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Abstract

This paper presents a RGBD slam construction dataset with a mounted platform,
designed to collect the unique challenges encountered in construction sites. An Ouster
0S0-128 LiDAR is utilized as the sensor of LiDAR SLAM, working as the ground truth
for localization. Our dataset records various construction settings with different stages of
building materials and structures, such as concrete, brick, plaster, and putty, providing a
comprehensive benchmark for training and evaluating SLAM algorithms. Through testing
on current SLAM algorithms, we demonstrate the limitations of traditional approaches in
these environments and provide a VINS based algorithm as the benchmark. This dataset
serves as a valuable resource for researchers aiming to enhance SLAM performance in the
real construction environments. The detailed information of the dataset is available at
https://github.com/WenyuLWY /HCIC-Construction-VSLAM-Dataset.git

1 Introduction

In the field of automated construction, the deployment of construction robots has gained signif-
icant traction for the automation of tasks such as surveying, inspection, and material handling.
Compared to human workers, construction robots can work continuously without fatigue, reduc-
ing project costs, while also improving the overall quality and consistency of different construc-
tion tasks. A key factor in enabling these robots to operate effectively in complex construction
environments is accurate localization. Without precise positioning, robots cannot operate reli-
ably across different sites, which is critical for ensuring safe and efficient automation.

Indoor localization presents greater challenges compared to outdoor environments due to
the absence of GPS and other external positioning systems. To address these challenges, Si-
multaneous Localization and Mapping (SLAM) has developed as a foundational technology in
the field of construction robotics, playing an essential role in enabling robots to autonomously
navigate and localize within complex construction environments.
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Although LiDAR-based SLAM is commonly used in construction, it faces limitations such
as high costs and sensor weight. Visual SLAM (V-SLAM), by contrast, has gained prominence
for its advantages. It uses cameras, which are more cost-effective and lightweight, and can
capture rich environmental details such as texture, color, and structure, providing comprehen-
sive information for mapping and localization. With recent advancements in computer vision
and image processing, visual SLAM has also become more robust, offering greater flexibility in
challenging construction environments.

al

Figure 1: Typical indoor working conditions for construction robots (Figures are from Bright
Dream Robotics(BDR) company in Foshan, China, which provides us the building sites for data
collecting.)

Using V-SLAM datasets is an effective method for testing and evaluating the performance
of localization algorithms. However, most existing SLAM benchmark have been collected in
finished indoor environments, such as offices or homes [1], or in outdoor urban and autonomous
driving scenarios [2]. Recently, more challenging general indoor scene datasets have proposed [3,
4]. These popular datasets are typically ideal environments for SLAM experiments. Traditional
visual SLAM systems built on these datasets perform well in such scenarios, where stable
features such as corners, edges are reliable for feature extraction and matching. However, they
will experience a series of challenges when applied to construction environments. A construction
site is usually defined as low textural, structural, and with large surfaces. Figure 1 provides real
examples for illustrating the working conditions of construction robots. The extreme setting
results in poor performance and inaccurate localization of traditional feature point based SLAM
algorithms. We directly evaluate ORBSLAM [5], a widely used SLAM algorithm known for its
effectiveness in general localization tasks, as shown in Figure 2. In Figure 2a, although the
system detects some feature points only on a relatively rough wall, it still estimates its pose.
However in Figure 2b, it can not detect any feature from the image, therefore the system drifts
with imu and fails soon.

This indicates that SLAM algorithms developed based on general datasets are unsuitable
for real construction sites. The primary reason for this limitation is the lack of specialized
SLAM datasets tailored to construction environments, which hinders the advancement of SLAM
algorithms designed for construction robots. To address these issues, this paper introduces a
novel dataset specifically created to capture the complexities of construction settings. This
dataset serves as a comprehensive benchmark for training and evaluating SLAM algorithms,
enabling them to better tackle the challenges inherent in real-world construction environments.
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(a) Previous frame (b) Current frame

Figure 2: ORB feature extraction in our construction dataset(From ORBSLAMS3).

2 Dataset and Methodology

2.1 Overview

The dataset was collected in indoor construction sites with various types of walls, ceilings,
and other architectural characteristics typical of construction environments, such as unfinished
structures, exposed pipes, and scattered materials. These scenes are complex and diverse,
containing numerous geometric features and dynamic elements such as construction workers
and moving equipment. This setting provides a unique challenge for evaluating visual SLAM
algorithms.

For the core visual images in our dataset, we chose to capture RGB-D images instead of
monocular or stereo images, which could directly provide depth information for each pixel.
We have compared these cameras and finally make the decision for some reasons: First, in
real-world navigation tasks, construction robots normally require absolute scales for accurate
positioning and mapping, while the monocular slam cannot provide this absolute scale, making
it unsuitable for reliable navigation in practical environment. Second, visual-inertial systems
heavily depend on the Inertial Measurement Unit (IMU) to obtain scale. However, for ground
robots typically move at a constant velocity on a 2D plane, the IMU will not be fully excited
in each direction, therefore there will be barely no useful measurements. This can lead to
divergence, large drift error and scale drift. Third, though stereo vision estimates the depth by
matching features between the two camera images, it faces challenges in low-texture or changing
lighting conditions commonly found in construction environments, making it difficult for stereo
cameras to recover reliable scale and depth.

Finally, our robust solution is to provide an RGB-D camera for the visual SLAM benchmark.
The usage of this kind of cameras could help reducing computational load and improving data
processing efficiency, and focusing on the development of new visual SLAM algorithms. We
have compared our dataset with several current construction slam datasets, the comparison is
shown in Table 1.

Dataset Motion Visual Sensor Type LiDAR Sensor

Hilti (Helmberger et al., 2022) Handheld  Stereo/Grayscale 0S0-64/Livox MIDT70
ConSLAM (Trzeciak et al., 2023) Handheld RGB/NIR Velodyne VIP-16
Ours Mounted RGB-D 08S0-128

Table 1: Comparison of current construction SLAM datasets
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We noticed that we are the first that provide RGBD images. The Hilti dataset [6] might be
the most well-known construction SLAM dataset, but it only collects 10hz stereo images using
Alphasense cameras, due to the limitation by the image resolution. The ConSLAM dataset [7]
is primarily a lidar slam dataset, so it only uses a simple RGB camera. Our dataset will be an
ideal choice to test and develop visual slam in real construction sites.

2.2 Ground Truth

It is challenging to generate accurate reference positions for SLAM performance evaluation in
indoor construction sites. GPS is often unreliable indoors due to weak signals and multipath
effects, failing to provide the required precision. Some research employs Total Stations or
Terrestrial Laser Scanners (TLS) to generate highly accurate ground truth data [6, 7]. However,
these methods are frequently constrained by the complexity and slowness of operation, making
them less suitable for real-time and changing indoor settings.

While some research has tried to use advanced lidar slam as the ground truth. TIERS [§]
provides a reference location from lidar slam when motion capture system is unavailable in
largescale environment. ConPR [9] fuses lidar slam and GPS measurement to generate global
absolute trajectories for place recognition. Therefore, high-precision lidar systems can generate
stable and accurate positioning data. In our study, we adopt a similar approach to directly
obtain ground truth. An advanced lidar-inertial odometry Fast-LIO2 [10] is selected, with
some modifications to ensure compatibility with our lidar. But users are allowed to use their
own lidar slam algorithm as reference. Figure 3 shows the mapping and localization result after
running the lidar slam in our lab, where the colored lines in the pictures represent the ground
truth trajectories.

2.3 Hardware

Data collection was conducted using an Intel RealSense L515 camera, an Ouster OS0-128 LiDAR
sensor, and both equipped with their built-in imu modules. The Ouster OS0-128 is a spinning
high precision LiDAR sensor that offers a full 360-degree horizontal field of view and a 90-degree
vertical range, making it ideal for comprehensive scene capture. With a range of up to 50 meters
and a 10 Hz operating rate, this sensor effectively detects distant objects and provides accurate
data for SLAM applications, aided by its integrated IMU for real-time positioning. The Intel
RealSense L515 detects highly precise depth measurements up to 9 meters with a field of view of
70° x 55°, tailored for detailed indoor applications. Its higher capture rate of 30 Hz enables it to
track rapid changes in dynamic environments. Additionally, the RGBD camera is also regarded
as a solid-state lidar, due to its extremely accurate depth measurement. However, there is some
debate about whether its use falls under the category of visual SLAM [8, 11]. The general
consensus is that if the SLAM algorithm primarily relies on RGB images for visual feature
extraction and uses depth images as supplementary input, it is still considered as visual RGBD
SLAM [12]. On the other hand, methods that directly use point clouds generated from the
depth images for localization are typically regarded as LIDAR SLAM [13]. Since the proposed
dataset primarily utilizes RGB images and depth images, it aligns with the definition of visual
SLAM and our dataset is categorized as a visual SLAM dataset. The specific configurations of
the sensors are listed in Table 2.

The data is recording through a laptop, using Robot Operating System (ROS) with Ubuntu
20.04. The camera is placed on a tripod for stability (Figure 4a). The lidar, as shown in Figure
4D, is powered by an external power source and is connected to the laptop via an Ethernet cable.

371



A Real World Visual SLAM Dataset for Indoor Construction Sites Li, Chen and Yu

Figure 3: Results of the lidar slam on a test sequence

Sensor Type IMU FoV Range Rate
0S0-128 spinning built-in  360° x 90° 50 m 10hz
RealSense L515  solid-state/RGBD  built-in  70° x 55° 9 m 30hz

Table 2: Sensor configurations on the platform

All devices are mounted on a manually operated platform, which allows for flexible movement
and data collection.

2.4 Sensor Data and Software

Figure 5 is an example of sensor data in one scanning. The above two images are RGB and depth
image respectively. Each pixel in the depth image indicates the distance of the corresponding
pixel in the RGB image. The red pointcloud is from OS0-128 lidar. It is used to register
current scan to the pointcloud map. The colored pointclouds are generated by the L515 camera.
Benefitting from the RGB-D mode, it is convenient to obtain the rgb pointclouds or receive
depth images aligned with the RGB images. Since RGB pointclouds can be recovered from
depth images, and the transmission rate of images is also much faster than that of pointclouds,
we chose to use depth images rather than directly providing colored pointclouds in our dataset.
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(a) RGBD camera (b) LiDAR sensor

Figure 4: Sensor configuration and data collection platform.

In Figure 5 the colored pointclouds are provided by some third-party utilities for visualization.

Figure 5: Sensor data of lidar and RGBD camera.

To transform the depth image to pointcloud, we can use the camera intrinsics(given in
/camera/color /camera_info topic, as listed in Figure 5) by Equation 1:

G
fx

(i —cy)z (1)
YT gy

z = depth_value x depth_factor

where the depth_value is from the depth image at (i,7); the depth_factor is set to 0.001 for
this camera; fx, fy, cx, cy are the camera intrinsics provided by the realsense driver; x, y, z are
the 3D coordinates respectively.
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Some RGBD SLAM directly use pointcloud for Iterative Closest Point (ICP) matching rather
than operate on the depth image [12, 13, 14], and shows impressive performances. However,
due to limitations in on board computation, they need to downsample the depth maps multi
threading parallelization before further proceeding.

In this dataset we provide a fast implementation for converting the depth image, which
is mainly realized through the utilization of OpenCV cv::Mat class and continuous memory
read /write operations. Compared with OpenCV official implementation, our approach allows
additional channels like RGB or inverse depth, and supports the conversion from cv::Mat to the
PointCloud2 message format in ROS. Additionally, it can be convert to PCL point clouds with
further customization. This enhanced flexibility and efficiency make our dataset well-suited for
real-time SLAM applications.

The sensor data is recorded in ROS bag format using the official ROS drivers with their
default synchronization schemes enabled. For the RealSense camera, IMU data is first aligned to
the image messages by matching the closest timestamps. Since the point cloud and images are
captured by two different sensors, their timestamps are not perfectly matched, resulting in some
misalignment, as shown in Figure 6. However, the RGB and depth images are synchronized in
practice when parsing the data. It is just caused by timestamp precision. The Ouster LiDAR
is set to the same time settings as the camera and is synchronized with its built-in IMU. As the
LiDAR data is used as the ground truth, we did not align the LiDAR points with the image
data. After processing the entire ROS bag and saving the estimated poses, the trajectories can
be matched and evaluated for localization performance using public tools like EVO [15].

0.04s 0.09s 0.14s 0.19s 0.24s 0.295 0.34s 0.39s

camerajaligned_depth_to_color/image_raw | | | [ | | | j
camerajcolor/camera_info | [ I | I [ I

| | | | | | | |
camerafimu [ELECCECCELE D CEREELEEELLELEE PR LELCL I ELELEL REEELEELCERELEEEEEL BN L
ousterimu IIIII[I[IIIIJIIIIJ[IIII[|I||II|I||

ousterjpoints | |
tf_static

camerajcolorfimage_raw

Figure 6: Rosbag information in rqt bag.

Figure 7 are some selected representative pictures from the dataset, which reflect real-
world ongoing construction conditions. The motivation for collecting these scenes comes from
recent SLAM research specifically focused for construction environments[16, 17, 18, 19]. We
capture the diversity of construction settings, including various stages of building materials
and structures, such as concrete, brick, plaster, and putty, which often have low or nearly no
texture. Some sequence may also involve other auxiliary materials, equipment, workers and
machinery. These factors contribute to a more realistic and challenging testing environment for
SLAM algorithms.

Table 3 provides a list of the selected sequences from the raw collected data. Most sequences
are captured in static environments to simulate a construction robot operating independently.
We have also included a dynamic sequence (Floorl) to reflect the presence of workers around
the robot. Additionally, our dataset includes a closed-loop sequence(Building B1). However, it
should be noted that the robot’s localization must rely on real-time odometry, and the impact
of loop closure correction is limited.
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(a) large flat surfaces  (b) reflective glass (c) over exposure (d) texture less

(e) brick wall (f) motion blur (g) open and empty (h) repetitive texture

Figure 7: Representative example frames in our construction dataset.

Sequence Duration Description

Building A1, static 85s Texture-less, multiple rooms
Building B1, static 78s Repetitive texture, looped trajectory
Floor14, static2 506s Over-exposure

Floor4, staticl 35s Glass, static workers

Floor4, static3 24s Texture-less, single room

Floorl, dynamic 55s Motion blur, dynamic workers

Table 3: Selected sequences in our dataset.

3 Benchmark Results and Discussion

We evaluated several visual SLAM systems with different frontends on our dataset, as illustrated
in Figure 8a. The ”Fast” frontend refers to the fast corner detection combined with optical
flow tracking, implemented by DVINS [20]. VINS-MONO [21] utilizes Shi-Tomasi (S-T) corner
points with optical flow tracking, but for this experiment, we selected the RGB-D version of
VINS [22]. ORBSLAM [5] was also tested but failed to complete the entire trajectory, as shown
in Figure 2. It struggled to detect features when the robot approached a gray wall (Figure
8b) closely, leading to totally drift. This demonstrates the difficulties feature matching based
methods in construction environments with low texture or flat surfaces.

The mentioned visual SLAM algorithms are highly representative methods and are widely
regarded as benchmarks by most researchers. However, our simple tests revealed that VINS-
based improved methods demonstrate greater robustness. Therefore, we recommend using the
VINS-based visual SLAM algorithm as a benchmark for our dataset. For visualization, we
utilize RTABMAP [23] as the dense mapping backend, replacing the default visual odometry
with VINS RGB-D [22]. RTABMAP is particularly known for its versatility and modular design,
making it a popular choice for both research and practical applications. In our experiment, it
is used for mapping and visualization to support different visual SLAM algorithms.

The final results of mapping and localization are shown in Figure 9. Figure 9a illustrates
the outcome of a single run, where the thin blue line represents the estimated trajectory. Figure
9b shows the results from different runs in the same environment, with the point cloud map
merging each sub-map across sessions. The differently colored lines correspond to individual
robot paths, and the node points indicate keyframe poses from the visual odometry. This
experiment aims to provide a simple benchmark and a visualization evaluation based on the
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(a) Localization results (b) The corresponding area to the red circle

Figure 8: A comparison between several visual frontends.

collected dataset.

The mapping results in Figure 9a and Figure 9b are not perfect, with some mismatches
observed, particularly in the multiple mapping results shown in Figure 9b. This highlights
the challenges faced by current visual localization and mapping methods in real construction
environments. Future work could focus on developing more robust SLAM algorithms that
better leverage prior knowledge, such as 2D drawing, BIM models and structure information
to enhance accuracy and reliability in these challenging construction scenarios.

4 Conclusions

This study introduces an RGB-D visual SLAM dataset specifically collected in real construction
sites, which is often overlooked in existing benchmarks. It uniquely includes the dynamic
and complex nature of real construction environments, which pose significant challenges for
traditional SLAM algorithms. By offering detailed environmental data and realistic settings, we
hope this dataset will be a useful resource for construction automation and robotics community,
and can facilitate advancements in SLAM localization systems tailored for construction sites.
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(b) Results from multiple experiments within the same room

Figure 9: Mapping and localization results by combining VINS RGBD and RTABMAP.
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