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Abstract

Spatial information is often expressed using qualitative terms such as natural language expressions instead
of coordinates; reasoning over such terms has several practical applications, such as bus routes planning.
Representing and reasoning on trajectories is a specific case of qualitative spatial reasoning that focuses
on moving objects and their paths. In this work, we propose two versions of a trajectory calculus based
on the allowed properties over trajectories, where trajectories are defined as a sequence of non-overlapping
regions of a partitioned map. More specifically, if a given trajectory is allowed to start and finish at the
same region, 6 base relations are defined (TC-6). If a given trajectory should have different start and finish
regions but cycles are allowed within, 10 base relations are defined (TC-10). Both versions of the calculus
are implemented as ASP programs; we propose several different encodings, including a generalised program
capable of encoding any qualitative calculus in ASP. All proposed encodings are experimentally evaluated
using a real-world dataset. Experiment results show that the best performing implementation can scale up
to an input of 250 trajectories for TC-6 and 150 trajectories for TC-10 for the problem of discovering a
consistent configuration, a significant improvement compared to previous ASP implementations for similar
qualitative spatial and temporal calculi. This manuscript is under consideration for acceptance in TPLP.

KEYWORDS: Answer Set Programming, Spatial Reasoning, Qualitative Reasoning, Trajectory

1 Introduction

In recent years, there has been a proliferation of widely available location-aware devices, leading
to an abundance of location-based information. Such information has a spatio-temporal aspect
that can be attached both directly and indirectly: in the former case it is provided by embedded
systems like GPS, RFID or GSM, while in the latter it is provided by the users themselves when
they, for instance, tag photos with geolocation information.

When this spatio-temporal information refers to the same object (at different, possibly sequen-
tial points in time), it essentially represents the trajectory of a moving object. The ampleness and
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direct availability of such trajectory data is evident if we consider the billions of RFID tags gen-
erated daily or the millions of sensors collecting information within disparate devices and the
fact that these figures are expected to double every 2 years over the next decade (Patroumpas and
Sellis 2015).

Trajectory data can prove useful in delivering a wide array of location-based services. The
most common category of applications is related to traffic surveillance and control, and fleet
management, with trajectories being used to detect flocks and convoys or to identify frequently
followed routes. More personalised trajectory-based services can include carpooling via simi-
larity identification in vehicle traces or tracing services for objects or people. Other possible
applications include wildlife protection by monitoring the clustering of animals.

A common characteristic of the aforementioned trajectory-based services is that they rely on
a means of comparing between different trajectories. Traditionally, this can be achieved in one
of two ways: quantitatively or qualitatively. The former approach involves directly comparing
points within trajectories in terms of their spatial or temporal aspects while the latter depends
on expressing relations between moving objects and their trajectories using natural language
expressions. Qualitative reasoning has been argued to be closer to the way the human mind
reasons and makes decisions, in both spatial and temporal settings (Renz et al. 2000; Escrig
and Toledo 2002). Since the majority of the trajectory-based services outlined above are directly
aimed at information systems interacting with users, qualitative reasoning can be deemed more
suitable.

In this work, we introduce two qualitative calculi, named TC-6 and TC-10, for trajectories that
are defined based on arbitrarily partitioned maps. Both calculi are designed with applicability in
mind, facilitating straightforward implementations that can scale to large numbers of trajectories.
To that end, we rely on three important simplifications:

• Each trajectory is modelled as a sequence of regions on the map, instead of a sequence of
latitude/longitude pairs.

• Trajectories are compared as a whole and not on the basis of individual positions of moving
objects.

• Characteristics of moving objects such as their velocity and acceleration are not taken into
account.

TC-6 and TC-10 are not focused on real-time and predictive applications that require reasoning
on specific characteristics of moving objects at any given point in time (e.g velocity and acceler-
ation), such as collision monitoring and prevention. The proposed calculi are especially suitable
for any application that relies on trajectory databases to reason about the relations among large
numbers of trajectories such as Origin/Destination (O/D) analysis (Hu et al. 2016; Andrienko
et al. 2017), transportation demand discovery (Wang et al. 2017; Moreira-Matias et al. 2013) and
stream of population monitoring (Ma et al. 2017).

TC-6 represents the simplest case where no restrictions are imposed on trajectories apart from
the fact that they need to represent moving objects, i.e., ones that do not stay on the same region
in consecutive time points. TC-10, on the other hand, requires that moving objects do not finish
at the same region as the one they started at. For both calculi, we capture all possible pairwise
disjoint relations between two trajectories and define all possible results of composing these base
relations, in the form of composition tables. Various alternative Answer Set Programming (ASP)
implementations are proposed for each calculus and a comparative evaluation is presented, fo-
cusing on performance in terms of execution time and memory consumption for consistency
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problems based on a real dataset. The results indicate significant improvements in terms of exe-
cution time and memory consumption, compared to standard ASP implementations of qualitative
calculi in literature. As an additional result, we propose a generalised ASP encoding for qual-
itative calculi using extensional predicates to represent relations and composition tables. The
meta-encoding can enforce the composition table by means of a single integrity constraint, while
all other encodings use at least one rule for each entry in the table. On the other hand, such a
generalisation comes with some overhead, which is also measured in our experiments.

The rest of this paper is structured as follows. Section 2 offers a concise analysis of related
efforts on qualitative reasoning about moving objects, while Section 3 defines the computational
problem analysed in this work. Sections 4 and 5 formalise TC-6 and TC-10, respectively, in terms
of their base relations and the associated composition table. Section 6 proposes a series of ASP
encodings for the two calculi, as well as a generalised ASP encoding for qualitative calculi, while
Section 7 discusses the experimental evaluation of the proposed encodings. Finally, Section 8
concludes and points out future research directions.

2 Related Work

A concise summary of research on qualitative spatio-temporal relations for moving objects is
provided by Van de Weghe (2017). The author makes a distinction between the so-called “high-
level” and “low-level” approaches: the former focus only on modelling spatio-temporal conti-
nuity, while the latter concern themselves with a detailed representation of moving objects that
takes into account properties such as objects’ orientation and velocity.

Earliest works are representative of the “high-level” category, such as the work of Muller (1998),
where six different classes of motion are defined between two objects. Then, considering that the
two objects are related using one of the spatial and temporal relations in RCC-8 (Cohn et al.
1997) and Allen’s interval algebra (Allen 1981), respectively, the author determines the new spa-
tial and temporal relations that would result if one of the six types of motion takes place. This
approach is further refined by Hazarika and Cohn (2001) to disallow abnormal transitions, e.g.,
objects that disappear and reappear instantaneously at the same spatial location.

Later approaches to qualitative spatio-temporal reasoning focus on integrating more charac-
teristics of moving objects. The Qualitative Trajectory Calculus (QTC) is a prominent example
and has yielded several variants in literature so far. QTCB (Van de Weghe et al. 2006) is the
basic type and relies on the Euclidean distance between moving objects, as well as their speed.
While QTCB assumes objects moving freely in a n-dimensional space, QTCN (Delafontaine et al.
2011a) focuses on objects whose trajectories are constrained by a network (e.g., a road network).
Another variant, QTCC (Van de Weghe et al. 2005), is a more complex version of the basic type
that also takes into account the motion azimuth of the objects and relies on the double cross
notation introduced by Zimmermann and Freksa (1996).

The detailed representation of moving objects inherent in all variants of QTC leads to sig-
nificant numbers of relations: QTCB and QTCN define 27 relations, while QTCC includes 81
relations in total. This, in turn, leads to limitations with regard to automated reasoning, since at
its most complex form, QTC reasoning relies on a 81x81 composition table. This is evident in
the only available (to the best of our knowledge) implementation of QTC (Delafontaine et al.
2011b), where reasoning capabilities amount to calculating the relation between given trajectory
pairs at any given time, while composition of relations is not supported.

Following a similar approach, Noyon et al. (2007) propose a trajectory data model that relies



4 G. Baryannis et al.

on the relative velocity and relative position between two moving objects. However, moving
objects are not restricted to points, but can also be lines or polygons. The resulting relations
depend on whether the objects are moving closer or farther, whether they are accelerating or
decelerating and whether they are points, lines or polygons. This simplified model results in
significantly less relations (compared to all the aforementioned QTC variants), ranging from 6
relations for points to 9 relations for polygons. However, no implementation has been proposed
so far to validate the model’s applicability.

It should be evident that literature on qualitative spatio-temporal relations for moving objects
has mostly focused on creating models that allow for a detailed representation of the objects in
motion, rather than provide support for efficient reasoning mechanisms. In order to achieve the
latter, models need to be less elaborate either through simplification or by focusing on one fea-
ture at a time. In their attempts to provide a general framework for qualitative spatio-temporal
representation and reasoning, Martı́nez-Martı́n et al. (2012) follow the second path, providing
CSP formalisations (Freuder and Mackworth 2006) that only focus on one feature of moving
objects at a time. On the contrary, our work follows the first path: by applying the simplifications
outlined in the introductory section, a high-level model is proposed which does not represent the
individual features of objects in motion but, instead, is able to efficiently reason about the rela-
tions among trajectories when viewed as complete paths, scaling up to hundreds of trajectories.
In that sense our work is not directly comparable to (Martı́nez-Martı́n et al. 2012), since their
reasoning process focuses exclusively on one of distance, velocity or acceleration features of a
moving object, while ours proposes a trajectory model that abstracts away these features.

To the best of our knowledge the only studies in literature that employ ASP for qualitative
spatio-temporal reasoning are those of Li (2012), Brenton et al. (2016) and Walega et al. (2017);
out of these, only the first two are directly related to our work, since Walega et al. (2017) focuses
on reasoning about action and change in relation to space. We use the best-performing encoding
in Brenton et al. (2016), which represents an improvement over Li (2012), as a starting point for
our implementation and create several new encodings that outperform it. Additionally, we pro-
pose a generalised and compact meta-encoding for spatio-temporal calculi that takes advantage
of conditional literals (Gebser et al. 2015) while also being able to enforce a composition table
relying only on a single integrity constraint and a set of facts representing table entries.

3 Qualitative Calculi and Model Existence

This work focuses on qualitative calculi for reasoning on relations among elements of a domain
of interest. A calculus is specified via a composition table, that is, a function mapping every pair
of relations with the relations that can be associated with their composition. The computational
problem analysed in this paper is model existence, defined next.

Definition 3.1. (QC Model existence) Given a set E of elements, a set R of relations including
eq, a composition table c : R×R→ 2R \{ /0}, and a set C of constraints of the form (x,y) ∈ R,
where x,y ∈ E , and R ⊆R, QC model existence amounts to checking the existence of a model
of (E ,R,c,C ), that is, an assignment ν : E ×E →R satisfying the following properties: (i) for
each x ∈ E , ν(x,x) = eq; (ii) for each x,y,z ∈ E , ν(x,z) ∈ c(ν(x,y),ν(y,z)) holds; (iii) for each
constraint (x,y) ∈ R in C , ν(x,y) ∈ R holds.

Theorem 3.1. QC model existence belongs to the complexity class NP.
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The problem can be solved by an ASP encoding comprising choice rules and integrity con-
straints, a fragment of ASP for which answer set existence belongs to the complexity class NP
(Marek and Truszczynski 1989; Cadoli and Schaerf 1993). Intuitively, such an encoding guesses
a unique relation for each pair of elements by means of a choice rule, and enforces the satisfaction
of the composition table and of the constraints in input by means of integrity constraints.

4 Trajectory Calculus with 6 Base Relations (TC-6)

Both calculi defined in this work assume that trajectories are expressed based on a partitioning
of a given map according to the following definition:

Definition 4.1. (Partitioning) Given a map M, a partitioning R of the map M is defined as
a set of non-overlapping regions ri, as defined in RCC8 (Renz 2002), such that M =

⋃
ri∈R

ri.

Following RCC8 notation, each region is related through EQ (equal) only to itself, EC (externally
connected) to its neighbouring regions, and DC (disconnected) with all other regions.

For the first calculus, namely TC-6, trajectories are arbitrary sequences of regions as expressed
in Definition 4.1, with the sole constraint that consecutive regions within them must be different
and externally connected:

Definition 4.2. (TC-6 Trajectory) Given a partitioning R, a trajectory T in TC-6 is defined as
a sequence of externally connected regions (t1, t2, ..., tn), n ≥ 2 where ti 6= ti+1 and EC(ti, ti+1),
1≤ i < n.

Based on this definition, TC-6 admits trajectories that, for instance, start and finish at the same
region or revisit a region after moving to a different one.

Definition 4.3. (TC-6 Base relations) The 6 base relations of Table 1, capture the possible
relations between two trajectories T1 and T2, where |Ti| denotes the length of trajectory Ti, while
T j

i denotes the region t j of trajectory Ti. All 6 base relations are pairwise disjoint and symmetric.
Relation Equal (Eq) is also transitive.

Definition 4.4. (TC-6 Composition table) Table 2 represents the result of the composition of
each pair of trajectory relations of Table 1. The composition table is interpreted as follows: if
relation i holds between T1 and T2 while relation j holds between T2 and T3, then the entry (i,j)
of Table 2 denotes the possible relation(s) holding between T1 and T3. Note that relation All
represents all 6 base relations.

Example 1. Let T be {T1,T2,T3}, and let C be {(T1,T2) ∈ {Dis},(T2,T3) ∈ {Eq,Alt}}. Every
model of (T ,C ) maps (T1,T2) to Dis. Moreover, the model mapping (T2,T3) to Eq also maps
(T1,T3) to Dis. Finally, there are two models mapping (T2,T3) to Alt, one mapping (T1,T3) to I,
and one mapping (T1,T3) to Dis. �

5 Trajectory Calculus with 10 Base Relations (TC-10)

Retaining the same way of map partitioning as in Definition 4.1, we impose a further restriction
on trajectories, requiring them to have different start and finish regions. This leads us to a new
calculus, namely TC-10, formalised by the following definitions.
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Table 1. TC-6 Base relations

Relation Definition Interpretation

Equal (Eq) |T1|= |T2|= n, T1 and T2 are equal
EQ(T i

1 ,T
i

2),1≤ i≤ n (identical trajectories)

Alternative (Alt) |T1|= n, |T2|= m, T1 and T2 are alternative
EQ(T 1

1 ,T
1

2 ),EQ(T n
1 ,T

m
2 ), (different trajectories for

EITHER n 6= m the same start and finish
OR ∃i NOT EQ(T i

1 ,T
i

2),1 < i < n regions)

Start (S) |T1|= n, |T2|= m, T1 and T2 start at the same region
EQ(T 1

1 ,T
1

2 ),NOT EQ(T n
1 ,T

m
2 ) (but finish at different regions)

Finish (F) |T1|= n, |T2|= m, T1 and T2 finish at the same region
NOT EQ(T 1

1 ,T
1

2 ),EQ(T n
1 ,T

m
2 ) (but start at different regions)

Intersect (I) |T1|= n, |T2|= m, T1 and T2 intersect
NOT EQ(T 1

1 ,T
1

2 ),NOT EQ(T n
1 ,T

m
2 ), (at least one common

∃i, j EQ(T i
1 ,T

j
2 ), region, but different

EITHER 1≤i<n,1< j≤m start and finish regions)
OR 1<i≤n,1≤ j<m

Disjoint (Dis) |T1|= n, |T2|= m, T1 and T2 are disjoint
∀i, j NOT EQ(T i

1 ,T
j

2 ),1≤i≤n,1≤ j≤m (no common regions)

Table 2. TC-6 Composition Table

Relations Eq Alt S F I Dis

Eq Eq Alt S F I Dis
Alt Alt Eq, Alt S F I, Dis I, Dis
S S S Eq, Alt, S I,Dis F, I, Dis F, I, Dis
F F F I, Dis Eq, Alt, F S, I, Dis S, I, Dis
I I I, Dis F, I, Dis S, I, Dis All Alt, S, F, I, Dis
Dis Dis I, Dis F, I, Dis S, I, Dis Alt, S, F, I, Dis All

Definition 5.1. (TC-10 Trajectory) Given a partitioning R, a trajectory T in TC-10 is defined
as a sequence of externally connected regions (t1, t2, ..., tn), n ≥ 2 where t1 6= tn, ti 6= ti+1 and
EC(ti, ti+1), 1≤ i < n.

Based on this definition, TC-10 admits trajectories that have any arbitrary cycle within them,
but never finish at the same region they started.

Definition 5.2. (TC-10 Base relations) The 10 base relations of Table 3 capture the possible
relations between two trajectories T1 and T2, where |Ti| denotes the length of trajectory Ti, while
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T j
i denotes the region t j of trajectory Ti. All 10 base relations are pairwise disjoint. Relations

Equal (Eq), Reverse (Rev), Alternative (Alt), Return (Ret), Start (S), Finish (F), Intersect (I) and
Disjoint (Dis) are symmetric. Relation Equal (Eq) is also transitive. Relations Extends (Ex) and
Extended By (Exi) are inverses of each other.

Definition 5.3. (TC-10 Composition table) Table 4 represents the result of composing each
distinct pair of trajectory relations of Table 3. The composition table is interpreted as follows:
if relation i holds between T1 and T2 while relation j holds between T2 and T3, then the entry
(i,j) of Table 4 denotes the possible relation(s) holding between T1 and T3. Note that relation All
represents all 10 base relations.

Table 3. TC-10 Base relations

Relation Definition Interpretation

Equal (Eq) As in Table 1 As in Table 1

Reverse (Rev) |T1|= |T2|= n, T1 and T2 are reverse
EQ(T i

1 ,T
n+1−i

2 ),1≤ i≤ n (reversed trajectories)

Alternative (Alt) As in Table 1 As in Table 1

Return (Ret) |T1|= n, |T2|= m, T1 and T2 are return
EQ(T 1

1 ,T
m

2 ),EQ(T n
1 ,T

1
2 ), trajectories (can be

EITHER n 6= m used in order to return
OR ∃i NOT EQ(T i

1 ,T
n+1−i

2 ),1 < i < n to the same region)

Start (S) As in Table 1 As in Table 1

Finish (F) As in Table 1 As in Table 1

Extends (Ex) |T1|= n, |T2|= m, T1 extends T2 (the finish region
NOT EQ(T n

1 ,T
1

2 ),EQ(T 1
1 ,T

m
2 ) of T2 is the start region of T1)

Extended By (Exi) |T1|= n, |T2|= m, T1 is extended by T2 (the finish
NOT EQ(T 1

1 ,T
m

2 ),EQ(T n
1 ,T

1
2 ) region of T1 is the start region of T2)

Intersect |T1|= n, |T2|= m, T1 and T2 intersect
(I) NOT EQ(T 1

1 ,T
1

2 ),NOT EQ(T n
1 ,T

m
2 ), (at least one common

NOT EQ(T 1
1 ,T

m
2 ),NOT EQ(T n

1 ,T
1

2 ), region, but different
∃i, j EQ(T i

1 ,T
j

2 ), start and finish regions)
EITHER 1<i<n,1≤ j≤m
OR 1≤i≤n,1< j<m

Disjoint (Dis) As in Table 1 As in Table 1
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Table 4. Composition Table for 10 Trajectory Relations

Rels Eq Rev Alt Ret S F Ex Exi I Dis

Eq Eq Rev Alt Ret S F Ex Exi I Dis

Rev Rev Eq Ret Alt Exi Ex F S I Dis

Alt Alt Ret Eq, Rev, S F Ex Exi I,Dis I,Dis
Alt Ret

Ret Ret Alt Rev, Eq, Exi Ex F S I,Dis I,Dis
Ret Alt

S S Ex S Ex Eq,Alt, Exi,I, Rev,Ret, F,I, F,Exi, F,Exi,
S Dis Ex Dis I,Dis I,Dis

F F Exi F Exi Ex,I, Eq,Alt, S,I, Rev,Ret, S,Ex, S,Ex,
Dis F Dis Exi I,Dis I,Dis

Ex Ex S Ex S F,I, Rev,Ret, Exi,I, Eq,Alt, F,Exi, F,Exi,
Dis Ex Dis S I,Dis I,Dis

Exi Exi F Exi F Rev,Ret, S,I, Eq,Alt, Ex,I, S,Ex, S,Ex,
Exi Dis F Dis I,Dis I,Dis

I I I I, I, F,Ex, S,Exi, S,Exi, F,Ex, All Alt,Ret,
Dis Dis I,Dis I,Dis I,Dis I,Dis S,F,Ex,

Exi,I,Dis

Dis Dis Dis I, I, F,Ex, S,Exi, S,Exi, F,Ex, Alt,Ret, All
Dis Dis I,Dis I,Dis I,Dis I,Dis S,F,Ex,

Exi,I,Dis

6 Implementation

The nature of qualitative calculi such as TC-6 and TC-10 and the associated composition tables
allows for a straightforward transformation to any formalism that can capture boolean satisfi-
ability. Following the work of Brenton et al. (2016), we propose the implementation of TC-
6 and TC-10 as ASP programs, such that each answer set corresponds to a valid configura-
tion, i.e., an assignment of relations to a set of trajectories that conforms to the correspond-
ing composition table. Our starting point is the best-performing ASP encoding in Brenton et
al. (2016), COI7, which stands for Choice rule with One predicate per pair and Integrity con-
straints for composition table entries with more than 7 relations. This encoding has the fol-
lowing characteristics: (1) search space (the possible relations r1, ...,rn in the calculus) is rep-
resented as a choice rule of the form {r1(X ,Z); ...;rn(X ,Z)} = 1← tra j(X), tra j(Z),X! = Z.,
with (2) inverse relations are modelled using a single predicate (ex(x,y) and ex(y,x) instead of
exi(x,y)); (3) the composition table entries are encoded either as disjunctive rules of the form
r1(X ,Z)|...|rn(X ,Z)← ra(X ,Y ),rb(Y,Z)., when the entry contains up to 7 relations, or as in-
tegrity constraints of the form ← ri(X ,Z),ra(X ,Y ),rb(Y,Z), for all ri that are not part of the
composition table entry; (4) there is an additional integrity constraint for each pair of relations,
to model the fact that they are pairwise disjoint.

To improve on COI7, we rely on the specific characteristics of TC-6 and TC-10. First, there are
no inverse relations in TC-6 and only one pair in TC-10 (Ex and Exi), while all of the relations
apart from the inverse pair are symmetric. This means that there is no significant benefit of using
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one predicate per inverse pair rather than two. At the same time, using two predicates allows
us to apply the antisymmetric optimisation of Brenton et al. (2016) which should significantly
improve performance since it reduces the possible relation pairs by half. For TC-6, antisymmetric
optimisation amounts to replacing X!= Z with X < Z in the choice rule, while for TC-10, we have
to also use different predicates for Ex and Exi and include two rules that generate an Exi relation
for each known Ex relation and vice-versa. Note that in order for antisymmetric optimisation to
be applied consistently, we need to ensure that all relations included in the predefined rules and
facts have a first operand that is arithmetically (or lexicographically) before the second one.

Secondly, we removed all integrity constraints for pairwise disjointness, since the use of a
choice rule accounts for that. Finally, we opted to use integrity constraints to model all com-
position entry tables and not just the ones that contain more than 7 relations. In this manner,
there is only one simplified integrity constraint per each table entry, of the following form:
← not r1(X ,Z), ...,not rn(X ,Z),ra(X ,Y ),rb(Y,Z) (negating only the relations contained in the
entry). This decision is due to the fact that the disjunctive rules used in COI7 for entries with
7 or less relations can lead to an ASP program with head cycles. Deciding the existence of an
answer set for such programs is ΣP

2 -complete in general, while the same problem is NP-complete
in absence of head cycles (Eiter et al. 1997). Answer set existence is guaranteed to be in NP for
all encodings proposed in this paper. Following the naming convention of Brenton et al. (2016),
we name this encoding CTSA (Choice rule with Two predicates per pair, Simplified integrity
constraints and Antisymmetric optimisation).

A further improvement is possible if we reduce the workload of the ASP grounder by making
sure that no grounding is performed for pairs of trajectories where the relation is known (i.e., is a
fact). To achieve this, we distinguish between a known relation and a derived one. Instead of using
an ri(X ,Y ) in both cases, as done in COI7 and CTSA, we use instead a predicate f act(ri,X ,Y )
for known relations and include the conjunct #count{R : f act(R,X ,Y )} = 0 at the end of the
choice rule, to make sure that it is only applicable when the relation between two trajectories is
not known. Clearly, the more relations are known, the more significant this improvement will be.
We name this encoding CTSA2.

6.1 Generalised ASP Encoding for Qualitative Calculi

Based on the knowledge gained by the various encodings presented so far, we now follow a
systematic approach that results in a generalised ASP encoding, applicable to any qualitative
calculus whose definition includes a composition table.

The first step is to represent the domain: any element x that is modelled by the calculus (e.g.,
trajectories for TC-6 and TC-10), is expressed using a fact element(x). To represent the base
relations of the calculus, instead of a predicate for each (since each calculus has its own relations),
we define a predicate of arity 1, named relation which is instantiated for each relation included
in the calculus (e.g., relation(eq), relation(alt), and so on).

Then, to encode composition table entries, we first define a table predicate with three ar-
guments: table(row relation,column relation,valid relation). For each cell in the composition
table, we instantiate as many table predicates as the possible relations included in that cell. For
example, to represent the (alt, i) cell in the composition table of TC-6, we need the following:
table(alt, i, i) and table(alt, i,dis). These steps collectively store the knowledge contained in a
composition table as a set of facts.

To implement qualitative reasoning based on the encoded table, we adopt the decision made for
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CTSA, to use integrity constraints to enforce every composition table entry. Since all table entries
are represented by a table predicate, we need only include one generalised integrity constraint, us-
ing a conditional literal:← true(X ,R1,Y ), true(Y,R2,Z),not true(X ,Rout,Z) : table(R1,R2,Rout).

Predicate true(X,R,Y) states that relation R holds for trajectory pair (X,Y). Conditional literals are
convenient here since we need to represent conjunctions involving a variable number of literals.
This integrity constraint essentially states that, if R1 and R2 hold for (X ,Y ) and (Y,Z), respec-
tively, then there must be at least one table entry (R1,R2,Rout) such that Rout holds for (X ,Z).

To enforce the fact that the set of base relations is jointly exhaustive and pairwise disjoint,
we include the choice rule {true(X ,R,Y ) : relation(R)}= 1← element(X),element(Y ),X! =Y .
Additionally, to specify that one of the base relations of the calculus represents equality, we
include a special rule of the form: true(X ,eq,X)← element(X).

Finally, to represent input, we introduce a predicate of arity 3 named possible: possible(X ,R,Y )
states that the pair (X ,Y ) is involved in a constraint, and R is a possible relation. An addi-
tional integrity constraint is necessary to relate instantiations of possible and true predicates:
← possible(X ,,Y ),not true(X ,R,Y ) : possible(X ,R,Y ).

The aforementioned decisions that were necessary for this generalised encoding (named GEN)
to be applicable to any qualitative calculus inevitably result in decreased performance, as anal-
ysed in Section 7. The intention of the systematic approach described in this section is to provide
a means of quickly producing a universally applicable ASP encoding, whose applicability can
then be restricted to improve performance through calculus-specific optimisations.

7 Evaluation

To compare the efficiency of the proposed encodings, we conducted an experimental evaluation
using the T-Drive dataset (Yuan et al. 2013), which contains trajectories generated by 10,357
taxis in a week with about 15 million points and 9 million kilometres length of the total distance
in Beijing. We first applied a data cleaning process to remove records missing latitude/longitude
values or containing significantly infeasible values, effectively sieving out incomplete and noisy
data. After this process, trajectories generated by 1000 cars are sampled from the clean dataset.
Each sampled trajectory is mapped from a sequence of latitude/longitude pairs into a sequence
of corresponding regions within the boundaries formed by the maximum/minimum latitudes and
longitudes of the targeted car’s trajectory records, with the map of Beijing city having a com-
parative resolution of 100× 200 regions. The choice of this resolution is informed by both the
density of the latitude/longitude values within the Beijing city area and the trajectory records
in the spatio-temporal domain. The resulting 1000 trajectories have a mean length of 282 re-
gions with a standard deviation of 33.27. The dataset and code used in the experiments and all
encodings are available at github.com/gmparg/ICLP2018. Partial encodings are also included
in Appendix B.

We ran two different types of experiments for both TC-6 and TC-10. In the first type we kept
the number of known relations fixed to one per distinct trajectory and varied the number of trajec-
tories from 10 to 250. In the second type, we used a fixed number of 50 trajectories and varied the
percentage of known relations from 6% to 100%. In both cases we used the ASP system clingo
version 5.2.0 (Gebser et al. 2016), tasking it to derive a single solution. Time and memory values
were calculated using pyrunlim (available at github.com/alviano/python/tree/master/pyrunlim).
All experiments were performed on a Debian Linux server with an Intel R© Xeon R© X3430 CPU
at 2.4GHz, with 16 GB RAM.
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Fig. 1. TC-6: Finding a consistent configuration when only one relation per trajectory is known.

0 10 20 30 40 50

0

5

10

15

20

Number of known relations per trajectory

C
PU

tim
e

(s
)

COI7
CTSA

CTSA2
GEN

0 10 20 30 40 50

0

500

1,000

Number of known relations per trajectory

M
em

or
y

(M
B

)
COI7
CTSA

CTSA2
GEN

Fig. 2. TC-6: Determining consistency for 50 trajectories.

The results of the first TC-6 experiment are shown in Figure 1. The improved encodings allow
the ASP solver to derive a consistent configuration for up to 250 trajectories, when the COI7
encoding can only yield results for up to 110 trajectories, before running out of memory. The
GEN encoding is slightly slower than COI7 but memory consumption is slightly better, allowing
results for up to 140 trajectories. CTSA and CTSA2 are significantly faster, achieving execution
times one order of magnitude less than COI7 and GEN. CTSA2 performs similarly to CTSA in
terms of memory consumption, while it is slightly slower for more than 100 trajectories. This
is expected since in this experiment the input contains only a single relation per distinct pair of
trajectories, hence the improvements of CTSA2 have an insignificant positive effect to memory
consumption and the auxiliary predicate it employs adds unnecessary complexity which has a
slightly negative effect on execution time for larger trajectory sets.

The benefits of CTSA2 are better illustrated in the second TC-6 experiment (Figure 2). As the
number of known relations per trajectory increases, both execution time and memory decrease
faster for CTSA2 than CTSA and GEN, up to an 88% decrease in execution time and a 80%
decrease in memory consumption for the case of knowing 25 (out of 50 possible) relations per
trajectory. Afterwards, the improvement of CTSA2 is less pronounced, since the task becomes
increasingly easier as less relations are unknown. COI7 exhibits a similar behaviour: execution
time and memory rapidly decrease up to the case of knowing 25 relations per trajectory, after
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Fig. 3. TC-10: Finding a consistent configuration when only one relation per trajectory is known.
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Fig. 4. TC-10: Determining consistency for 50 trajectories.

which the decrease is more gradual. With regard to GEN, while the variation is not significant,
we do observe a slight increase (up to roughly 3%) in execution time at low percentages of known
relations and a similar decrease afterwards.

The results for the first TC-10 experiment are shown in Figure 3; as expected, the behaviour
is similar to TC-6, with increased costs in time and memory due to the increased complexity.
The CTSA and CTSA2 encodings manage to yield results for up to 150 trajectories, while COI7
stops at 70 and GEN stops at 100, both due to running out of memory. The slight variation in
execution time between CTSA and CTSA2 that was evident in TC-6 is not noticeable in TC-10
since the higher complexity of the additional 4 relations does not allow executions for more than
150 trajectories, where the variation would be more evident. The results are also similar in the
second TC-10 experiment, shown in Figure 4, where the improvement of CTSA2 over CTSA is
again increasingly evident as the percentage of known relations increases and peaks at the case
of knowing 25 out of 50 relations per trajectory. Finally, GEN again shows little variation, with
a slight increase of up to 6.5%, followed by a slight decrease.

8 Conclusion and Future Work

In this paper, we proposed two qualitative calculi for trajectories defined as sequences of non-
overlapping regions on partitioned maps. We then detailed the implementation of these calculi
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using ASP, applying several optimisations that allow the best performing implementation to scale
up to an input of 250 trajectories, with each trajectory consisting of more than 50 regions on av-
erage. We also provided a generalised ASP encoding that is applicable to any qualitative calculus
that includes a composition table in its definition. We expect the calculi and their implementa-
tions to prove useful in applications relying on reasoning over large trajectory databases, as well
as in related attempts to implement qualitative reasoning using logic programming.

Future research directions include: (a) exploring a third, more restrictive trajectory calculus
where no cycles are allowed, meaning that any region may be visited only once within a given
trajectory; (b) determining whether the improvements achieved in the implementation of TC-6
and TC-10 as ASP programs can be carried over to ASP implementations of other qualitative
calculi such as the Region Connection Calculus or Allen’s interval algebra; (c) extending the cal-
culus with a temporal dimension by combining it with Allen’s interval algebra; (d) investigating
the trade-off between performance of the generic encoding and its range of applicability.
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Appendix A Proofs

We start by making the link between models of qualitative calculi and answer sets of GEN ex-
plicit, that is, by providing a mapping between them.
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Lemma 1. GEN encodes QC model existence.

Proof. Let (E ,R,c,C ) be an instance of QC model existence, and Π be its GEN encoding. Let
ν : E × E → R be an assignment. We build interpretation I containing the following atoms:
for all x ∈ E , element(x); for all r ∈ R, relation(r); for all r,r′,r′′ ∈ R such that r′′ ∈ c(r,r′),
table(r,r′,r′′); for all x∈ E , true(x,eq,x); for all (x,y)∈R in C , and for all r ∈R, possible(x,r,y);
for all x,y ∈ E, if ν(x,y) = r, then true(x,r,y). It holds that ν is a model of (E ,R,c,C ) if and
only if I is an answer set of Π.

Membership in NP is a consequence of the fact that coherence of GEN can be checked by an
NP procedure.

Theorem 3.1. QC model existence belongs to the complexity class NP.

Proof. The claim follows from Lemma 1 and by the fact that answer set existence of ASP pro-
grams containing only choice rules and integrity constraints belongs to NP (Marek and Truszczyn-
ski 1989; Cadoli and Schaerf 1993).

Appendix B Partial ASP Encodings

{s(X,Y); f(X,Y); alt(X,Y); i(X,Y); eq(X,Y); dis(X,Y)}=1 :- traj(X), traj(Y), X!=Y.
eq(X,X) :- traj(X).
eq(Z,X) :- eq(Y,X), eq(Z,Y). f(X,Z) :- f(X,Y), eq(Z,Y).
alt(Z,X) :- eq(Y,X), alt(Z,Y). f(X,Z) :- f(X,Y), alt(Z,Y).
s(X,Z) :- eq(Y,X), s(Y,Z). i(X,Z) | dis(Z,X) :- f(X,Y), s(Y,Z).
f(X,Z) :- eq(Y,X), f(Y,Z). eq(Z,X) | alt(Z,X) | f(X,Z) :- f(X,Y), f(Y,Z).
i(X,Z) :- eq(Y,X), i(Y,Z). s(X,Z) | i(X,Z) | dis(Z,X) :- f(X,Y), i(Y,Z).
dis(Z,X) :- eq(Y,X), dis(Z,Y). s(X,Z) | i(X,Z) | dis(Z,X) :- f(X,Y), dis(Z,Y).
:- eq(Z,X), s(X,Z). :- f(X,Z), s(X,Z).
:- eq(Z,X), f(X,Z). :- f(X,Z), alt(Z,X).
:- eq(Z,X), alt(Z,X). :- f(X,Z), i(X,Z).
:- eq(Z,X), i(X,Z). :- f(X,Z), eq(Z,X).
:- eq(Z,X), dis(Z,X). :- f(X,Z), dis(Z,X).

Fig. B 1. Partial COI7 encoding for TC-6.

Figures in this section include parts of all encodings mentioned in the manuscript. In all
cases, only the code that encodes the Equals and Finishes relations is shown. The remaining
relations are encoded in a similar manner. Complete versions of the encodings are available at
https://github.com/gmparg/ICLP2018. Figures B 1, B 2, B 3 and B 4 contain TC-6 encodings ac-
cording to COI7, CTSA, CTSA2 and GEN, respectively. Figures B 5, B 6, B 7 and B 8 contain
TC-10 encodings according to COI7, CTSA, CTSA2 and GEN, respectively.
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{s(X,Y); f(X,Y); alt(X,Y); i(X,Y); eq(X,Y); dis(X,Y)}=1 :- traj(X), traj(Y), X<Y.
eq(X,X) :- traj(X).
:- eq(X,Y), eq(Y,Z), not eq(X,Z). :- f(X,Y), eq(Y,Z), not f(X,Z).
:- eq(X,Y), alt(Y,Z), not alt(X,Z). :- f(X,Y), alt(Y,Z), not f(X,Z).
:- eq(X,Y), s(Y,Z), not s(X,Z). :- f(X,Y), s(Y,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), f(Y,Z), not f(X,Z). :- f(X,Y), f(Y,Z), not eq(X,Z), not alt(X,Z), not f(X,Z).
:- eq(X,Y), i(Y,Z), not i(X,Z). :- f(X,Y), i(Y,Z), not s(X,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), dis(Y,Z), not dis(X,Z). :- f(X,Y), dis(Y,Z), not s(X,Z), not i(X,Z), not dis(X,Z).

Fig. B 2. Partial CTSA encoding for TC-6.

{s(X,Y); f(X,Y); alt(X,Y); i(X,Y); eq(X,Y); dis(X,Y)}=1 :- traj(X), traj(Y), X<Y,
#count{R : fact(R,X,Y)} = 0.

eq(X,X) :- traj(X).
:- eq(X,Y), eq(Y,Z), not eq(X,Z). :- f(X,Y), eq(Y,Z), not f(X,Z).
:- eq(X,Y), alt(Y,Z), not alt(X,Z). :- f(X,Y), alt(Y,Z), not f(X,Z).
:- eq(X,Y), s(Y,Z), not s(X,Z). :- f(X,Y), s(Y,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), f(Y,Z), not f(X,Z). :- f(X,Y), f(Y,Z), not eq(X,Z), not alt(X,Z), not f(X,Z).
:- eq(X,Y), i(Y,Z), not i(X,Z). :- f(X,Y), i(Y,Z), not s(X,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), dis(Y,Z), not dis(X,Z). :- f(X,Y), dis(Y,Z), not s(X,Z), not i(X,Z), not dis(X,Z).
eq(X,Y) :- fact(eq,X,Y).
f(X,Y) :- fact(f,X,Y).

Fig. B 3. Partial CTSA2 encoding for TC-6.

{true(X,R,Y) : relation(R)} = 1 :- element(X); element(Y); X != Y.
true(X,eq,X) :- element(X).
:- true(X,R1,Y); true(Y,R2,Z); not true(X,Rout,Z) : table(R1,R2,Rout).
:- possible(X,_,Y); not true(X,R,Y) : possible(X,R,Y).
relation(eq; alt; s; f; i; dis).
table(eq, eq, (eq)). table(f, eq, (f)).
table(eq, alt, (alt)). table(f, alt, (f)).
table(eq, s, (s)). table(f, s, (i;dis)).
table(eq, f, (f)). table(f, f, (eq;alt;f)).
table(eq, i, (i)). table(f, i, (s;i;dis)).
table(eq, dis, (dis)). table(f, dis, (s;i;dis)).

Fig. B 4. Partial GEN encoding for TC-6.
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{ s(X,Z) ; f(X,Z) ; ex(X,Z); ex(Z,X) ; alt(X,Z) ; ret(X,Z) ; rev(X,Z) ; i(X,Z) ; eq(X,Z) ;
dis(X,Z) }=1 :- traj(X), traj(Z), X!=Z.

eq(X,X) :- traj(X).
eq(X,Z) :- eq(X,Y), eq(Y,Z). f(X,Z) :- f(X,Y), eq(Y,Z).
rev(X,Z) :- eq(X,Y), rev(Y,Z). ex(Z,X) :- f(X,Y), rev(Y,Z).
alt(X,Z) :- eq(X,Y), alt(Y,Z). f(X,Z) :- f(X,Y), alt(Y,Z).
ret(X,Z) :- eq(X,Y), ret(Y,Z). ex(Z,Y) :- f(X,Y), ret(Y,Z).
s(X,Z) :- eq(X,Y), s(Y,Z). ex(X,Z) | i(X,Z) | dis(X,Z) :- f(X,Y), s(Y,Z).
f(X,Z) :- eq(X,Y), f(Y,Z). eq(X,Z) | alt(X,Z) | f(X,Z) :- f(X,Y), f(Y,Z).
ex(X,Z) :- eq(X,Y), ex(Y,Z). s(X,Z) | i(X,Z) | dis(X,Z):- f(X,Y), ex(Y,Z).
ex(Z,X) :- eq(X,Y), ex(Z,Y). rev(X,Z) | ret(X,Z) | ex(Z,X) :- f(X,Y), ex(Z,Y).
i(X,Z) :- eq(X,Y), i(Y,Z). s(X,Z) | ex(X,Z) | i(X,Z) | dis(X,Z) :- f(X,Y), i(Y,Z).
dis(X,Z) :- eq(X,Y), dis(Y,Z). s(X,Z) | ex(X,Z) | i(X,Z) | dis(X,Z) :- f(X,Y), dis(Y,Z).
:- eq(X,Z), alt(X,Z). :- f(X,Z), alt(X,Z).
:- eq(X,Z), i(X,Z). :- f(X,Z), i(X,Z).
:- eq(X,Z), s(X,Z). :- f(X,Z), eq(X,Z).
:- eq(X,Z), f(X,Z). :- f(X,Z), dis(X,Z).
:- eq(X,Z), dis(X,Z). :- f(X,Z), ex(X,Z).
:- eq(X,Z), ex(X,Z). :- f(X,Z), ex(Z,X).
:- eq(X,Z), ex(Z,X). :- f(X,Z), rev(X,Z).
:- eq(X,Z), rev(X,Z). :- f(X,Z), ret(X,Z).
:- eq(X,Z), ret(X,Z). :- f(X,Z), s(X,Z).

Fig. B 5. Partial COI7 encoding for TC-10.

{s(X,Y); f(X,Y); ex(X,Y); exi(X,Y); alt(X,Y); ret(X,Y); rev(X,Y); i(X,Y); eq(X,Y);
dis(X,Y)}=1 :- traj(X), traj(Y), X<Y.

eq(X,X) :- traj(X).
:- eq(X,Y), eq(Y,Z), not eq(X,Z). :- f(X,Y), eq(Y,Z), not f(X,Z).
:- eq(X,Y), rev(Y,Z),not rev(X,Z). :- f(X,Y), rev(Y,Z), not exi(X,Z).
:- eq(X,Y), alt(Y,Z), not alt(X,Z). :- f(X,Y), alt(Y,Z), not f(X,Z).
:- eq(X,Y), ret(Y,Z), not ret(X,Z). :- f(X,Y), ret(Y,Z), not exi(X,Z).
:- eq(X,Y), s(Y,Z), not s(X,Z). :- f(X,Y), s(Y,Z), not ex(X,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), f(Y,Z), not f(X,Z). :- f(X,Y), f(Y,Z), not eq(X,Z), not alt(X,Z), not f(X,Z).
:- eq(X,Y), ex(Y,Z), not ex(X,Z). :- f(X,Y), ex(Y,Z), not s(X,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), exi(Y,Z), not exi(X,Z).
:- eq(X,Y), i(Y,Z), not i(X,Z).
:- eq(X,Y), dis(Y,Z), not dis(X,Z).
:- f(X,Y), exi(Y,Z), not rev(X,Z), not ret(X,Z), not exi(X,Z).
:- f(X,Y), i(Y,Z), not s(X,Z), not ex(X,Z), not i(X,Z), not dis(X,Z).
:- f(X,Y), dis(Y,Z), not s(X,Z), not ex(X,Z), not i(X,Z), not dis(X,Z).
exi(X,Y) :- ex(Y,X), Y<X.
ex(X,Y) :- exi(Y,X), Y<X.

Fig. B 6. Partial CTSA encoding for TC-10.
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{s(X,Y); f(X,Y); ex(X,Y); exi(X,Y); alt(X,Y); ret(X,Y); rev(X,Y); i(X,Y); eq(X,Y);
dis(X,Y)}=1 :- traj(X), traj(Y), X<Y, #count{R : fact(R,X,Y)} = 0.

eq(X,X) :- traj(X).
:- eq(X,Y), eq(Y,Z), not eq(X,Z). :- f(X,Y), s(Y,Z), not ex(X,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), rev(Y,Z),not rev(X,Z). :- f(X,Y), f(Y,Z), not eq(X,Z), not alt(X,Z), not f(X,Z).
:- eq(X,Y), alt(Y,Z), not alt(X,Z). :- f(X,Y), ex(Y,Z), not s(X,Z), not i(X,Z), not dis(X,Z).
:- eq(X,Y), ret(Y,Z), not ret(X,Z).
:- eq(X,Y), s(Y,Z), not s(X,Z).
:- eq(X,Y), f(Y,Z), not f(X,Z).
:- eq(X,Y), ex(Y,Z), not ex(X,Z).
:- eq(X,Y), exi(Y,Z), not exi(X,Z).
:- eq(X,Y), i(Y,Z), not i(X,Z).
:- eq(X,Y), dis(Y,Z), not dis(X,Z).
:- f(X,Y), eq(Y,Z), not f(X,Z).
:- f(X,Y), rev(Y,Z), not exi(X,Z).
:- f(X,Y), alt(Y,Z), not f(X,Z).
:- f(X,Y), ret(Y,Z), not exi(X,Z).
:- f(X,Y), exi(Y,Z), not rev(X,Z), not ret(X,Z), not exi(X,Z).
:- f(X,Y), i(Y,Z), not s(X,Z), not ex(X,Z), not i(X,Z), not dis(X,Z).
:- f(X,Y), dis(Y,Z), not s(X,Z), not ex(X,Z), not i(X,Z), not dis(X,Z).
eq(X,Y) :- fact(eq,X,Y).
f(X,Y) :- fact(f,X,Y).

Fig. B 7. Partial CTSA2 encoding for TC-10.

{true(X,R,Y) : relation(R)} = 1 :- element(X); element(Y); X != Y.
true(X,eq,X) :- element(X).
:- true(X,R1,Y); true(Y,R2,Z); not true(X,Rout,Z) : table(R1,R2,Rout).
:- possible(X,_,Y); not true(X,R,Y) : possible(X,R,Y).
relation(eq; rev; alt; ret; s; f; ex; exi; i; dis).
table(eq, eq, (eq)). table(f, eq, (f)).
table(eq, rev, (rev)). table(f, rev, (exi)).
table(eq, alt, (alt)). table(f, alt, (f)).
table(eq, ret, (ret)). table(f, ret, (exi)).
table(eq, s, (s)). table(f, s, (ex;i;dis)).
table(eq, f, (f)). table(f, f, (eq;alt;f)).
table(eq, ex, (ex)). table(f, ex, (s;i;dis)).
table(eq, exi, (exi)). table(f, exi, (rev;ret;exi)).
table(eq, i, (i)). table(f, i, (s;ex;i;dis)).
table(eq, dis, (dis)). table(f, dis, (s;ex;i;dis)).

Fig. B 8. Partial GEN encoding for TC-10.

Appendix C Additional Experiment Results

In this appendix, we include and discuss additional results derived from the experiments dis-
cussed in Section 7. Specifically, we include program size and grounding time values for all
experiments, obtained by running clingo in gringo mode.

Figure C 1 shows grounding time and program size results for the first TC-6 experiment. Sim-
ilarly to Fig. 1, COI7 and GEN are an order of magnitude slower than CTSA and CTSA2. GEN
spends almost equal time for grounding compared to COI7, which means that the slightly longer
overall CPU time for GEN shown in Fig. 1a is due to solving. The same holds for CTSA and
CTSA2: the slight difference in overall CPU time is attributed more to the solving process, since
the difference is less pronounced between grounding times.

In terms of program size, COI7 uses slightly more lines of code (LOC) than the other encod-
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Fig. C 1. TC-6: Finding a consistent configuration when only one relation per trajectory is known.
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Fig. C 2. TC-6: Determining consistency for 50 trajectories.

ings due to the unnecessary integrity constraints for pairwise disjointness. The slight difference
between CTSA and CTSA2 is due to rules that derive a relation whenever it is known as a fact,
which are necessary due to the differentiation between known and derived facts that is introduced
in CTSA2.

Grounding time and program size results for the second TC-6 experiment are shown in Fig. C 2.
It is evident that GEN has a constant grounding time regardless of the number of known rela-
tions. This is because each known relation adds a possible fact, which only features in a single
integrity constraint with variables. In the case of COI7, on the other hand, each known relation
adds a specific relation fact, which takes part in multiple rules that form the composition table
entries.

In what concerns program size, differences between encodings appear less significant, since
the number of LOC increases as more relations per trajectory are known. Note that the plots
are not straight lines due to the fact that knowing x out of 50 possible relations per trajectory
is not exactly equal to knowing 2x% of all possible relations because each relation is between
two trajectories. For instance, knowing 25 relations per trajectory can be achieved by knowing
the relations for 601 unique trajectory pairs, which is slightly less than 50% of all possible pairs
(
(50

2

)
= 50!

2!(50−2)! = 1225 possible pairs).
Figure C 1 shows grounding time and program size results for the first TC-10 experiment.
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Fig. C 3. TC-10: Finding a consistent configuration when only one relation per trajectory is known.
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Fig. C 4. TC-10: Determining consistency for 50 trajectories.

Again, grounding times for COI7 and GEN are an order of magnitude longer than those of CTSA
and CTSA2, which exhibit almost identical times (as is the case for overall CPU time in Fig. 3),
as their differences only affect grounding times when more relations are known per trajectory.
Interestingly, GEN’s grounding time is slightly higher than COI7, which means that solving time
must be slightly lower, since their overall CPU times do not differ much.

The increased number of relations in TC-10 leads to more discernible differences in program
size among encodings, which are again due to the same reasons as in TC-6: COI7 has highest
LOC counts due to the extra integrity constraints for pairwise disjointness and CTSA2 needs
more LOC than CTSA to derive a relation whenever it is known as a fact, for each base relation.

Grounding time and program size results for the second TC-10 experiment are shown in
Fig. C 4. The results mirror those of TC-6, which is expected since an increase from 6 to 10
base relations does not affect the way the encodings behave as more relations are known per
trajectory.


