
EPiC Series in Computing

Volume 75, 2021, Pages 41–48

CAINE 2020. The 33rd International Conference on
Computer Applications in Industry and Engineering

Microservice-based Architectures: An Evolutionary

Software Development Model

Aziz Fellah and Ajay Bandi

Northwest Missouri State University, School of Computer Science & Information Systems
Maryville, MO 64468

afellah@nwmissouri.edu, ajay@nwmissouri.edu

Abstract

Microservices have recently emerged as an architectural style that gained widespread
popularity in industries. Not long time ago, software applications were designed monolith-
ically, that is all components were woven together as one single executable artifact unit
sharing the resources of the same machine. In this paper, we look at microservice architec-
tures through evolutionary lenses as it does not capture the essence of a new software move-
ment. Microservices offer a new trend in software architecture and deliver a set of benefits
and best practices. However, this is by no means without their own share of challenges and
problems that are self-inflicted or inherited from its predecessors (i.e., component-based
software architecture (CBSA), service-oriented architecture, (SOA), and service-oriented
computing (SOC). The evolution of these different paradigms and their gradual interweav-
ing have fostered the development of microservices afterwards. We introduce two finite
state-based formalisms called, monitoring microservice automata (MMA) and container
microservice automata (CMA). The former is a powerful and parallel formalism to model
microservices’ infrastructures, including monitoring microservices’ functionalities, resource
usage, compositions, and interface operations. The later models each microservice func-
tionality independently as an automaton that accounts for local behavior that contains a
microservice and its code. Such as code is required to run within an isolated environment
and a system which is fully supported by MMA. As another phase of the evolution of ag-
ile software development, microservice architectures have made their footprints in several
industries such as Amazon, Twiter, PayPal, LinkedIn, Netflix, and SoundCloud.

1 Introduction and Background

Microservices have recently emerged as an architectural style that gained widespread popular-
ity in industries. Not long time ago, software applications were designed monolithically, that
is all components were woven together as one single executable artifact sharing the resources
of the same machine. In monolithic centralized architectures, the self-contained components
can communicate via method invocations or function calls such as, for example, Network Ob-
jects, RMI or CORBA [21, 23, 26]. However, the deployment of monolithic applications suffer
from several issues such as maintainability, dependency, growing complexity, and scalability.
Then, software system development has shifted its emphasis from traditional monolith building

Y. Shi, G. Hu, T. Goto and Q. Yuan (eds.), CAINE 2020 (EPiC Series in Computing, vol. 75), pp. 41–48

Microservice-based Architectures Fellah and Bandi

to a component-based approach. In general, component-based software architecture (CBSA)
[10, 8] has been emerged as a feasible approach to overcome and address the software com-
plexity in different domain areas. The component-based paradigm is composed of a collection
of functional building blocks components as well as their interactions which have became a
system blueprint in modern software engineering development life cycle. These components are
computational elements with different responsibilities and functionalities, and consist of self-
contained software artifacts have given better control over design, implementation and evolution
of software systems. On an object-oriented programming language level, components stem fun-
damentally and loosely from modules, classes, objects, and functions in the source code. In the
last decade, we have seen a further shift towards the concept of service-oriented computing, an
emerging paradigm for distributed computing and e-business processing that entangles both ob-
jects’ and components’ computations. The evolution of these different paradigms, monolithic,
component-based software architecture (CBSA), service-oriented architecture, (SOA) service-
oriented computing (SOC), and their gradual interweaving have fostered the development of
microservices afterwards.

In this paper, we look at microservice architectures through evolutionary lenses and not
through revolutionary lenses as it does not capture the essence of a new software movement.
Microservices offer a new trend in software architecture and deliver a set of benefits and best
practices. However, this is by no means without their own share of challenges and problems
that are self-inflicted or inherited from its predecessors (i.e., SOA, SOC). In fact, microservices
have made their footprints in several industries such as Amazon, LinkedIn, Netflix [16], PayPal,
Twiter, and SoundCloud but sill they are not widely adopted by both industry and academia.

Although there is no uniform definition of microservices, but as a whole microservices have
different definitions in the literature [23, 26]. Terminologically, microservice and microservices
are used for both singular and plural terms in the concordant context of the sentence. In this
paper, we give a general idea of what a microservice is while highlighting some of its advantages
such as reducing complexity, minimizing coupling, maximizing cohesion, and increasing scala-
bility. Microservices are a new trend in software architecture for developing a single application
as a series of small, autonomous, and distributed services that communicate with lightweight
mechanisms, often an HTTP API’s (examples, REST, SOAP, RPC)[14]. This architecture
decomposes the services into components, commonly by functionality and relies on two main
enablers containerization and virtualization platforms such as Docker to create reusable and
independently container images as a viable solution.

Although there are many advantages of microservice-based architectures over their mono-
lithic counterparts, several challenges remain and still permeate their design and implemen-
tation. That is, configuring, deploying and maintaining cross-domain microservices can be
error-prone, costly and time-consuming. For example, for a microservice to be successful it has
to be permanently embracing and scaling changes in requirements without duplicating efforts
and replicating instances of a specific microservice.

In this paper, we propose and discuss strategies, deciding factors, and formalism for building
a software microservice-based architecture research infrastructure. Such an architecture reflects
the academic/industry desire that a microservice-based application should follow key design and
development practices of the microservice deployment pipeline that is aligned with agile and
DevOps processes (i.e. continuous integration (IC)). There is not one-size-microservive that fit
all strategies for developing microservices. Each solution to a given functionality has a differ-
ent strategy. There were bottlenecks and other issues that are not part of this investigation
and could be interesting topics in research such as automation, architectural smells, layering,
visibility, load balancing, and orchestration along the side of deployment and language issues

42

Microservice-based Architectures Fellah and Bandi

mandated by microservice-based architectures and the IT community.
In this paper, we will devote Sections 2 and 3 to evaluate web services, monolithic, and microser-
vices architectures from a research perspective and potentially adopt the results of our study
in academia and industry. In Section 4, we introduce two finite state-based formalisms called,
monitoring microservice automata (MMA) and container microservice automata (CMA). The
former is a powerful and parallel formalism to model microservices’ infrastructures, including
monitoring microservices’ functionalities, resource usage, compositions, and interface opera-
tions. The later models each microservice functionality independently as an atomaton that
accounts for local behavior that contains a microservice and its code that is required to run
it within an isolated environment within the system which is fully supported by MMA. These
small pieces of code are good candidates to refactor microservices. In Section 5, we conclude
our investigation by a broader guideline that provides a starting point for researchers and prac-
titioners in the discipline which exhibits the characteristics of this evolutionary microservices
architecture.

2 Web Services Architecture

The term web services (successors of CORBA) also referred to as e-services, web-based appli-
cations have no universal and exact definition in the computer literature. Web services are
a collection of protocols that allow applications developed in different technologies to com-
municate and exchange information with each other over a network. For example, Php, iOS,
Android, .Net, and Java applications can communicate with each other through a variety of
formats such as XML. Web services are not tied to a specific platform, operating system or
programming languages [9]. Possible definitions range from a simple and generic application
over the web to more accurate and dependent software components that provide distributed
services to potential clients over the web. On the surface, a web service is simply an application
invoked over the web. For example, an application (i.e., client, browser window) would send
an HTTP GET request to get a specific web service. In general, web services are much more
complicated than this simple example, they may be dynamically generated and run on diverse
hardware and software platforms.

Research on web services spans over a spectrum of issues, ranging from fundamental ques-
tions concerning behavior descriptions (i.e., conversations) of services to the design and analysis
of composite web services. Moreover, several other research aspects of web services have been
addressed in the literature. For example, modeling, testing, parsing XML web services and
developing new formal languages for web services. A landscape of techniques for specifying and
modeling web services have been proposed, see for example [25, 11, 7, 13, 12, 6, 14, 5, 24]. Web
service framework is mainly based on the fundamental standards such as SOAP [2], WSDL
((Web Services Description Language) [3, 1], WSFL (Web Services Flow Language) [15] and
WSCL (Web Service C Language). The purpose of these languages is for describing protocol
conversations and defining interfaces of web services.

3 Microservices Architecture

In traditional monolith architectures, software applications are developed as a collection of mod-
ules, all woven together as a single-tiered piece of executable artifacts, called monoliths. Mono-
liths are independently executable, share the same resources (i.e. memory, files, databases),
and are difficult to maintain and scale due to their complexity. The microservice architecture
has emerged as a new software development that functionally decomposes/splits a system into a

43

Microservice-based Architectures Fellah and Bandi

set of autonomous services modeled around a business domain. Microservices decouple a stan-
dard monolithic application into several discreet services. Microservices can be implemented
on different platforms using different programming languages and heterogeneous software tools.
This allows each service to be managed independently, explicitly characterized by interfaces,
and run as small autonomous processes which communicate through REST APIs. For asyn-
chronous communication using messaging instead of REST APIs provides better performance
and reliability [18]. Microservices should be small and independent but convenient in their
smallness and independence. That is, promoting microservice’s self-containment and proper
infrastructure. Moreover, these microservices can have their own data model concealed in sepa-
rate databases, or share the same database accessible to some or all instances of the application.
Other key major benefits of microservice architectures are the independent life cycle of each
service, flexibility, simplicity, loose coupling, ease of maintenance and scalability. Figure 1
illustrates the difference between monolith and microservice architecture. Figure 2 shows a
simple microservice business example. Microservices architectures are particularly well suited
for distributed systems [4]. A microservices architecture remains easy to maintain while the
system evolves and features are created and updated. Some examples of API types are in either
SOAP and RPC among others [17, 19, 20, 22]. interfaces such as REST (Representational State
Transfer), APIs and HTML pages [24]. The API implementation is beyond the scope of this
paper but suffice to say that the most common implementations rely on communication over
HTTP.

`
Monolithic-based Architecture Microservice-based Architecture

Web Application Logic

Web Application Logic

user

API Gateway

DBS

API Gateway

DBSDBS DBS

user

Figure 1: Monothilic-based vs microservice-based architectures.

API Gateway Online
Shopping

Order Service

Payment Service

Product Service

Order
DBS

Payment
DBS

Product
DBS

user

Shipping Service Shipping
DBS

Figure 2: Components of a basic microservice architecture.

44

Microservice-based Architectures Fellah and Bandi

4 Monitoring and Container Microservice Automata

In this section we propose a finite state based formalism called, Monitoring Microservice Au-
tomata (MMA), a powerful and parallel formalism to model microservices’ infrastructures,
including monitoring microservices’ functionalities, resource usage, compositions, and interface
operations. In addition, we model each microservice functionality as a Container Microservice
Automaton (CMA), that accounts for local behavior that contains a microservice and its no-
shared code that is required to run it. CMA can be executed within an isolated environment
within the system and supported by MMA to achieve performance efficiency through parallelism
and independence. These small pieces of code are good candidates to refactor microservices.
MMA interact through sequences of messages. A message can be defined as a quadruple <e, s,

p, o> where e, s, p, o indicate event, sender, parameters, and output respectively. An event can
be an input command, sender is the MMA invoking the input command and parameters are
used to trigger some computations performed by CMA and requested by the invoking MMA
for the specific task requested through the command. The output message could be possibly
used for different purposes, for example, termination of the task and requested output.

Definition 4.1. Let S,M be finite, disjoint set of microservices, and messages (input, output).
A Monitoring Microservice Automaton (MMA) is six-tuple D = (Σi,Σo, Q, s, F, δ) where (a)
Σi,Σo ⊆ M are disjoint, finite set of input and output messages, (b) Q is a non-empty finite
set, the set of states, (c) s ∈ Q is the starting state, (d) F ⊆ Q is the set of final states, (e) δ
is a set of deterministic transition functions of the form δ : Q× Σi × Σo → Q.

Definition 4.2. An Extended Monitoring Microservice Automaton (EMMA) is an MMA aug-
mented with queue and a tuple of register variables.

The main purpose of adding a queue and a set of register variables is to store the incoming
messages and support the conversation operation. An MMA extended with a FIFO queue is
given in Figure 3.

Input queue

T
o
 o

th
e
r

D
W

A

Figure 3: An extended monitoring microservice automaton (EMMA)

Let C be a CMA, a container microservice configuration (cmc) of C is a sequence in Q ×
Σ∗

i × Σo where Σ∗
i denotes the Kleene star operation of Σ. Let v, w ∈ Σi, x, y ∈ Σo, and

p, q ∈ Q. By pvx |= qwy, pvx
j

|= qwy, and pvx
∗
|= qwy we denote the fact there exists a simple

microservice invocation, j-invocation, or an arbitrary number of invocations, respectively, from
pvx to qwy. An execution of a microservice is a finite, nonempty sequence of configurations as

follows. stc |= pux · · ·
j

|= qvy · · ·
∗
|= rwz where s is the initial state, r ∈ F is the final state,

s, p, q, r ∈ Q; t, u, v, w ∈ Σi, and c, x, y, z ∈ Σo. The set of all executions of C represents the
behavior of the microservice modeled by C. A monitoring microservice automaton (MMA)can

45

Microservice-based Architectures Fellah and Bandi

trigger all container microservice automata (CMA) to work in parallel on the same input. The
starting node can be any CMA where the query is initiated. Thus, the execution of an MMA
represents the parallel execution of

⋃n
i=1CMA and the sequential execution of CMA, where

n indicates the number of CMA. We assume that at any time of the composition operation
there is only one active MMA and m CMA where 1 ≤ m ≤ n. Monitoring microservice
automata (MMA)are based on the universal and existential quantifiers during the course of a
computation. From a practical point of view, it means that a client has started the execution
of a set of interactive microservices, allowing the composition and conversation operations. In
addition, it is always possible to check the existence of any composition among CMA. The
results of a composition that exists is returned to the MMA node. Similarly to local container
microservice configuration, we define global monitoring microservice configurations (gmmc). A
run of an MMA is a rooted tree rather than a sequence of gmmc.

Now we define the characteristic microservice vector of F ∈ BQ as follows:

fq = 1⇐⇒ q ∈ Q

fq = 1 affirms that the request made by client and initiated by an MMA at node q is satisfied.
We can extend ρ to a mapping of Q into the set of all mappings of ∆∗

i × BQ → B to include
many but finite messages.

Theorem 4.1. If M is an MMA with k states satisfying a microservice query ξ. Then ξ

is satisfied by CMA with 22
k

states. Moreover, the web service query ξ is satisfied by a 2k

nondeterministic microserice automata (NMA) in the worst case.

Theorem 4.2. Let ξ be a web service query and M an MMA. Then, ξ is logarithmic-time
computable on MMA.

Proof: We omit the proofs due to space constraints and the lengthy proofs of Theorems 4.1,
4.2. Interested readers may directly contact the authors.

Monitoring microservice automata are a generalization of nondeterminism monitoring mi-
croservice automata (NMMA) in the following sense: if in a given state q MMA reads a message
m, it will activate all CMA to work in parallel on the input. Once the CMA have completed
their tasks, q will evaluate their results using a Boolean function and pass on the resulting value
to the state by which it was activated. A query is satisfied if the starting state computes the
value of 1. Otherwise, the query is not satisfied.

5 Conclusion

Microservices have emerged as a software development perspective and an innovative guideline
at designing an architectural solution to manage complexities of a system by decomposing a
monolithic application. Changes to a single service are done independently and distinctly by
different teams without the involvement of any other microservices. Each microservice con-
tains its own database and communicate with each other over the network APIs. We also have
considered finite state-based automata as the basic model for exploring behaviors of microser-
vices. Monitoring and container microservices automata can be used effectively for designing
and implementimng microservices and their operations (i.e., composition and orchestration)
in a distributed environment. An extension of this work is being addressed in a paper in
preparation.

46

Microservice-based Architectures Fellah and Bandi

References

[1] Bpws4j java implementations. http://www.alphaworks.ibm.com/tech/bpws4j, 2007.

[2] Soap version 1.2: Messaging framework. http://www.w3.org/TR/2007/REC-soap12-part1-
20070427, 2007.

[3] Web services description language (wsdl) 2.0: Core language. http://www.w3.org/TR/2007/REC-
wsdl20-2007, 2007.

[4] N. Dragoni and al. Microservices: yesterday, today, and tomorrow. Mazzara M., Meyer B. (eds)
Present and Ulterior Software Engineering. Springer Internationa Publishing, Cham, pages 195–
216, 2017.

[5] S. Ducasse and D. Pollet. Software architecture reconstruction: A process-oriented taxonomy.
IEEE Transactions on Software Engineering, 35(4):573–591, 2009.

[6] T. Erl and et al. Web service contract design and versioning for soa. Pearson: The Pearson Service
Technology, 2017.

[7] S. Zannettou et al. Understanding web archiving services and their (mis)use on social media. In
Proceedings of the Twelfth International AAAI Conference on Web and Social Media (ICWSM),
pages 454–463, 2018.

[8] A. Fellah and A. Bandi. Automata-based timed event program comprehension for real-time sys-
tems. In Proceedings of FASSI 5th International Conference on Fundamentals and Advances in
Software Systems Integration, pages 21–28, 2019.

[9] A. Fellah and A. Bandi. Learning language equations and regular languages using alternating
finite automata. Journal of Computing Science in Colleges, 35(2):19–28, 2019.

[10] A. Fellah and A. Bandi. Moving towards program comprehension in software development: A case
study. In Proceedings of the Fourth International Conference on Computing Methodologies and
Communication (ICCMC 2020), pages 660–665, 2020.

[11] X. Fu, T. Bultan, and J. Su. Analysis of interactive bpel web services. IBM Corporation, 2007.

[12] S. Hale, G. Blank, and V. Alexander. Live versus archive: Comparing a web archive and to a
population of webpages. UCL Press, 2017.

[13] S. Hale, G. Blank, and V. Alexander. Dzone. retrieved from microservice testing: Coupling
and cohesion (all the way down). https://dzone.com/articles/microservice - testing-coupling-and-
cohesion-all-the, 2018.

[14] F. Halili. Web services: A comparison of soap and rest services. Modern Applied Science, 12(3:175),
2018.

[15] F. Leymann. Web services flow language (wfsl). IBM Corporation, 2011.

[16] T. Mauro. Adopting microservices at netflix: lessons for team and process design.
https://dzone.com/articles/adopting-microservices-netflix, 2015.

[17] M. Richards. Software architecture patterns. California: O’Reilly Media Inc., 2015.

[18] M. Richards. Microservices antipatterns and pitfalls. O’Reilly Media, Inc., 2016.

[19] M. Richards. Microservices vs service-oriented architecture. California: O’Reilly Media Inc., 2016.

[20] C. Richardson. Microservice architecture. http://microservices.io/patterns/monolithic.html, 2017.

[21] K. SeongKi and H. Sang-Yong. Performance comparison of dcom, corba and web service. In
Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications & Conference on Real-Time, pages 106–112, 2009.

[22] J. Thones. Microservices. IEEE Software, 32(1):113–116, 2015.

[23] G. Toffetti, S. Brunner, M. Blochlinger, F. Dudouet, and A. Edmonds. An architecture for self-
managing microservices. In Proceedings of the 1st International Workshop on Automated Incident
Management in Cloud. ACM, 2015, pages 19–24, 2015.

[24] M. Villamizar and et al. Evaluating the monolithic and the microservice architecture pattern to
deploy web applications in the cloud. In Proc. Computing Colombian Conference, pages 583—-590,

47

Microservice-based Architectures Fellah and Bandi

2015.

[25] S. Watts. Microservices vs soa: What’s the difference? https://dzone.com/articles/microservices-
vs-soa-whats-the-difference, 2019.

[26] E. Wolff. Microservices: Flexible software architecture. Addison- Wesley Professional, 2016.

48

	Introduction and Background
	Web Services Architecture
	Microservices Architecture
	Monitoring and Container Microservice Automata
	Conclusion

