
EasyChair Preprint
№ 13049

Secure Skyline Group Queries Based on Encrypted
Dominance Graphs in Cloud Environments

Xiyu Liu, Yiping Teng, Jiawei Qi, Siyu Duan, Bingfeng Yu and
Chunlong Fan

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 19, 2024

Secure Skyline Group Queries Based on Encrypted
Dominance Graphs in Cloud Environments

Xiyu Liu
School of Computer

Shenyang Aerospace University
Shenyang, China

liuxiyu@stu.sau.edu.cn

Yiping Teng
School of Computer

Shenyang Aerospace University
Shenyang, China
typ@sau.edu.cn

Jiawei Qi
School of Computer

Shenyang Aerospace University
Shenyang, China

qijiawei@stu.sau.edu.cn

Siyu Duan
School of Computer

Shenyang Aerospace University
Shenyang, China

3123655850@qq.com

Bingfeng Yu
School of Computer

Shenyang Aerospace University
Shenyang, China

2034086967@qq.com

Chunlong Fan
School of Computer

Shenyang Aerospace University
Shenyang, China
fanchl@sau.edu.cn

Abstract—In this paper, we define and investigate the secure
skyline group query problem and propose a method named
Secure Skyline Group Query processing based on Dominance
Graph (DGSSGQ), which aims to efficiently find the skyline
groups on encrypted datasets. In DGSSGQ method, we first
present the data preprocessing and encryption mechanism based
on dominance graphs, which record the dominance relationships
between points in the dataset. To save the query processing
costs, we further present the maintenance of the encrypted
dominance graph. To achieve secure calculation on the encrypted
DG, we design Secure Inclusion Protocol (SIP), which enables
the determination of the inclusion of the nodes in the DG in
a group. Based on the encrypted DG and SIP presented, we
propose the secure skyline group query processing method to
find the skyline groups. Thorough analysis shows the security
and complexity of the proposed query methods, and the results
of extensive experiments on real and synthetic datasets illustrate
the performance of our proposed methods.

Index Terms—Skyline groups, Encrypted data, Dominance
graph, Cloud computing

I. INTRODUCTION

During the past decade, the skyline query [1] has garnered
widespread attention within the database domain, particularly
for their unique value in the processing of multi-preference
data analysis and decision-making. In recent years, the concept
of the skyline query has undergone further expansion, with
various variants [2], [3] gradually drawing more attention from
the academic community. Specifically, skyline group query, as
one of these variants, aims to identify fixed-sized groups of
tuples that cannot be dominated by any other group of tuples
in the same size. This problem was initially introduced in [4],
[5] and has been extensively explored and expanded in a series
of studies [2], [6]–[11].

To optimize costs and flexibility, data owners prefer to
outsource data storage and query processing tasks to public
cloud services, thereby alleviating the pressure of big data
management on themselves. However, directly outsourcing

data processing tasks to the public cloud can lead to seri-
ous privacy protection issues [12]–[14]. Therefore, securely
processing skyline group queries on public cloud platforms,
to prevent the leakage of sensitive information, is particularly
important.

To prevent cloud service providers and other unauthorized
entities from accessing sensitive data, a direct approach is to
perform skyline group queries on encrypted data. The most re-
lated study [15], our previous work, focused on skyline group
queries over encrypted data based on aggregated functions,
which can only support poor skyline query semantics, while
other existing research focused mainly on traditional skyline
queries on encrypted data [3], [16], [17]. Besides, few studies
can facilitate incremental updates for skyline group queries in
ciphertext, while reconstructing the whole encrypted dataset
might lead low query performance. Therefore, it becomes
crucial to develop an effective and secure skyline group query
method on encrypted data that supports incremental updates
in public cloud environments.

In this paper, we define and explore a novel secure skyline
group query adopting the encrypted Dominance Graph (DG)
in support of the optimal group skyline semantics. Based on
DG, we first introduce a data preprocessing and encryption
mechanism, in which the dominance relationships between
points in the dataset are extracted in DG and the points
with the numbers of dominating points are added to the
corresponding buckets. After that, both the dominance graph
and the buckets are encrypted. To save the operating costs
of query processing, we further present the maintenance of
the encrypted dominance graph. Achieving secure calculation
on the encrypted DG, we design a novel secure computation
protocol, i.e., Secure Inclusion Protocol (SIP), which enables
the inclusion determination of the nodes on DG in a given
group. Based on the encrypted DG and SIP presented, we
propose a secure skyline group query processing method based

on the encrypted dominance graph, which applies a depth-first-
search on encrypted DG to find the skyline groups. Thorough
analysis shows the security and complexity of the proposed
query methods, and the results of extensive experiments on
real and synthetic datasets illustrate the performance of our
proposed methods.

Overall, our contributions can be summarized as follows.
• We define and study the secure skyline group query

problem based on the dominance graph on encrypted
data.

• To address this problem, we propose a method of Secure
Skyline Group Query processing based on Dominance
Graph (DGSSGQ), where we present the construction
and maintenance of the encrypted dominance graph and
a novel Secure Inclusion Protocol to facilitate the secure
computation on the encrypted dominance graph.

• We provide analysis to show the security and complexity
of the proposed query method and conduct extensive ex-
periments on real dataset and synthetic datasets, of which
the results illustrate the performance of our proposed
method.

The remainder of the paper is structured as follows. Section
II provides an overview of related work in the field. In Section
III, we present the problem definition and the preliminary
concepts used in this paper. Section IV describes both the
proposed dominance-graph-based secure skyline group query
method and discusses incremental updates for secure skyline
group queries. The security and computational complexity of
the proposed methods are analyzed in Section V, followed
by the presentation of the experimental results in Section VI.
Finally, Section VII offers concluding remarks.

II. RELATED WORK
[15] represents the content most closely related to this

paper. The paper defined the secure skyline group query
problem and developed two secure query methods: the Basic
Secure Skyline Groups Query (BSSGQ) method and the
Dynamic-programming-based Secure Skyline Groups Query
(DSSGQ) method. The BSSGQ method generates candidate
groups and their aggregate tuples in an encrypted environment
and introduces a secure group dominance protocol. To address
the efficiency challenges in the BSSGQ method, the DSSGQ
method dynamically constructs and calculates the skyline sub-
groups in ciphertext, effectively reducing the generation of
candidate groups.
A. Skyline Groups Queries

Unlike traditional skyline queries over points, the goal
of skyline groups queries is to find combinations of points
that are not dominated by any other group of equal size.
Liu et al. [6], [11] introduced an innovative structure that
retrieves k-point G-skyline groups by representing points in
the form of a directed skyline graph based on the first k
skyline layers. This directed skyline graph demonstrates that
computing k-point G-skyline relies only on points within the
first k layers rather than all points in the entire input dataset.
Wang et al. [2] proposed an efficient method named Minimum

Dominating Search (MDS) to address the G-skyline problem,
by constructing a Minimum Dominating Graph (MDG) and
adopting optimization strategies based on skyline groups. Yu
et al. [18], [19] introduced the computation of skylines at the
group level, proposing efficient methods for finding Group-
based Skylines (G-skyline). By employing novel structures
and Group-based Clustering (G-clustering) algorithms, they
further introduced the concept of Representative G-skyline
(RG-skyline). Zhu et al. [7], [9] developed pruning techniques
to handle the TKD (top-k dominate) query of group sky-
lines under all existing skyline group definitions. With these
techniques, it is possible to return top-k dominated skyline
groups. By employing aggregate functions frequently utilized
in database applications, such as SUM, MAX, and MIN,
research studies [4], [5], [8], [20] explored the skyline group
query issue through the computation of representative points.
The secure methods proposed in this paper draw inspiration
from these investigations. Sun et al. [21] addresses the spatio-
textual group skyline query problem by proposing two query
methods, including a basic method and an efficient index-
based method.

B. Secure Skyline Queries

Liu et al. [16] pioneered secure skyline queries on encrypted
data with semantic security, introducing a comprehensive
secure dominance protocol foundational for various queries.
They also developed two secure skyline query protocols us-
ing partial homomorphic properties and novel permutation
and perturbation techniques to ensure accurate results while
maintaining privacy. Subsequently, Liu et al. [17] delved into
the issue of secure skyline queries on semantically secure
encrypted data and presented a comprehensively secure query
protocol. As a core subroutine, they introduced a novel secure
comparison protocol, which is also suitable for constructing
other query processes. Wang et al. [3] presented DynPilot, a
novel scheme for privacy-preserving verifiable location-based
skyline queries on dynamic and encrypted data, designed the
dynamic and efficient secure verifiable tree DSV-tree, and
adopted a fuzzy updating strategy. And in [22], they proposed
a secure indexing scheme aimed at protecting privacy in
location-based skyline queries on static or infrequently up-
dated datasets and introduced the SR-tree index and designed
the BasSky and SecSky protocols.

III. PROBLEM DEFINITIONS AND PRELIMINARIES
A. Problem Definitions

Definition 1: (Group Dominance). Given two groups, let
G = {p1, p2, . . . , pg} and G′ = {p′1, p′2, . . . , p′g} be two dis-
tinct groups, each containing g points. If there exist two groups
G = {pu1, pu2, . . . , pug} and G′ = {p′u1, p′u2, . . . , p′ug} such
that, after sorting the points in each group in ascending order,
one group dominates the other in every attribute of every point,
for example, pu1 ≺ p′u1, then we say group G dominates group
G′, denoted as G ≺ G′.

Definition 2: (Dominate Graph). Given a dataset DS =
{p1, p2, . . . , pn} of n tuples in an m-dimensional space, the
dominance graph (DG) of DS is a directed acyclic graph

TABLE I: Notations

DS dataset of n tuples
pi[j] the jth attribute of pi
m number of dimensions
g number of group size
G a g-tuple group
key key size
gr the current group

Ga ≺ Gb Ga dominates Gb

Sn
g all g-tuple skyline groups

DG =< V,E > dominate graph
B buckets

p.parents the parents node set of p
p.children the children node set of p

GSG all skyline groups of different sizes
pins an inserted tuple
pdel a deleted tuple
gexp the expanded group size
gred The reduced group size

where each node represents a point in DS, and each edge
represents a dominance relationship between two points.

Definition 3: (G-Skyline). Let DS as a collection of data
points in m dimensions and A as a group comprising k points
from DS. A qualifies as a g-skyline group if there is no other
k-point group that g-dominates A. The set of all g-skyline
groups containing k points within DS forms the k-point g-
skyline.

Definition 4: (Skyline Group). Given a dataset DS =
{p1, p2, . . . , pn} of n tuples in an m-dimensional space,
G = {p1, p2, . . . , pg} is a group from DS. G is a g-skyline
group if and only if there does not exist any g-group that
dominates G.

Definition 5: (Secure Skyline Groups Query(SSGQ)).
Given an encrypted dataset Epk(DS) and a query group size
g, the purpose of SSGQ is to discover groups in Epk(DS) that
are not dominated by any other groups of equal size g. The
result of SSGQ (Epk(DS), g) is {Epk(G1), . . . , Epk(Gl)},
with {Epk(G1), . . . , Epk(Gl)} being the encrypted outcomes.

B. System Framework

In this paper, we employ a widely recognized cloud com-
puting framework that has been utilized in numerous related
studies [13], [14], [17]. This framework comprises three types
of entities: data owner, user, and cloud servers. Besides the
cloud server C1 responsible for computing and searching
on encrypted data, our framework introduces an additional
non-colluding cloud server C2 to ensure the correctness and
efficiency of cloud computing, as well as to reduce interaction
costs between data owners and users. C2 provides encryption
and decryption services by holding secret keys shared with
the data owner. The system framework depicted in Fig. 1 is
described as follows.
Data Owner. The data owner first generates a public key
and a private key (denoted as pk and sk, respectively). Then,
the data owner encrypts the dataset, obtaining Epk(DS) and
Epk(DG), and sends pk, Epk(DS), and Epk(DG) to C1.
Lastly, the data owner sends pk and sk to C2, and also sends

Fig. 1: System framework

pk to the user.
User. Using the same pk, the user specifies the query group
size g and uploads it to C1 to initiate a secure skyline
group query search. After the search process, the user receives
random information R about the result from C1 and recovers
the search result R from C2.
Cloud Server. Upon receiving Epk(DS) and Epk(DG), C1,
with the assistance of C2 and through secure computation
protocols, performs the skyline group query processing and
sends R to the user.
C. Security Model

This paper follows the footsteps of numerous prior re-
searches [16], [17], adopting the semi-honest security model
as the foundation. In this model, cloud service providers are
expected to process user data strictly according to the preset
algorithms and protocols, while they might attempt to extract
valuable information. The model presumes that the two cloud
servers C1 and C2 will not collude, thus not jointly infringe
upon the privacy of user data. Under this security framework,
the following privacy protection requirements need to be met:

• Data Privacy. Neither the user, C1, nor C2 should obtain
any unencrypted information of the dataset DS.

• Result Privacy. Apart from the user, no other parties
should know the specifics of the result set R.

• Access Pattern Privacy. At any computation stage, C1

and C2 should not identify any specific characteristics of
any intermediate results, such as the correlation between
the computed data and the original data.

D. Preliminaries

Dominance Graph. The construction algorithm for the Domi-
nance Graph (DG) is formulated based on Definition 2 and [2],
focusing solely on identifying the dominance relations among
all points within the dataset DS. For every point within DS,
the algorithm incorporates this point into DG by comparing
it against all currently included points in DS. The specific
operational steps are detailed in Alg.1. Paillier Cryptosys-
tem. In this paper, we adopt the semantically secure Paillier
cryptosystem [23] for encryption, notable for its support of
homomorphic addition and scalar multiplication operations.

• Homomorphic addition:
Epk(x1)× Epk(x2) mod N2 = (x1 + x2) mod N

• Homomorphic multiplication:
Epk(x1)

x2 mod N2 = x1 × x2 mod N

Algorithm 1: Dominance Graph Construction Algorithm
Input: Dataset DS;
Output: DG;

1 Initialize DG = (V,E);
2 Sort the data points in DS in ascending order based on the

sum of each dimension;
3 for i = 0 to n− 1 do
4 B[i] = ∅;

5 for p ∈ DS do
6 p.parents = ∅;
7 for i = n− 1 to 0 do
8 for p′ ∈ B[i] do
9 if p′ ≺ p then

10 p.parents = p.parents∪{p′}∪p′.parents;

11 for p′ ∈ p.parents do
12 Add an edge from node p′ to node p in the E;

13 B[|p.parents|] = B[|p.parents|] ∪ {p};

14 return DG;

Secure Multiplication (SM) Protocol. SM protocol [12] is
that the server C1 with input Epk(x1) and Epk(x2), and
performs Epk(x1 × x2) operations on Epk(x1) and Epk(x2)
under encrypted conditions.
Secure Less (SLESS) Protocol. [17] Cloud server C1 with
input Epk(x1) and Epk(x2) and Cloud server C2 has sk.
C1 and C2 securely compute the encryption boolean output
Epk(Bool(x1<x2)).
Secure Equal (SEQ) Protocol. [17] Cloud server C1 has
encrypted inputs Epk(x1) and Epk(x2), while cloud server
C2 holds sk. Neither server knows the values of x1 and x2.
The SEQ protocol’s aim is to securely calculate the encrypted
boolean result Epk(Bool(x1 == x2)).

IV. SECURE SKYLINE GROUP QUERY

This section introduces a secure skyline group query pro-
cessing based on dominance graph (DGSSGQ) using an en-
crypted Dominance Graph (DG) to support optimal group
skyline semantics. It employs a Secure Inclusion Protocol
(SIP) for safe computations on the encrypted DG. Based on
the encrypted DG and SIP, a secure skyline group query
processing method is proposed, utilizing depth-first search to
identify skyline groups on the encrypted DG. Additionally, it
discusses dynamic adjustments on the encrypted dominance
graph for incremental updates to calculate skyline groups.
These algorithms are based on the basic security protocols
mentioned in Section III-D.
A. Encryption of Dominance Graph

To ensure the privacy of the values of each point in
the dataset DS, the dominance relations described in the
dominance graph DG, and the points in the buckets B, this
paper adopts the Paillier homomorphic encryption technique
to encrypt the dataset, the constructed dominance graph, and
the buckets. The encryption process for the dataset DS, the
dominance graph DG, and the buckets B is described as
follows:

1) Key Generation: First, generate the public key pk and
the private key sk for the Paillier encryption system.

2) Encryption of Data Points: For the values of each point
pi in the dataset, dominance graph and buckets, encrypt
pi using the public key pk to obtain the encrypted data
Epk(pi).

3) Encryption of Dominance Relations: For the dom-
inance relations of each point’s value pi in the
dominance graph and buckets, specifically pi.parents
and pi.children, use the public key pk to encrypt
pi.parents and pi.children, obtaining the encrypted
data Epk(pi.parents) and Epk(pi.children).

4) Construct the Encrypted Information: Reassemble
all encrypted points in their original order to form an
encrypted information set Epk(DG) and Epk(B).

B. Secure Inclusion Protocol

Algorithm 2: Secure Inclusion Protocol
Input: C1 has Epk(U), Epk(V), Epk(|V |), g; C2 has sk;
Output: α

′
;

C1:
1 α = Epk(0);
2 for i ∈ Epk(U) do
3 for j ∈ Epk(V) do
4 α = α ∗ SEQ(i, j);

5 α = α ∗ SEQ(α,Epk(|V |));
6 return α

′
to C1;

In the Secure Inclusion Protocol (SIP) detailed in Alg. 2,
consider that C1 contains Epk(U) (the parent nodes of the
point), Epk(V) (the points within Epk(gr)), and Epk(|V |) (the
count of points in Epk(gr)), while C2 has sk. Initially, C1

computes SEQ(Epk(U), Epk(V)) and updates α by setting
α ← α ∗ SEQ(i, j). Subsequently, C1 calculates α′ as α′ ←
SEQ(α,Epk(|V |)) and outputs α′ to C1 (lines 2-6).

C. Encrypted Dominance Graph Maintenance
In the maintenance of the encrypted dominance graph, we

focus on securely updating a data point, particularly when
inserting or deleting a new point into the dataset. This process
involves dynamically adjusting the dominance relationship for
the encrypted data point.

In Alg.3, we introduce the maintenance of the dominance
graph when inserting a point in an encrypted environment.
First, we initialize the set Epk(pins.parents) as an empty set
(line 1). Then, we iterate through the points in the bucket
Epk(B[i]), determining the dominance relationship between
Epk(pi) and Epk(pins) and saving it to the corresponding ele-
ment of vector α and determining the dominance relationship
between Epk(pins) and Epk(pi) and saving it to the corre-
sponding element of vector β (lines 3-5). The results are sent
to C2 for decryption. C2 decrypts and returns to C1 the values
in Dsk(α) and Dsk(β) that are 1 (lines 8-9). C1 receives α and
β, adds the α’s Epk(pins.parents) to Epk(pins)’s parent set,
and based on the transitivity of dominance, adds the parents
of Epk(pi) (without duplicates) to Epk(pins.parents). Next,
based on the number of Epk(pins.parents), Epk(pins) is
placed into the appropriate bucket. The β’s Epk(pi) parents,

Algorithm 3: Secure Point Insertion
Input: C1 has Epk(DG), Epk(B), Epk(pins), g; C2 has

sk;
Output: Epk(B);
C1:

1 Epk(pins.parents) = ∅;
2 Epk(B) is the first g buckets;
3 for i = 1 to |Epk(B)| do
4 αi = SDMN(Epk(pi), Epk(pins));
5 βi = SDMN(Epk(pins), Epk(pi));

6 send α, β to C2;
7 C2:
8 receive α, β from C1;
9 decrypt α, β and send 1 to C1;
C1 and C2:

10 for αi ∈ α do
11 Epk(pins.parents) =

Epk(pins.parents) ∪ Epk(pi) ∪ Epk(pi.parents);
12 for βi ∈ β do
13 Epk(pi.parents) =

Epk(pi.parents) ∪ Epk(pins) ∪ Epk(pins.parents);
14 Epk(B[|pins.parents|]) =

Epk(B[|pins.parents|]) ∪ Epk(pins);
15 for i = 1 to |pins.children| do
16 use SM(Epk(wi), Epk(0)) to calculate in the

B[|ci.parents|] of Epk(wi);
17 Epk(B[|ci.parents|]) =

Epk(B[|ci.parents|]) ∪ Epk(ci);
18 return Epk(B);

along with Epk(pins) and Epk(pins.parents), are added to
Epk(pins.parents)(lines 10-14). Finally, we iterate through
the points in Epk(pins.children), the points Epk(ci), where
the corresponding bucket index changes, thus C1 uses the
Secure Multiplication Protocol SM(Epk(ci), Epk(0)) to effec-
tively remove Epk(ci) from Epk(B[|ci.parents−1|]). Finally,
based on the number of ci.parents, Epk(ci) is placed into the
appropriate bucket (lines 15-17).

Algorithm 4: Secure Point Deletion
Input: C1 has Epk(DG), Epk(B), Epk(pdel), g; C2 has sk;
Output: Epk(B);
C1:

1 use SM (Epk(pdel), Epk(0)) to calculate in the
B[|ci.parents|] to Epk(pdel);

2 for i = 1 to Epk(pi.parents) do
3 use SM (Epk(ωi), Epk(0)) to calculate in the

B[|ci.parents|] to Epk(ωi);
4 B[|ci.parents− 1|] = B[|ci.parents− 1|] ∪ Epk(ci);

5 return Epk(B);

In Alg.4, we introduce the maintenance of the dominance
graph for deleting a point under encrypted condition. C1 holds
Epk(B), g, Epk(pdel), and Epk(GSG), while C2 has sk. First,
C1 removes Epk(pdel) from Epk(B[|pdel.parents|]) using the
Secure Multiplication Protocol SM(Epk(pdel), Epk(0))(line
1). Then, we iterate through Epk(pdel.children), remov-
ing Epk(ci) from Epk(B[|ci.parents|]) and adding it to
Epk(B[|ci.parents − 1|]) using SM(Epk(ci), Epk(0)) (lines
2-4).

D. Secure Skyline Group Query Processing Based on Domi-
nance Graph

Algorithm 5: Secure Skyline Group Query processing based
on Dominance Graph

Input: C1 holds Epk(DG), bucket Epk(B), query group
size g; C2 has sk;

Output: Epk(S
n
g);

C1 and C2:
1 Epk(S

n
g) = ∅;

2 Epk(gr) = ∅;
3 Sort the dataset in ascending order by bucket;
4 for Epk(p) ∈ Epk(B[0]) do
5 Epk(gr) = Epk(gr) ∪ Epk(p);
6 Epk(GSG) = Epk(GSG) ∪ Epk(gr);
7 search single point (Epk(gr), Epk(p), g, Epk(S

n
g));

8 return Epk(S
n
g);

In this section, we propose a secure skyline group query
processing based on dominance graph, aimed at querying
skyline groups according to group size.

In alg.5, we generate candidate groups by adding appropri-
ate single points to the current candidate group Epk(gr). First,
we initialize the result set Epk(S

n
g) and the current candidate

group Epk(gr) as empty sets (lines 1-2). Next, we arrange
all points in the multidimensional data dominance graph
Epk(DG) in ascending order based on the number of their par-
ent nodes, in other words, according to which bucket Epk(B)
they are in (line 3). The advantage of this sorting strategy is
that it avoids generating duplicate candidate groups by always
choosing to add points that come after the last added point in
the current group Epk(gr). Then, we begin a depth-first-search
(DFS) by adding skyline points from the bucket Epk(B[0])
to the current empty group Epk(gr) (lines 4-8). Here, we
add the updated Epk(gr) with skyline points to Epk(GSG)
for use in later encrypted dominance graph maintenance (line
6).After completing the depth-first-search (DFS), the final set
of skyline groups Epk(S

n
g) is obtained. This DFS process is

Algorithm 6: SearchSinglePoint secure query
Input: C1 has Epk(gr), Epk(p), Epk(S

n
g), the last point

Epk(plast) in Epk(gr); C2 has sk;
C1 and C2:

1 if |Epk(gr)| = g then
2 Epk(S

n
g) = Epk(S

n
g) ∪ Epk(gr);

3 for Epk(p) ∈ Epk(DG) and Epk(p) is the last point
Epk(plast) do

4 δ = SIP(Epk(p.parents), Epk(gr), Epk(|gr|));
5 Epk(gr) = SM(Epk(gr) ∪ δ);
6 Epk(GSG) = Epk(GSG) ∪ Epk(gr);
7 search single point (Epk(gr), Epk(p), g, Epk(S

n
g));

based on a recursive function named SearchSinglePoint Alg.6.
First, we check if the current group Epk(gr) contains g points;
if the number of points in the current group equals g, then this
group is considered a complete g-skyline group and is added
to Epk(S

n
g). Next, we consider adding a new candidate point

Epk(p) to Epk(gr) and recursively call the Single-point secure
query function. Using the Secure Inclusion Protocol (SIP), we
compute whether all parent nodes in Epk(p) are in Epk(gr),
and use the Secure Multiplication Protocol (SM) to compute
Epk(gr)← SM(δ, Epk(gr)∪Epk(p)). Finally, we recursively
call the SearchSinglePoint function and add the current group
Epk(gr) to Epk(GSG) (lines 3-7).

1) This section calculates skyline groups through the main-
tenance of encrypted dominance graph and query algorithms
of the dominance graph: We will compute the skyline groups
based on the updated bucket Epk(B) Alg.7. C1 holds Epk(B),
g, and Epk(GSG), while C2 has sk. First, we initialize the
result set Epk(S

n+1
g) as an empty set (line 1). Following that,

we perform an ascending order sort of the nodes in the first
g buckets (line 2). As we iterate through the skyline groups
in Epk(GSG), C1 uses a Secure Equal Protocol(SEQ) to
calculate whether Epk(ωi) has children nodes of Epk(pins),
then Φ′

i = Epk(1)
−Φi and uses the Secure Multiplication

Protocol (SM) to compute Epk(ωi)← SM(Φ′
i, Epk(ωi)) (line

8). If the number of points in Epk(ωi) is less than the group
size g, using the Secure Inclusion Protocol (SIP), it calculates
whether all parent nodes in Epk(pins) are in Epk(ωi), and
uses the Secure Multiplication Protocol (SM) to compute
Epk(ωi) ← SM(δ, Epk(ωi) ∪ Epk(pins)), finally recursively
calling the search single point secure query (line 12). If the
number of points in Epk(ωi) equals the group size g, then
it computes Epk(S

n+1
g) ← Epk(S

n+1
g) ∪ Epk(ωi) (line 13-

14). In Alg.8, we introduce the computation algorithm for

Algorithm 7: Secure Single-Point Insertion Query
Input: C1 holds Epk(B) ,Epk(pins),Epk(GSG); C2 has

sk;
Output: Epk(S

n+1
g);

C1 and C2:
1 Epk(S

n+1
g) = ∅;

2 Sort the dataset in ascending order by bucket;
3 for i = 1 to |Epk(GSG)| do
4 for j = 1 to |Epk(ωi)| do
5 for k = 1 to |Epk(pins.children)| do
6 ϕi = ϕi ∗ SEQ(Epk(φj), Epk(λk));

7 ϕ
′
i = Epk(1)

−ϕi ;
8 Epk(ωi) = SM(ϕ

′
i, Epk(ωi));

9 if |Epk(ωi)| < g then
10 δ =

SIP(Epk(pins.parents), Epk(ωi), Epk(|pins.parents|));
11 Epk(ωi) = SM(δ, Epk(ωi) ∪ (pins));
12 search single point

(Epk(gr), Epk(pins), g, Epk(S
n+1
g));

13 if |Epk(ωi)| = g then
14 Epk(S

n+1
g) = Epk(S

n+1
g) ∪ Epk(ωi);

deleting a point under encrypted conditions. C1 holds Epk(B),
g, Epk(pdel), and Epk(GSG), while C2 has sk. First, we
initialize the result set Epk(S

n−1
g) as an empty set (line 1).

Next, we sort the nodes in the first g buckets in ascending
order (line 2). Next, we check if skyline groups in the
intermediate result Epk(GSG) can serve as candidate groups.

We determine if the current tail node Epk(plast) is the node to
be deleted Epk(pdel), with φ = SEQ(Epk(plast), Epk(pdel)).
If equal, it indicates the current group will not become a
skyline group, and we compute Epk(gr) = SM(Epk(gr), φ).
After removing the tail node from the current group, we
iterate through Epk(pdel.children) denoted as Epk(ωi) and
use the Secure Inclusion Protocol (SIP) to check if all parent
nodes in Epk(pdel.children) are in Epk(gr), and use the
Secure Multiplication Protocol (SM) to compute Epk(gr) ←
SM(δ, Epk(ωi) ∪ Epk(gr)), finally recursively calling the
Single-point secure query (lines 7-10). We verify if any point
in Epk(gr) equals Epk(pdel) and compute δ = Epk(0),
then iterate through points in Epk(gr) using homomorphic
addition and the Secure Equal Protocol (SEQ) to compute
δ ← δ∗SEQ(ωi, Epk(pdel)). Then δ′ = Epk(1)

−δ , and finally
Epk(S

n−)
g)← Epk(S

n−1
g) ∪ SM(δ′, Epk(gr)) (lines 11-16).

Algorithm 8: Secure Single-Point Deletion Query
Input: C1 holds Epk(DG), Epk(B), Epk(pdel),

Epk(GSG); C2 has sk;
Output: Epk(S

n−1
g);

C1 and C2:
1 Epk(S

n−1
g) = ∅;

2 Sort the dataset in ascending order by bucket;
3 for Epk(gr) ∈ Epk(GSG) & Epk(plast) is the tail node of

Epk(gr) do
4 φ = SEQ(Epk(plast), Epk(pdel));
5 Epk(gr) = SM(Epk(gr), φ);
6 Remove the tail node of Epk(gr);
7 for i = 1 to |Epk(pdel.children)| do
8 δ = SIP(Epk(ωi.parents), Epk(gr), Epk(|gr|));
9 Epk(gr) = SM(Epk(gr) ∪ (ωi), δ);

10 search single point
(Epk(gr), Epk(ωi), g, Epk(S

n−1
g));

11 if |Epk(ωi)| = g then
12 δ = Epk(0);
13 for i = 1 to |Epk(gr)| do
14 δ = δ ∗ SEQ(Epk(ωi), Epk(pdel));

15 δ
′
= Epk(1)

−δ;
16 Epk(S

n−1
g) = Epk(S

n−1
g) ∪ SM(δ

′
, Epk(gr));

V. ANALYSIS
A. Security Analysis.

Formal theories in [14], [17] are applied to facilitate the
security analysis of the proposed methods as follows.
Theorem 1: (Composition Theorem) [24]. If a protocol
consists of some secure subprotocols and all intermediate pro-
cesses and results are random or pseudo-random, the protocol
is considered secure.
Analysis of Privacy Requirements. As for the privacy
requirements listed in Section III-C, we make a particular
security analysis as follows.
Data Privacy. In DGSSGQ, the data owner’s dominance graph
is encrypted with Paillier encryption, producing Epk(DG)
which is sent to node C1. This safeguards data privacy against
breaches, as C1 cannot decrypt without the key, and C2 does
not access raw data. Clients access only the final skyline
results, ensuring data privacy and security.

Result Privacy. User In the result return phase, we use random
perturbation techniques to protect the privacy of query results.
The actual dimension values of each point in the skyline group
are perturbed by computing node C1 before being sent to the
client, preventing C2 from accessing their true information.
The client then processes these noisy results to recover the
accurate skyline group data. This approach ensures that neither
C1 nor C2 can discern the true values, effectively safeguarding
result privacy.
B. Complexity Analysis

The construction of DG can be divided into two parts.
In the first part, sorting all points requires O(n log n) times.
In the second part, for each point p in DS, we identify
the points that dominate p in DG. For the basic algorithm
shown in Alg.1, the time complexity of this part is O(n2nm),
because there are nearly n2nm dominance checks. Therefore,
the total time complexity of Alg.1 is O(n log n + n2nm).
For the basic algorithm in Alg.2, the secure equality pro-
tocol uses |U | × |V | + 1 encryptions and 2|U | × 2|V | + 2
decryptions. In Alg.3, 8|B| + |pins.children| encryptions
and 16|B| + 2|pins.children| decryptions are performed. In
Alg.4, in the worst case, 1+ |Epk(pdel.children)| encryptions
and 2 + 2|Epk(pdel.children)| decryptions are performed. In
Alg.5, |B[0]| secure single point queries are used, involv-
ing |B[0]| × n2 encryptions and |B[0]| × 2n2 decryptions.
In Alg.6, the time complexity of traversing almost every
node is O(n2), applying n2 secure multiplication proto-
cols, totaling n2 encryptions and 2n2 decryptions. In Alg.7,
|Epk(pdel.children)| encryptions and 2|Epk(pdel.children)|
decryptions are executed. In Alg.8, in the worst case, 1 +
|Epk(GSG)|(3 + |Epk(pdel.children)| × n2) encryptions and
1+ |Epk(GSG)|(7+ |Epk(pdel.children)|×2n2) decryptions
are performed.

VI. EXPERIMENTS
A. Experimental Setups

Setup. All the mentioned algorithms were implemented in
Python and tested on a Tower Server (Dell Precision 7920)
equipped with dual 40-core Intel(R) Xeon(R) Bronze 3204
CPUs at 1.90GHz and 256GB of RAM, operating on Ubuntu
20.04. In this experimental environment, both C1 and C2 were
executed on the same server. The experiments did not account
for data transmission times, and the response time is presented
as the cumulative computation time for C1 and C2.
Datasets. We also generated several types of datasets using a
data generator [1], including anti-correlated datasets (ANTI),
correlated datasets (CORR), and independent datasets (INDE).
Regarding real NBA datasets, we selected data from the
official NBA website [25], [26], which contains information
on 5000 top players who participated in the playoffs. We
evaluated these players based on five metrics: points (PTS), re-
bounds (REB), assists (AST), steals (STL), and blocks (BLK).
During data processing, we operated under the assumption that
"the lower the parameter value, the better". When evaluating
the DGSSGQ method, we set initial parameters beyond vari-
ables to include the number of tuples n = 1000, group size
g = 3, and tuple dimensions m = 2 among various settings.

B. Experimental Evaluation

1) Evaluation on Secure Tuple Insertion: This section
focuses on comparing the efficiency of recalculating skyline
groups from scratch after an update request involving inser-
tions, with the efficiency of computing skyline groups using
our method based on pre-existing results.
Impact of number of tuples n. As shown in Fig. 2, the
experiment evaluates DGSSGQ for inserting a single point
across different tuple counts n. Figure 2 shows computation
time increases with n. Insertion operations in existing skyline
groups (INS_DGSSGQ) perform better than recalculating the
entire skyline group (DGSSGQ) from scratch, demonstrating
improved efficiency.
Impact of the group size k. As shown in Fig. 3, insertions
were conducted via DGSSGQ under varying query group
sizes g. As Figure 3 illustrates, DGSSGQ’s computation time
rises linearly with increasing g. Comparing full recalculation
of skyline groups (DGSSGQ) to insertion in existing groups
(INS_DGSSGQ), the latter is notably more time-efficient.
Impact of number of dimensions m. As shown in Fig. 4, in-
sertions were performed through DGSSGQ across dimensions
m. The computation time increases linearly with dimension m.
Insertions on existing skyline groups (INS_DGSSGQ) proved
more efficient than full recalculations.

2) Evaluation on Tuple Deletion: This section evaluates
the efficiency of fully recalculating skyline groups following
a deletion update request against the efficiency of our method,
which calculates skyline groups based on existing results.
Impact of number of tuples n. Fig. 5 shows the deletion
of a single point through DGSSGQ under different tuple
counts n. The experimental analysis reveals that computation
time increases with n. Comparing recalculating skyline groups
from scratch (DGSSGQ) and deleting from existing groups
(DEL_DGSSGQ), the latter is more time-efficient.

VII. CONCLUSION

In this paper, we propose a secure skyline group query
scheme based on dominance graphs to address the secure
skyline group query problem. In DGSSGQ method, we present
the data preprocessing and encryption mechanism based on
dominance graphs as well as the maintenance of the encrypted
dominance graph. To achieve secure calculation on the en-
crypted DG, we design a novel secure inclusion protocol to
support the determination of the node inclusion in a group.
Based on the encrypted DG and SIP presented, we propose the
secure skyline group query processing method to find the sky-
line groups. Through theoretical analysis, we show the security
and computational complexity of the proposed methods, and
conduct extensive experiments on real and synthetic datasets
to demonstrate the performance of our proposed methods. For
the future work, we plan to effectively improve the query
efficiency while maintaining the data security on large-scale
encrypted data.

ACKNOWLEDGMENT
The work is supported by the Young and Middle-aged

Science and Technology Innovation Talent Support Plan of
Shenyang under Grant RC230832.

(a) ANTI (b) CORR (c) INDE (d) NBA
Fig. 2: Performance evaluation on tuple insertion when varying n (g = 3, m = 2, keysize = 512)

(a) ANTI (b) CORR (c) INDE (d) NBA
Fig. 3: Performance evaluation on tuple insertion when varying g (m = 2, keysize = 512)

(a) ANTI (b) CORR (c) INDE (d) NBA

Fig. 4: Performance evaluation on tuple insertion when varying m (g = 3, keysize = 512)

(a) ANTI (b) CORR (c) INDE (d) NBA
Fig. 5: Performance evaluation on tuple deletion when varying n (g = 3, m = 2, keysize = 512)

REFERENCES

[1] S. Börzsönyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
IEEE ICDE, 2001, pp. 421–430.

[2] C. Wang, C. Wang, G. Guo, and et al., “Efficient computation of g-
skyline groups,” IEEE TKDE, vol. 30, no. 4, pp. 674–688, 2018.

[3] Z. Wang, X. Ding, J. Lu, L. Zhang, P. Zhou, K. R. Choo, and
H. Jin, “Efficient location-based skyline queries with secure r-tree over
encrypted data,” IEEE TKDE, vol. 35, no. 10, pp. 10 436–10 450, 2023.

[4] C. Li, N. Zhang, N. Hassan, and et al., “On skyline groups,” in ACM
CIKM, 2012, pp. 2119–2123.

[5] N. Zhang, C. Li, N. Hassan, and et al., “On skyline groups,” IEEE
TKDE, vol. 26, no. 4, pp. 942–956, 2014.

[6] J. Liu, L. Xiong, J. Pei, and et al., “Finding pareto optimal groups:
Group-based skyline,” ACM VLDB, vol. 8, no. 13, pp. 2086–2097, 2015.

[7] H. Zhu, X. Li, Q. Liu, and et al., “Top-k dominating queries on skyline
groups,” IEEE TKDE, vol. 32, no. 7, pp. 1431–1444, 2020.

[8] H. Im and S. Park, “Group skyline computation,” Inf. Sci., vol. 188, pp.
151–169, 2012.

[9] H. Zhu, P. Zhu, X. Li, and et al., “Top-k skyline groups queries,” in
EDBT, 2017, pp. 442–445.

[10] K. Zhang, H. Gao, X. Han, and et al., “Finding k-dominant g-skyline
groups on high dimensional data,” IEEE Access, vol. 6, pp. 58 521–
58 531, 2018.

[11] J. Liu, L. Xiong, J. Pei, and et al., “Group-based skyline for pareto
optimal groups,” IEEE TKDE, vol. 33, no. 7, pp. 2914–2929, 2021.

[12] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” in
IEEE ICDE, 2014, pp. 664–675.

[13] A. Liu, K. Zheng, L. Li, and et al., “Efficient secure similarity compu-
tation on encrypted trajectory data,” in IEEE ICDE, 2015, pp. 66–77.

[14] N. Cui, X. Yang, B. Wang, and et al., “Svknn: Efficient secure and
verifiable k-nearest neighbor query on the cloud platform*,” in IEEE
ICDE, 2020, pp. 253–264.

[15] Y. Teng, Y. Sun, Z. Shi, D. Jiang, L. Zhao, and C. Fan, “Secure
skyline groups queries on encrypted data on cloud platform,” in
HPCC/DSS/SmartCity/DependSys. IEEE, 2021, pp. 551–560.

[16] J. Liu, J. Yang, L. Xiong, and J. Pei, “Secure skyline queries on cloud
platform,” in IEEE ICDE, 2017, pp. 633–644.

[17] J. Liu, J. Yang, L. Xiong, and et al., “Secure and efficient skyline queries
on encrypted data,” IEEE TKDE, vol. 31, no. 7, pp. 1397–1411, 2019.

[18] W. Yu, Z. Qin, J. Liu, L. Xiong, X. Chen, and H. Zhang, “Fast algorithms
for pareto optimal group-based skyline,” in ACM CIKM, 2017, pp. 417–
426.

[19] W. Yu, J. Liu, J. Pei, L. Xiong, X. Chen, and Z. Qin, “Efficient contour
computation of group-based skyline,” IEEE TKDE, vol. 32, no. 7, pp.
1317–1332, 2020.

[20] Y. Chung, I. Su, and C. Lee, “Efficient computation of combinatorial
skyline queries,” Inf. Syst., vol. 38, no. 3, pp. 369–387, 2013.

[21] M. Sun, Y. Teng, F. Zhao, J. Qi, D. Jiang, and C. Fan, “Spatio-textual
group skyline query,” in DASFAA, vol. 13922. Springer, 2023, pp.
34–50.

[22] Z. Wang, L. Zhang, X. Ding, K. R. Choo, and H. Jin, “A dynamic-
efficient structure for secure and verifiable location-based skyline
queries,” IEEE Trans. Inf. Forensics Secur., vol. 18, pp. 920–935, 2023.

[23] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in EUROCRYPT, vol. 1592, 1999, pp. 223–238.

[24] A. C. Yao, “How to generate and exchange secrets (extended abstract),”
in IEEE FOCS, 1986, pp. 162–167.

[25] ESPN Enterprises Inc., “ESPN NBA Stats,”
https://www.espn.com/nba/stats, 2023, accessed: September 1, 2023.

[26] NBA.com, “NBA.com Website,” https://stats.nba.com, 2023, accessed:
September 1, 2023.

