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Abstract 

Seismic Loss Estimation (SLE) has become a critical aspect of modern building 

engineering, aiding in mitigation strategies, real-time disaster response, and post-

earthquake reconstruction. The FEMA P-58 method, a performance-based earthquake 

engineering tool, efficiently links component damage states with engineering demand 

parameters for comprehensive seismic loss assessment. However, managing the 

extensive data and semantics required for such evaluations poses challenges. This paper 

proposes a Knowledge Graph (KG)-based solution, integrating object-based information 

management principles akin to Common Data Environment (CDE) and Building 

Information Modeling (BIM). By leveraging KG and digital twin technologies, this 

approach aims to facilitate dynamic seismic loss estimation, providing stakeholders with 

a comprehensive view of building performance and enabling efficient data access and 

analysis. 

1 Introduction 

In modern building engineering practices, seismic loss estimation (SLE) has gradually become an 

important part across the different stages of buildings. In pre-earthquake stage, such procedure is useful 

for adopting suitable mitigation strategies or structural designs; during the earthquake event, it can 

facilitate the decision making for real-time disaster response and relief efforts; after an earthquake 

event, it can become a good criterion for reconstruction and rehabilitation (Shi et al., 2023; Xu et al., 

2019). In the last few years, performance-based earthquake engineering approaches have been proposed 

to evaluate the performance of certain structures under seismic excitations. Among them, the FEMA P-

58 method, a recent product of performance-based earthquake engineering, stands out for its capability 

to perform fine-grained, full-term seismic loss estimation (ATC, 2012). Its specialty is the capability to 

efficiently connect the damage state of the component combinations (performance groups, PGs) with 
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specific engineering demand parameters (i.e., peak inter-story drift ratio PIDR, peak floor acceleration 

PFA). The FEMA P-58 method has been proven to be effective for diverse structural types, including 

masonry (Zeng et al., 2016), reinforced concrete frame (Baradaran et al., 2013, Del Vecchio et al., 2018, 

Shi et al., 2023), steel frame with seismic force-resisting systems (Del Gobbo et al., 2018, Yang & 

Mutphy, 2015). 

Such applications require an abundance of data regarding the building of interest, such as the 

decomposition of different building subsystems, real-time measurements of specific physical quantities, 

detailed information of both structural and non-structural components, especially for their fragility 

against specific seismic impacts. Additionally, to effectively impart the building performance to 

different stakeholders, semantics regarding the seismic loss estimation may need to be further 

supplemented by the relevant material, such as technical reports or regulatory documents. Moreover, 

multiple models will be set during the analysis procedure of building seismic loss estimation. The 

integration of these analytical results is also helpful for the decision makers to have a comprehensive 

view of the target asset. Despite the wealthiness, challenges occur in managing the relevant data and 

exploring the underlying semantics. It spawns demand for developing an effective data management 

environment to make the involved information easy to access and exploit. 

In the history of information management for urban assets, including buildings and civil engineering 

works, common data environment (CDE) and building information modeling (BIM) are two intertwined 

fundamental concepts. Specifically, according to ISO 19650-1 2018 (ISO, 2018), CDE refers to agreed 

source of information for any given project or asset, for collecting, managing and disseminating each 

information container through a managed process. Meanwhile, BIM is the use of a shared digital 

representation of a built asset to facilitate design, construction and operation processes to form a reliable 

basis for decisions. In our humble perspective, as illustrated in Figure 1, one of the important common 

idea underlying these two concepts is the object-based information management paradigm. The kernel 

of object-based information management paradigm for the built assets is to regard the involved object 

hierarchy (buildings, building subsystems, components) as the backbone of the relevant information 

collected from multiple sources. Information such as that within technical reports, real-time 

measurements from the corresponding sensor networks are required to be integrated to specific objects 

of interest so that the stakeholders can explore the embedded semantics freely with object-based query 

engine.  

 

Similar ideas are also introduced by knowledge graph (KG) and digital twin technologies. In 2012, 

the famous blog posted by Google entitled “Things, not strings” revealed the essence of knowledge 

graph as managing the relevant data with object-based paradigms. It proposed a web with semantics 

which reveals real-world entity interconnections, thereby enabling applications across multiple 

scenarios, including intelligent search, question and answer (Q&A) systems, personalized 

recommendation services. Knowledge graph allows users to explore the connections between entities 

of interest and their potential neighbors, thus broadening their knowledge horizons. Similarly, digital 

twin technologies, originally proposed for constructing mirrored digital representations for aircrafts, 

Figure 1: A perspective on stages of maturity of analogue and digital information management: 

Information Layer (Adapted from ISO 19650-1). 
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emphasized the importance of object-based information management for different level of details. In 

such context, information and status of the components from the different levels of system 

decomposition are integrated and reflected accordingly.  

To this end, this paper proposes a KG-based object-based common data environment solution for 

dynamic seismic hazard assessment based on previous work and the specific data requirements of 

building seismic loss estimation tasks. 

2 METHOD 

2.1 KG-based CDE for building seismic loss estimation 

In the context of building seismic loss estimation, conventional building information management 

may encounter three significant challenges: 1) representation of status history of buildings and their 

corresponding components under seismic events; 2) articulation of the underlying relations between the 

state of a complex object and the state of its components at various compositional levels, and 3) 

integration of heterogeneous data from multiple sources related to such applications. These three 

challenges correspond to three important information management requirements in the application of 

building seismic loss estimation. The proposed data model, hence, ultimately needs to be flexible 

enough to satisfy these requirements. 

 

It is acknowledged that each object may possess multiple attributes and states, which can be subject 

to change over time. Illustrative examples of this phenomenon include the position of an object at 

different moments in time or the progression of structural damage in a building throughout an 

earthquake event. The information requirements for the attributes and states of the involved objects 

vary across different application scenarios and must be adapted to meet specific needs. In addition to 

attributes and states, the relationship between objects may also change over time, e.g., some dependent 

subsystem components may not be able to maintain normal functional connections with each other due 

to the failure of a component. As shown in Figure 2, insufficient redundancy or failure of key 

components of a system sometimes may lead to cascading failures, resulting in system-level functional 

paralysis and significant losses, such as the famous cascading failure of the Italian power grid reported 

by Buldyrev et al., 2010 and the cascading collapse of structures. 

In the case of a complex object, it is possible that some of its properties and states may be jointly 

determined by the states of its various components. These components can be regarded as some kind of 

functional relationship. The state of a building, as a complex object, is constrained by the states of its 

various components. For instance, in the context of an earthquake, the damage state of each building in 

the region constitutes a pivotal basis for emergency relief decision-making, with the overall state of the 

Figure 2: Schematics of cascading failures of interconnected components in a hierarchical system. 
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building reflected by the damage state of each floor, which in turn is reflected by the damage state of 

its associated structural components. Subsequent to the earthquake, the estimation of the overall loss to 

the building, in this case, is primarily determined by the loss of each component, including both 

structural and nonstructural components. 

Relying on a single data source is commonly inadequate to accurately describe a building and its 

components to different stakeholders. It is also a complicated task to obtain the required information 

from the CDE for different analytical purposes. For the building seismic damage assessment scenario 

based on performance analysis, the semantics of describing a column object includes not only the 

location, such as the floor to which it belongs, and the connectivity of its components, but also its 

mechanical properties, structural conditions, constraints, ideal representations (refined or simplified 

representation of the element for structural analysis), the performance group to which it belongs and its 

corresponding fragility group, the meanings of the indicators describing the current damage state, the 

value of the performance indicators corresponding to different damage states. The semantics of these 

properties are usually stored implicitly in the information model and need to be described by domain 

knowledge from different knowledge sources. Therefore, how to effectively manage these 

heterogeneous knowledge sources is another practical issue to be considered in similar real-world 

application scenarios of building information. 

 

In our previous study, we have proposed a new domain ontology called dynamic regional seismic 

loss estimation ontology, DRSLEO in short. It has been established upon the concepts from FEMA P-

58 and knowledge organization experiences from multiple outstanding outcomes of knowledge 

engineering, including a descriptive ontology for linguistic and cognitive engineering DOLCE (Borgo 

et al., 2021), industry foundation classes IFC (ISO, 2018), building topology ontology BoT (Janowicz 

et al, 2020). DRSLEO is still a developing ontology and was initially presented to formalize the relevant 

concepts and relationships within the field of seismic loss estimation.  

Figure 3 illustrates the main structure of this ontology. It is composed of four conceptual parts, 

including event, object, model, and application sub-ontologies. The “event” sub-ontology maintains 

concepts for defining events and their causal relations, the “object” sub-ontology maintains those for 

defining objects and different kinds of associative relationships, the “model” sub-ontology maintains 

Figure 3: Dynamic regional seismic loss estimation ontology (DRSLEO) proposed in our 

previous study (Pan et al., 2024). 
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those for defining digital models and some other information objects, the “application” sub-ontology 

maintains those for states or situations that reflect the status of the objects of interest. In this section, 

details are given about how the knowledge-graph-based CDE can be used to specify the objects of 

interest and their interactions with their digital representations for respective purposes. 

In information science, the term “ontology” is widely accepted as a conceptual representation of the 

domain of interest. It excels at conceptualizing the interconnections between different concepts. It is 

also a kind of data model that can be used to organize the data involved by the specific tasks of this 

application in a logical way. A well-established ontology is regarded as a logical foundation for 

reasoning upon the instantiated facts. As shown in Figure 4, we adopt DRSLEO to the data integration 

procedure in forming a knowledge graph based common data environment. 

 

As shown on the left of Figure 4, to begin with, objects and events involved in this application are 

identified and classified according to the data requirements of performance-based seismic loss estimation. 

They are further semantically enriched with the information selectively extracted from both structured and 

unstructured data (e.g., fragility database, specifications for structural analysis and fragility analysis, 

document regarding the asset and its sub-systems, ground motion database) and progressively organized 

into the corresponding knowledge graph. The corresponding knowledge graph in this stage serves as a 

base graph which reflects the initial state of the target asset. Upon this, update actions may be recalled 

with additive modifications to the base graph to reflect the status of the asset and its involved components. 

Each status should be assigned with a timestamp that is crucial to be queried with the specific time or 

duration of interest. The status of an object may be described by the combination of the valued indicators 

(e.g., peak inter-story drift ratio) or the existence of specific connections between the individuals, such as 

the functional relationships between a structural joint and its relevant structural components. Therefore, it 

is necessary to conserve the modification history as the value or relation regarding the object changes. The 

retrieved subgraphs for different update time instants can be seen as snapshots of the object during the 

different stages of the asset. As a result, they together form a dynamic view of asset status. 

The first adaptor presented in Figure 4, hence, is responsible for extracting the essential data from 

multiple data sources and aligning them under the guidance of the corresponding ontological structure. 

In this procedure, objects of interest are identified and further semantically enriched with their 

attributes, status, constraints, correlations to other objects. Both structured and unstructured data are 

selectively passed through this interpretation process. For efficiency, not all data are fragmented into 

tiny data pieces so that they can be embarrassingly embedded into the corresponding knowledge graph. 

Reference mechanisms are adopted to address this issue. In one case, part of the semantics of the object 

of interest is already maintained by another accessible data source, such as, formal description of the 

classification of a specific object from an organized classification system. In another case, although 

images and videos regarding the object of interest are indispensable resources to represent the current 

and historical status of the object, they are not directly stored while referenced in this knowledge graph. 

Figure 4: Illustration for the construction and implementation of the proposed knowledge graph 

(KG) based common data environment (CDE) for building seismic loss estimation. 
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The other adaptor is to deliver the required information for different tasks, such as allocation of 

structural analysis model and performance model. The analytical results are written back to the 

knowledge graph through the adaptor once the analysis is completed. There is another task for common 

information retrieval or object status exploration. In this study, resource description framework (RDF) 

and the corresponding query language (SPARQL Protocol and RDF Query Language, SPARQL) for 

organize and manipulate the information of the knowledge graphs. Since the data requirements of the 

downstream tasks vary, details will be given in the following sections. 

Prior to elucidating the construction of the proposed CDE, there is another important concept to 

delineate further, namely, “object”. An object in this context refers to a thing that is identifiable and 

capable of describing with a bunch of attributes. The definition of “object” in this context is much 

narrower than that in IFC, where it refers to the generalization of any semantically thing or process. It 

is close to “Endurant” in DOLCE’s context. Things such as events and processes are formally defined 

by other concepts. As the definition implies, the most fundamental attribute is to be identified as an 

individual and can be described by supplementary information. Each individual that needs to be 

identified in this context should be associated with a globally unique identifier (GUID), which is also 

emphasized by IFC. They include physically tangible items such as wall, beam or covering, physically 

existing items such as room, storey, building. Practically, a fixed 22-character style GUID, suggested 

by buildingSMART (buildingSMART, 2024), is adopted in this study. It can be created through a 

reversible transformation of a universally unique identifier (UUID), which is a most frequently used 

identifier generated by the algorithm of UUIDv4 defined by the specification of RFC 4122. 

2.2 Construction of the knowledge graph 

As shown in Figure 2 and Figure 4, each knowledge graph can be seen as a web with semantics 

which reveals entity interconnections. With the convention of RDF, the graph consists of a series of 

triplets in the form of (subject, predicate, object). Each triplet is a fact or, more formally, statement 

regarding the knowledge graph. OWL 2 Web Ontology Language is a formal ontology language for the 

Semantic Web (Motik et al., 2012). It defines formal representation of the triplet components can be 

described. In such context, subject should be an individual, either named or anonymous; an object can 

be either an individual or a specific data value; a predicate, hence, can be regarded as object property 

when it connects two individuals, data property when it connects the individual with its attribute values, 

or annotation property when it is used to provide an annotation assertion of the individual, such as 

providing human-readable label or comment. Both named and anonymous individuals are regarded as 

nodes in the knowledge graph. Named individuals are those with globally unique identifiers, while 

anonymous individuals are not needed to be uniquely identified. 

Compared to the wide usage of identifier within IFC schema, we narrowed the identifiable features 

to limited objects in this corresponding task. The criterion is that only the objects required to be 

frequently queried or referenced by the other individuals, such as wall, beam, column, storey, are named 

individuals, otherwise, they are treated as anonymous individuals, sometimes, also called blank node in 

the sense of graph structure. Upon the named individual, for descriptive capacity, each base individual 

in this task needs to be described with the other intrinsic attributes, such as name, description, tag, 

notation, and classification, as shown in Table 1. Unlike the GUID, these kinds of attributes are more 

human-readable, and suitable for indexing the corresponding individuals for query. This procedure is 

named “existence” definition in this study, as shown in Figure 4. The semantics of the individual can 

be complemented with its associated classification system outside the knowledge graph if it is possible 

to access with integrated query. 
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Based on these two fundamental concepts, domain-specific concepts proposed in DRSLEO are then 

extended accordingly. Inspired by BoT and IFC, a built asset is decomposed into several spatial 

components (e.g., storey, room, zone) and nonspatial components (e.g., structural components, 

nonstructural components). The built asset can be somehow classified as different types according to 

different classification systems. However, in ontological definition, it can be only classified as limited 

types that have similar attributes in common. The decomposition of building subsystems can be 

extracted from the corresponding information models easily, although the maturity of information about 

the involved subsystems varies from stage to stage. 

With regard to their components, apart from the existence definition, each component type can have 

its specific attributes or associative relationships. They are essential for constructing a structural 

analysis model or performance model. For example, mass distribution strongly affects dead load 

distribution as well as the structural behavior under dynamic excitations. Therefore, the density and 

dimension of each tangible object will be calculated or at least estimated when it is declared as a 

component of the built asset. Other information that helps to enrich a component’s semantics in this 

task includes its location, geometric representation (e.g., body representation or axis representation) and 

its association with the other components (e.g., decomposition, connectivity, assignment). 

Individual type  Prototype Attribute Description Restraint 

BaseIndividual NamedIndividual 

id 
Unique identifier 

for the individual 

Automatically 

generated 

name 
Name of the 

individual 
Optional[str] 

description 
Description of the 

individual 
Optional[str] 

tag 
Tag of the 

individual 
Optional[str] 

notation 
Notation of the 

individual 
Optional[str] 

classification 

Class of the 

individual in an 

existing 

classification 

system 

Optional[str] 

_type 

Class of the 

individual defined 

in the ontology 

str 

_namespace 

Namespace that 

the individual 

belongs to 

Namespace 

IRI 

BaseBlankNode AnonymousIndividual 

name 
Name of the 

individual 
Optional[str] 

description 
Description of the 

individual 
Optional[str] 

_type 

Class of the 

individual defined 

in the ontology 

str 

Table 1: Attribute declaration of BaseIndividual and BaseBlankNode. 
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Among the associative relationships, connectivity is one of the most important. Connectivity 

mentioned here is either regarding relationship between components that are physically connected or 

functionally connected. IFC treats a relationship that describes the spatially containment as a kind of 

connectivity. Such connectivity is essential for defining the loading path of a structural system from 

each storey above to the ground. It is also important information for us to determine the performance 

groups relating to each storey since some fragility groups of the structural components are categorized 

by structural joints, such as beam-column joints. To be noticed, the extracted information by the adaptor 

forms an intricate interconnected web structure before it is converted into a graph structure. Once the 

information is collected, the instantiation of the knowledge graph of the asset of interest is conducted 

recursively from one individual to its associated individuals, as shown in the following pseudo code. 

However, such recursive individual instantiation procedure is prone to cyclic references since the 

recursion will not stop until stack overflows. Therefore, when organizing the extracted information 

from the information models and other information sources, it is necessary to make sure the associative 

relations form an acyclic directed graph. 

Algorithm 1 Recursive individual instantiation (with rdflib library and Python programming 

language) 

Input: individual: an object that holds information extracted from multiple data sources 

      graph: an RDF graph used for representing the asset of interest 

Output: iri: an international reference identifier (IRI) for  

1: function ToRDF(individual, graph): 

2:    this ← individual.iri 

3:    if not getattr(individual, “is_declared_in_rdf”) then 

4:        super(individual).ToRDF(graph)     

5:        graph.add((this, RDF.type, DRSLEO[individual.type]))    # class declaration 

6:        graph.add((this, DRSLEO[“globalId”], Literal(individual.id)))    # guid 

7:        if getattr(individual, “name”) then 

8:            graph.add((this, SKOS.prefLabel, Literal(individual.name)))     

9:        end if 

10:       if getattr(individual, “description”) then 

11:           graph.add((this, RDFS.comment, Literal(individual.description))) 

12:       end if 

13:       graph.add((this, RDFS.comment, Literal(individual.tostr()))  

14:       # declarations for other attributes, case by case, omitted 

15:       # declarations for associative relations, here we demonstrate the connectivity relation 

16:       for other_individual ∈ individual.connects_to.values() do 

17:           other_iri ← other_individual.ToRDF(graph) 

18:           graph.add((this, DRSLEO[“connectsTo”], other_iri)) 

19:           graph.add((other_iri, DRSLEO[“connectsTo”], this)) 

20:       end for 

21:       # other relations 

22:       setattr(individual, “is_declared_in_rdf”, True)  

23:   return this 

24:end function 
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3 Results 

 

 

Figure 5 and Figure 6 illustrate the five-step workflow of the dynamic regional seismic loss 

estimation based on FEMA P-58 and DRSLEO, which encompasses a) environmental modeling (site 

condition, fragility database, building performance model, etc.); b) event modeling (epicentral location, 

depths, fault type, rupture plane information, recorded or derived ground motions); c) response 

acquisition (simulation or sensing); d) damage assessment (Monte Carlo simulation upon the 

performance groups with EDPs and the fragility functions of their relevant fragility groups); and finally 

Figure 5: An overview of the workflow of semantic-augmented FEMA P-58 based DRSLE. 

Figure 6: Specification of event modeling, response acquisition, damage assessment, loss 

estimation in RSLE. 
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e) loss estimation (multi-granularity estimation for various loss measures based on the damage 

assessment results). DRSLEO, serving as a unified schema, provides a standardized approach for 

retrieving both static and dynamic data generated throughout this entire process. During the interaction 

procedure between the stakeholders with different roles and the bespoke LLM-empowered Q&A agent 

for DRSLE, the DRSLEO further provides schematic contexts for the exploration of the corresponding 

knowledge graphs of the relevant information. 

 

 

This scenario is set in 1999 Chi-Chi earthquake event. Ground motion records pertinent to this event 

have been extracted from the PEER NGA West2 database. The selection of this seismic event is based 

on two key factors. Firstly, Taiwan had established an extensive seismograph station network prior to 

Figure 7: (a) epicentral information and influence circles of mainshock-aftershock sequence of 

1999 Chi-Chi earthquake, and distribution of selected and unselected stations in this case study; 

(b) configuration of the 6-storey RC-OMF educational building (𝑇1 is 0.964s, 𝑇2 is 0.910s, 𝑇3 

is 0.652s). 

Figure 8: Graph representation for relevant data in environmental modeling 
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the disaster, providing access to a considerable number of ground motion records (over 400 stations) 

with the majority containing three-dimensional ground motion data. This wealth of data renders it 

suitable for validating the ontological model’s capability to accurately represent the spatial distribution 

of the loss estimation within the affected region. Secondly, the 1999 Chi-Chi earthquake was followed 

by non-trivial aftershocks, which makes it an ideal candidate for evaluating the ontological model’s 

capacity to capture the temporal evolution of dynamic seismic loss estimation. 

Given the impact of the event, 38 sites in the Nantou seismic region have been selected for detailed 

analysis. Figure 7 (a) describes the epicentral information, influence circles of this mainshock-

aftershock sequential event and the spatial distribution of both selected and unselected stations for this 

study. The scattered epicenters of Chi-Chi earthquake sequence suggest that any structure in the area 

could potentially experience aftershock ground motions as intense as or even stronger than the 

mainshock, depending on the specific site conditions and seismic wave propagation effects. To assess 

the regional distribution of damage and track the progression of structural damage caused by the 

mainshock-aftershock sequence of the Chi-Chi earthquake, each site is sampled a few ideal frame 

structures with the construction of the corresponding knowledge graph for each asset. In more practical 

cases, this sampling procedure may be enhanced by the actual status of the real assets. The 

environmental information, such as site conditions, and data form fragility database are organized as 

shown in Figure 8. Figure 8 also depicts the basic interaction between the performance group, fragility 

group, and the building components of the asset. 

 

4 Conslusions 

This research has identified and addressed three critical challenges in the data management of 

building seismic damage assessment: 1) representation of status history of buildings and their 

corresponding components under seismic events; 2) articulation of the underlying relations between the 

state of a complex object and the state of its components at various compositional levels, and 3) 

Figure 9: An overview of the prototype workbench for semantic-augmented FEMA P-58 based 

DRSLE. 
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integration of heterogeneous data from multiple sources related to such applications. The proposed 

object-oriented CDE and knowledge graph-based solution aim to provide the necessary flexibility and 

integration capabilities to tackle these challenges effectively. 

While the FEMA P-58 guidelines offer a solid foundation, the proposed approach extends its 

capabilities by incorporating real-time field data and object state assessments, thereby enhancing the 

comprehensiveness of seismic loss estimation. The integration of diverse data sources through an 

object-based framework allows for a more nuanced understanding of building performance during 

seismic events, facilitating informed decision-making for emergency response and reconstruction 

efforts. 

Nevertheless, the current solution acknowledges the complexity of real-world building systems and 

the influence of functional components and subsystems on seismic damage assessment. Future work 

will focus on further refining the data model to capture these intricacies, ensuring a more accurate 

reflection of building behavior. 

In summary, the integration of knowledge graph technology within an object-oriented CDE presents 

a promising avenue for advancing seismic damage assessment practices. By improving data 

management and facilitating knowledge discovery, this approach lays the groundwork for more resilient 

and informed building engineering in the face of seismic hazards. 
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