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Abstract 

In this study an error propagation (EP) scheme was introduced in parallel to 

exponential filter computation for soil water index (SWI) estimation. A preliminarily 

assessment of the computed uncertainties was carried out comparing satellite-derived 

SWI and reference root-zone in situ measurements. The EP scheme has shown skills in 

detecting potentially less reliable SWI values in the study sites, as well as a better 

understanding of the exponential filter shortcomings. The proposed approach shows a 

potential for SWI evaluation, providing simultaneous estimates of time-variant 

uncertainty. 

1 Introduction 

Validation and uncertainty characterization of satellite-based soil moisture data constitute 

fundamental steps to support their suitability for a specific application. An estimate of the root-zone 

value is required in many of application fields where soil moisture plays a key role, and the 

exponential filter (Wagner, Lemoine, & Rott, 1999) is widely used for this purpose, as the method 

involves only one parameter to obtain a profile soil water index (SWI) from remotely-sensed surface 

soil moisture (SSM) time series. However, the uncertainty of SWI estimates has been poorly 

analysed. Among the several methods available for uncertainty assessment, error propagation (EP) 

schemes have been also developed for remote sensing SSM retrieval algorithms (Naeimi, Scipal, 

Bartalis, Hasenauer, & Wagner, 2009). The EP method is based on the propagation of random 

uncertainties in input variables and model parameters through the model equation, in order to 

calculate the uncertainty related to each individual model output. 

In (De Santis & Biondi, 2018), a simplified EP scheme aimed at estimating a SWI noise was 

adapted to exponential filter, which implicitly takes into account both errors and availability of the 

input SSM data used for each SWI estimation; in this study, SWI uncertainties are estimated by error 

propagation equations, including the effect of exponential filter parameter uncertainty. The capability 
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of EP uncertainty estimates to detect potentially less reliable data in SWI time series is investigated by 

comparison with available in situ measurements; the role of uncertainties in inputs and in the 

exponential filter parameter have also been analysed. 

2  Material and methods 

2.1 Study areas and soil moisture datasets 

In situ soil moisture measurements collected in 10 sites from different networks across Italy and 

distributed by International Soil Moisture Network (Dorigo, et al., 2011) were used in the following 

analysis as reference datasets (Table 1). Sites are identified having at least three years of observation 

during the period 2007-2015, and data available at depths ranging from 20 to 60 cm were here 

considered. All sites mainly experience a Mediterranean semi-humid climate. For more details on the 

in situ dataset see (De Santis & Biondi, 2018).  

 

 
 

The SSM time series derived on a discrete global grid from ASCAT backscatter measurements via 

the offline WARP processing chain (Naeimi, Scipal, Bartalis, Hasenauer, & Wagner, 2009) were 

employed to test the proposed EP scheme, and specifically the DR2016 version distributed as H109 

product within the framework of the H-SAF project. ASCAT SSM unit is degree of saturation Sd in 

%, and uncertainty estimates computed by an EP approach are given in the parameter ‘soil moisture 

noise’. The retrieval algorithm is not expected to work properly in areas covered by dense vegetation 

or characterized by complex topography or open water, and static indicators derived from external 

datasets can be employed to mask ‘unreliable’ satellite grid points in operational applications. The 

proposed SWI error propagation scheme implicitly takes into account situations where poor SSM 

retrieval performances are expected, being characterised by high values of average ‘soil moisture 

noise’ (Naeimi, Scipal, Bartalis, Hasenauer, & Wagner, 2009). Backscatter measurements from 

temporary snow covered or frozen land surfaces can also lead to an incorrect determination of SSM. 

ASCAT SSM dataset includes a surface state flag (SSF): SSM estimates occurring when soil is not 

unfrozen are masked in SWI estimation. Finally, only data from the ASCAT sensor on board the 

MetOp-A satellite, covering the period 2007-2015, were here considered. 

The nearest neighbour technique was used to match in situ stations with satellite grid nodes 

(identified by a GPI, Grid Point Index), generally obtaining a single sampling site per grid point. The 

scale mismatch between satellite footprint and reference point-scale data is a critical aspect, as in situ 

measurements could show large errors in representing coarse-scale soil moisture. In this sense, data 

from reference sites have already been used in previous studies aimed at evaluate the satellite-derived 

Code Station name Network Depth (cm) Observation period Nearest GPI 

#1 Fitterizzi Calabria 30, 60 1 Jan 2001 - 31 Dec 2012 2069259 

#2 Mongrassano Calabria 30, 60 1 Jan 2001 - 16 May 2011 2069263 

#3 Torano Calabria 30, 60 1 Jan 2001 - 31 Dec 2012 2069263 

#4 Chiaravalle C.le Calabria 30, 60 1 Jan 2001 - 31 Dec 2012 2034369 

#5 Satriano Calabria 30, 60 1 Jan 2001 - 31 Dec 2012 2034373 

#6 Bagnoli Campania 30 1 Dec 2000 - 21 Nov 2012 2128143 

#7 Cerbara Umbria 20, 40 30 Oct 2009 - 31 Jul 2014 2242295 

#8 Petrelle Umbria 20, 40 30 Oct 2009 - 31 Jul 2014 2232959 

#9 Torre Olmo Umbria 20, 40 23 Sep 2009 - 31 Jul 2014 2232971 

#10 Perugia (Field1) HYDROL-NET 25, 35 1 Jan 2010 - 31 Dec 2013 2223595 

Table 1 Main characteristics of study sites. 
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SWI, e.g. (Brocca, et al., 2011), (Paulik, Dorigo, Wagner, & Kidd, 2014), (De Santis & Biondi, 2018). 

According to the results in (Gruber, Dorigo, Zwieback, Xaver, & Wagner, 2013), where the coarse 

scale representativeness of ISMN stations by triple collocation are analysed, “Calabria” sites show 

lower error values than stations in other considered networks; this is consistent with the better 

agreement of Calabria network data with the satellite-based SWI found in (De Santis & Biondi, 

2018). 

2.2 Soil water index uncertainty by error propagation 

The root-zone soil water index at time tn, SWIn, can be estimated from previous remotely-sensed 

surface states at times ti, SSMi, through the exponential filter approach proposed in (Wagner, 

Lemoine, & Rott, 1999), that makes use of one parameter only, T, representing a characteristic time 

length. A mathematically equivalent recursive formulation of the exponential filter was proposed in 

(Albergel, et al., 2008), introducing a gain term, Kn. 

Assuming that errors in SSM measurements and in parameter T are normally distributed and 

uncorrelated, the uncertainty of SWIn can be estimated by the error propagation approach as: 
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Equation (1) can be written in recursive form as:  
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having defined Gn as: 
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Initial value Δ0 is set to σ(SSM0), while (∂SWI0/∂T) and G0 are set to 0.  
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The EP scheme implicitly takes into account the effect of possible prolonged temporal gaps in 

input SSM data, related on the T value.  

The term Δ, that considers only SSM uncertainties, is equivalent to the SWI noise index calculated 

in (De Santis & Biondi, 2018). The jacobian term (∂SWI/∂T) assumes high values proportionally to 

the latest SSM inputs variability on a time-scale related to the T parameter, which reflects in SWI 

value significant changes, e.g. state transition from dry to wet conditions. 

3 Results and discussion 

SWI time series were computed from SSM datasets, estimating the optimal T value that 

maximizes the correlation coefficient R between in situ and satellite-based soil moisture observations; 

after linearly rescaling SWI with the mean and variance matching technique, the root-mean-square-

difference (RMSD) was calculated. Overall, the comparison between SWI and in situ measurements 

gave good results; the exponential filter generally confirmed a greater ability in capturing the seasonal 

soil moisture behaviour rather than short time-scale fluctuations. 

In parallel SWI uncertainties time series were estimated with the approach described above, 

considering the σ(SSM) provided in ASCAT products and assuming σ(T) equal to the 10% of the 

estimated T value (Figure 1). As shown in Figure 1, the differences in computed uncertainty due to 

the introduction of the term related to the parameter T can be remarkable.  

It is worth noting that input SSM uncertainties show much lower absolute values and considerably 

reduced seasonal patterns in this updated ASCAT data records release, compared to previous product 

versions. The latest product version benefits from several updates, mostly in instrument calibration, 

model parameters, and algorithms, consequently, no prominent seasonal patterns are reflected in 

estimated SWI uncertainty time series, as it happened instead in (De Santis & Biondi, 2018). 

 

 

Figure 1 Example of estimated SWI uncertainties time series (in red the values calculated by considering 

only input uncertainties). 

In this study, a preliminarily assessment of estimated SWI uncertainties was carried out, by 

focusing only on the highest values in the time series, investigating the correspondence with 

potentially less reliable SWI data, i.e. with data that do not fits well in situ observations. The 

correspondence between observed deviations and SWI random error realizations theoretically holds 

well as long as the latter is the main error term. Ground measurements, used as reference for the 

evaluation of coarse-scale SWI, also contain random errors (instrumental and representativeness); 

furthermore, residual systematic differences are to be expected, as mean and variance matching 

technique constitutes a suboptimal rescaling solution (Yilmaz & Crow, 2013). 

The more uncertain SWI values, are firstly masked by setting four σ(SWI) thresholds to remove 

fixed percentage of data (5, 10, 15 and 20%) and then a linear scaling was performed to remaining 

SWI data; finally, performance metrics R and RMSD are recomputed to check whether the discarded 
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data contributed positively or not to the overall agreement between the in situ and satellite-based soil 

moisture time series. To examine the role played by parameter uncertainty, the same procedure was 

also performed by applying thresholds on Δ values. An example of the obtained results is shown in 

Figure 2, for 3 representative sites. 

 

 

Figure 2 Effects of the different uncertainty thresholds on R and RMSD values, for 3 representative sites. 

Overall, the analysis shows a correspondence between the removing more uncertain SWI values 

and the improving the observed performance metrics. Increasing thresholds on σ(SWI) seem to lead to 

a systematic better agreement between remaining SWI data and reference ground measurements, both 

in terms of R and RMSD. Conversely, regarding Δ, data masking shows absent or reduced 

performance improvements, often limited to the removal of a moderate percentage of SWI values 

(that include those corresponding to exponential filter initializations). It is also noted that masked 

uncertain SWI data are deemed to be those characterized by high (∂SWI/∂T) values, i.e. significant 

change in soil moisture value, and thus the performance improvements can be explained by the 

removal of points that testify the limited skills of exponential filter in detecting short time-scale 

fluctuations. In this sense, the EP scheme succeeds in identifying SWI estimates that do not capture 

properly soil moisture state transition and deviate considerably from reference ground measurements. 

4 Conclusions 

Although requiring further research, the proposed EP scheme has shown capabilities to identify 

potentially less reliable SWI values in the selected study sites, and the preliminary results suggest its 

utility in the SWI evaluation, in the comprehension of the exponential filter shortcomings, and in 

providing simultaneous estimates of time-variant SWI uncertainty. 
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