and κv), with the
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Fig. 4: Filtering example in light observation noise. Black:
True, Red: Posterior mean. β “ 0.5, µ “ 1, standard normal
Gaussian prior, κv “ 10´5, θ “ ´2, 500 particles

results visualised in Fig. 4. The observed positions tytu
100
t“1

are marked as black dots, black dashed lines represent the
underlying latent state of the data generating system and red
dot-dashed lines are the inferred mean value of the Gaussian
mixture of 500 particles, tamix

t|1:tu
100
t“1 in (22). The general

behaviour of the particle filter is visualised by overlaying these
lines on a two-dimensional histogram of the mean trajecto-
ries of all particles prior to forming the mixture estimate,
tta

piq
t|1:tu

100
t“1u500i“1 obtained using the Kalman filter.

The filter is able to track the trend process accurately,
including good estimation of the significant jumps - mostly
upwards since the skew is positive - and appears to settle on
the correct skewness value while maintaining a good diversity
of particle paths. We omit the full posterior distribution for σ2

but present its maximum-a-posteriori estimate σ2 “ 1.055.
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Fig. 5: Test application of the MPF to a real forex CHF-JPY
dataset. 300 randomly arriving bid quotes starting at midnight
on 1st April, 2022. Black dots are observations, red solid line
is the inferred mean and blue band is a 3-standard-deviation
interval.

For the real-world data set the parameters of the transition
and observation densities, β, θ and κv , must be estimated.
This is in general a difficult problem, see e.g. [28]. Here we
used a two dimensional grid search over the Monte Carlo
marginal likelihood of β, θ. κv was tuned manually in this
case since such parameters are hard to estimate for a model
of this complexity. Results are shown in Fig. 5. The upper
panel shows a series of randomly arriving bid offers on the
Swiss Franc/Japanese Yen foreign exchange for a 150 second
period starting at midnight on the 1st April 2022 with a total of
300 observations, sourced online from TrueFX. The estimated
parameter values are found as β “ 1.003, θ “ ´0.2778,
κv “ 0.5, µ “ 10´6 and σ2

MAP “ 1.078ˆ10´6. The estimated
value of β p" 0q suggests that a Brownian-driven model
would be inappropriate compared with the variance-gamma
model for this task, owing to the excess kurtosis in the driving
stochastic trend process. Simulations we carried out with the
corresponding Brownian-driven model demonstrated that in
fact this was the case, with large changes in trend not being
accurately tracked by the Brownian model.

Fig. 5 shows the inferred filtering distributions for the
bid price and the trend using the mean mixture trajectory,
along with 3-standard-deviation intervals based on the mixture
variances. Jumps in the inferred trend (lower panel) are able
to model sudden shifts in the underlying trend of the bid price,



for example sudden persistent downwards shifts around t=80s
and 100s. These are likely to be of significant assistance in
momentum-based prediction of the data. The inferred skew is
omitted as it remains very close to zero throughout, indicating
a largely symmetric jump distribution process for this data and
time period.

VI. DISCUSSION

The models introduced in this paper provide an expressive
representation of continuous-time stochastic linear systems
with non-Gaussian properties. Our presentation allows for
efficient inference procedures as discussed in Section IV,
with the results of our marginalised particle filter (MPF)
demonstrated in Section V. Non-Gaussianity in the observed
data is handled through the driving VG process which accounts
for fluctuations in the underlying activity level of the system.
We obtain control over the first four moments of the driving
process, which allows modelling of a wide range of real-world
phenomena with applications in a variety of fields.

It is worth noting that our formulation of the MPF is
valid for any linear vector SDE (1) with well-defined system
matrices A and h. As mentioned earlier, the CAR, CARMA
and OU processes can be expressed within the Lévy state-
space model formulation, with the forms of the required matrix
and vector calculations following the same general scheme as
for the Langevin model; in addition the models are readily
extended to spatial tracking scenarios in 2 or 3 dimensions.
We will explore these possibilities in future application work.

Additionaly our formulation of the VGSSM can be readily
extended to include other driving Lévy processes terms pos-
sessing the normal variance-mean mixture representation. In
particular the generalised hyperbolic (GH) process, which in-
cludes the VG process as a special case, is a natural extension
of the framework presented here (simulation algorithms for
the GIG process, which is the subordinator associated with
the GH process, can be found in [29]). The results for SDEs
driven by these more general GH processes and more extensive
evaluations of the schemes proposed here will be presented in
future publications.
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spective of point processes,” in Lévy Processes, O. Barndorff-Nielsen,
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