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Abstract

We announce a tool for mapping E derivations to Mizar proofs. Our mapping com-
plements earlier work that generates problems for automated theorem provers from Mizar
inference checking problems. We describe the tool, explain the mapping, and show how
we solved some of the difficulties that arise in mapping proofs between different logical
formalisms, even when they are based on the same notion of logical consequence, as Mizar
and E are (namely, first-order classical logic with identity).

1 Introduction

The problem of translating formal proofs expressed in different formats is an important research
problem for automated reasoning. Proofs today come from many sources, and there are about as
many implemented proof formats as there are different systems for interactive and automated
theorem proving, not to mention the “pure” proof formats coming from mathematical logic.
There is a choice about which axioms and rules of inference to pick. Even natural deduction
comes in a number of shapes: Jaskowski, Gentzen, Fitch, Suppes. .. [17]. It seems likely that as
the use of proof systems grows we will need to have better tools for mapping between different
formalisms. This need has been recognized for a long time [26, 1], and it still seems we have
some way to go. This paper discusses the problem of transforming derivations output by the
E [20] automated theorem prover into Mizar texts.!

Mizar? is a language for writing mathematical texts in a “natural” style combined with a
library of reasoning formalized in the Mizar language and verified by the Mizar proof checker.
For the purpose of the present paper, the main feature of Mizar is its natural deduction-style
proof language, grounded on a notion of “obvious inference” (to be explained below). We will
ignore the large Mizar Mathematical Library (MML), an impressive collection going from the
axioms of set theory to graduate-level pure mathematics. We will thus treat Mizar as a language
and a suite of tools for carrying out arbitrary reasoning in first-order classical logic.

Related work is discussed in Section 2. Section 3 concerns the translation from E derivations
to Mizar proofs. Because of the fine-grained level of detail offered by E and the simple multi-
premise “obvious inference” rule of Mizar, the mapping is more or less straightforward, save for
skolemization and resolution, neither of which have direct analogues in “human friendly” Mizar
texts. Skolemization is discussed in Section 3.2 and our treatment of resolution is discussed
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in 3.3. The problem of making the generated Mizar texts more humanly comprehensible is dis-
cussed in Section 3.4. Section 4 concludes and proposes applications and further opportunities
for development. Appendix A is a complete example of a text (a solution to the Dreadbury
Mansion puzzle found by E; translated to Mizar) produced by our translation.

2 Related work

In recent years there is an interest in adding automation to interactive theorem proving systems.
An important challenge is to make sense, at the level of the interactive theorem prover, of
solutions produced by external automated reasoning tools. Such proof reconstruction has been
done for Isabelle/HOL [15]|. There, the problem of finding an Isabelle/HOL text suitable for
solving an inference problem P is done as follows:

1. Translate P to a first-order theorem proving problem P*.
2. Solve P* using an automated theorem prover, yielding solution S*.
3. Translate S* into a Isabelle/HOL text, yielding a solution S of the original problem.

The work described in this paper could be used to provide a similar service for Mizar. It is
interesting to note that in the case of Mizar the semantics of the source logic and the logic of the
external theorem prover are (essentially) the same: first-order classical logic with identity. In
the Isabelle/HOL case, at step (1) there is a potential loss of information because of a mismatch
of Isabelle/HOL’s logic and the logic of the ATPs used to solve problems (which may not in any
case matter at step (3)). In the Mizar context, two-thirds (steps (1) and (2)) of the problem
has been solved [19]; our work was motivated by that paper. Steps toward (3) have been taken
in the form of Urban’s ott2miz3. In fact, more than 2/3 of the problem is solved. Our work
here builds on ott2miz by accounting for the clause normal form transformation, rather than
starting with the clause normal form of a problem. Our translated proofs thus start with (the
Mizar form of) the relevant initial formulas, which arguably improves the readability of the
proofs. Moreover, our tool works with arbitrary TPTP FOF problems and TSTP derivations
produced by E, rather than with Otter proof objects. The restriction to E is not essential; there
is no inherent obstacle to extending our work to handle TSTP derivations produced by other
automated theorem provers, provided that these derivations (proof objects) are sufficiently
detailed, like E’s. One must acknowledge, of course, that providing high-quality, fine-grained
proof objects is a challenging practical problem for automated theorem provers.

To account for the clausal normal form transformation, one needs to deal with skolem-
ization. This is a well-known issue in discussions surrounding proof objects for automated
theorem provers [4]. Interestingly, our method for handling skolemization (to be described be-
low) is analogous to the handling of quantifiers in the problem opposite ours, namely, converting
Mizar proofs to TSTP derivations [24] in the setting of MPTP (Mizar Problems for Theorem
Provers) [23]|. There, Henkin-style implications are a natural solution to the problem of justify-
ing a substitution instance ¢(a) of a formula given that its generalization Vxy is justified. Our
translation of skolemization steps is virtually the same as this; see Section 3.2 for details.

Exporting and verifying of Mizar proofs by ATPs has been carried out [24]. Such work is
an inverse of ours since it goes from Mizar proofs to ATP problems.

3See its homepage https://github.com/JUrban/ott2miz and its announcement http://mizar.uwb.edu.pl/
forum/archive/0306/msg00000.html on the Mizar users mailing list.
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One can reasonably ask to what extent the derivation produced by E and the generated
Mizar text are the same proof. We do not intend to enter into a discussion about the proof
identity problem. For a discussion, see Dogen [6]. Certainly the intension behind the mapping
is to preserve the proof expressed by the E derivation. That the E derivation and the Mizar
text generated from it are isomorphic will be clarified (but not proved) below. Mappings such
as the one discussed in this paper can help contribute to a concrete investigation of the proof
identity problem.

It is well-known that derivations carried out in clause-based calculi (such as resolution
and kindred methods) tend to be difficult to understand, if not downright inscrutable. An
important problem for the automated reasoning community for many years is to find methods
of understanding machine-discovered proofs. One approach to this problem is to map resolution
derivations into natural deduction proofs. Much work has been done in this direction [12, 13,
8, 7, 10, 11]. The transformations we employ are rather simple. To “clean up” the generated
text, we take advantage of the various proof “enhancers” bundled with the standard Mizar
distribution [9, §4.6]. These enhancers suggest compressions of a Mizar text that make it
more parsimonious while preserving its semantics. In the end, though, it would seem that the
judgment of whether an “enhanced” Mizar text is the best representative of a resolution proof
is something that has to be left to the reader.

3 Translating E derivations into Mizar texts

To construct a Mizar text from a first-order TSTP derivation, one first identifies the function
and predicate symbols of the derivation and creates an environment for the text. Constructing
an environment for a Mizar text amounts to creating a handful of XML files specifying the
syntax and semantics of the symbols appearing in the derivation. Normally, one does not create
Mizar environments by hand from scratch but rather builds on some preexisting formalizations.
Since we do not use the Mizar library, we cannot use the usual Mizar toolchain to construct an
environment.

To generate the Mizar text, we exploit recent developments concerning the Mizar parser [2].
We generate XML representations (parse trees) of Mizar texts which can then be rendered as
a plain-text Mizar file. The XML representation leaves open the possibility of further manipu-
lation of the text through, e.g., XSL transformations.

The input to our procedure is an E derivation in TSTP format [22].

Section 3.1 discusses the overall organization of the generated proof. In Section 3.2 we
discuss the skolemization problem. In Section 3.3 we discuss the problem of resolution.

3.1 Global and local organization of the proof

After the first batch of transformations, the refutation is “groomed” in the following ways:

1. Linearly order the formulas.

In TPTP problems, the order of formulas is immaterial. However, in a natural deduction
argument, the order of formulas in Mizar cannot be arbitrary. We topologically sort the
input ordered in the obvious way (if conclusion A uses formula B as a premise, then B
should appear earlier than A) and work with a linear order.

2. Separate reasoning done among the input assumptions from reasoning done with the
negation of the conjecture.
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To capture the spirit of proof by contradiction we refactor E refutations into so-called diffuse
reasoning blocks. We write:

theorem ¢
proof
now
assume —g;
S1: (conclusion 1) by ...;
S2: (conclusion 2) by ...;

Sn: {conclusion n) by ...;

thus contradiction by Sal, Sa2, cees San,
end;
hence thesis;

end;

This concludes the discussion of the organization of the generated Mizar proof.

3.2 Skolemization

E’s finely detailed proof output contains not simply the derivation of | starting from the clause
form of the input formulas. E can also record the transformation of the input formulas into
clause normal formal. It is important to preserve these inferences because they give informa-
tion about what was actually given to E.Accounting for skolemization a well-known issue in
generating proof objects [4, 5|. The difficulty is that skolem functions are curious creatures in
an interactive setting like Mizar’s. Introducing a function into a Mizar text requires that the
use can prove existence and uniqueness of its definiens. But what is the definiens of a skolem
function, and how can it be justified?

Our solution to the skolemization problem is to introduce axioms. To take a simple example,
suppose we have VzIye, and from this Yoy := f(z)] is “derived”. We introduce at this point
a new definition (treated as an axiom) whose definiens is:

(Va3yp) — Vaply = f(x)]

Our axiom-based solution to the skolemization problem is admittedly not ideal. Other
approaches for dealing with skolemization are available. In principle, one could reconstruct all
E’s skolemization steps in Mizar using Mizar’s choice operator.® To do this, given a formula
1 := YxIyp, one can proceed as follows:

1. Introduce a new (non-dependent) type 7t inhabited (by definition) by those objects that
satisfy the sentence YzIyep.

2. Prove that 7, is inhabited by exploiting the fact that the domain of interpretation of any
first-order structure is non-empty.

3. Define f outright using Mizar’s built-in Hilbert choice operator:

definition

let x;

func f equals the T;
end;

where T is the Mizar type corresponding to 7.

4Unlike in Hilbert’s e-calculus, where the choice operator applies to formulas, the choice operator in Mizar
applies to types.
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Despite the advantage of being explicit, initial experiments with this “explicit skolemization”
approach make clear that the precise details of skolemization steps matter: we have found that
skolemization steps in which multiple skolem functions are introduced at once complicates the
explicit approach; the algorithm we have just sketched does not apply to such cases. Since E’s
skolemization procedure can in fact produce such steps, explicit skolemization limits the scope
of our tool compared to axiom-based skolemization. Of course, we could implement our own
clausifier that provides us the required level of granularity of clausification. However, if we wish
to account for every step of an arbitrary E derivation, then the axiom-based solution seems
preferable.

3.3 Resolution

Targeting Mizar is sensible because it has a single rule of inference, by, which takes a variable
number of premises. The intended meaning of an application

P1y -5 Pn
I T b
0 y

of by is that ¢ is an “obvious” inference from premises ¢1, ..., p,. See Davis [3] and
Rudnicki [18] for more information about the the tradition of “obvious inference” in which Mizar
works. The implementation in Mizar diverges from these proposals [25], but roughly speaking
a conclusion in Mizar is obtained by an “obvious inference” in from some premises if there is
a derivation of the conclusion from a set of assumptions in which at most one substitution
instance of at most one universal premise is chosen.

The main difficulty for mapping arbitrary E derivations to Mizar texts is that Mizar’s notion
of “obvious inference” overlaps with resolution, but is neither weaker nor stronger than it. The
consequence of this is that it is generally not the case that an application of resolution can be
mapped to a single acceptable application of Mizar’s by rule. Consider the following example:

Ve[—A(z) v B(z)] Ve, y[—B(xz) v =B(z) v =B(y)]
Va,y[-A(z) v —B(y)]

Resolution

This application of resolution® simply eliminates B(z) from the premises. The difficulty here
is that we cannot choose a single substitution instance of the premises such that we can find a
Herbrand derivation, and hence the inference is non-obvious even though it is essentially (i.e.,
at the clause level) a single application of propositional resolution.

The reason for the difficulty is that we are working at the level of formulas rather than
clauses. A solution is available: map the application of resolution not to a single application of
Mizar’s by rule, but to a proof:

premisel:
for X1 holds ((not A X1) or B X1);

premise2:
for X1, X2 holds ((not A X1) or (not B X1) or (mot B X2));

theorem
for X1, X2 holds ((not A X1) or B X2)
proof
let cl1, c2;
(not A cl1) or B cl by premisel;
hence thesis by premise2;
end;

5To be precise, an application of factoring is suppressed in this example.
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This Mizar proof has three steps and two applications of by. In each application of by, there is a
single instance of a single universal formula (in the first case the universal formula is premisel,
and in the second application the universal premise is premise2). Note that the substitution
instances are not built from constants and function symbols, but from (fixed) variables.

3.4 Compressing Mizar proofs

The “epicycles” of resolution notwithstanding, Mizar is able to compress many of E’s proof
steps: many steps can be combined into a single acceptable application of Mizar’s by rule of
inference. For example, if ¢ is inferred from ¢’ from variable renaming, and ¢’ is inferred by
an application of conjunction elimination to ¢”, typically in the Mizar setting ¢ can be inferred
from ¢” alone by a single application of by. This is typical for most of the fine-grained rules
of E’s calculus: their applications are acceptable according to Mizar’s by, and often they can
be composed (sometimes multiple times) while still being acceptable to by. Other rules in
E’s proof calculus that can often be eliminated are variable rewritings, putting formulas into
negation normal form, reordering of literals in clauses. More interesting compressions exploit
the gap between “obvious inference” and E’s more articulated calculus.

It seems to be a hard AI problem to transform arbitrary resolution proofs into human-
comprehensible natural deductions. Machine-found proofs seem to have an artificial “flavor”
that no rewriting spice can overcome. Still, some simple organizational principles can help to
make the proof more manageable.

Compressing proofs helps us to get a sense of what the proof is about. The Mizar notion
of obvious inference has been tested through daily work with substantial mathematical proofs
for decades, and thus enjoys a time-tested robustuness (though it is not always uncontroversial).
It seems to be an open problem to specify what we mean by the “true” or “best” view of a
proof. When Mizar texts come from E proofs, Mizar finds that the steps are usually excessively
detailed (i.e., most steps are obvious) and can be compressed. On the other hand, often the
whole proof cannot be compressed into a single application of by. We employ the algorithm
discussed in [19]: a simple fixed-point algorithm is used to maximally compress a Mizar text.
Thus, by repeatedly attempting to compress the proof until we reach the limits of by. Yet
proof compression is not without its pitfalls. If one compresses Mizar proofs too much, the text
can become as “inhuman” as the resolution proof from which it comes. This is a well-known
phenomenon in the Mizar community [14]. Experience with texts generated by our translation
shows that often considerable compression is possible, but at the cost of introducing a new
artificial “scent” into the Mizar text.

4 Conclusion and future work

One naturally wants to extend the work here to work with output of other theorem provers,
such as Vampire. There is no inherent difficulty in that, though it appears that the TSTP
derivations output by Vampire contain different information compared to E proofs; the generic
transformations described in Section 3.1 would carry over, but the mapping of skolemization
and resolution steps of Sections 3.2 and 3.3 will likely need to be customized for Vampire.
The TPTP language recognizes definitions, but whether an automated theorem prover treats
them differently from an axiom is unspecified. In Mizar, definitions play a vital role. After all,
Mizar is designed to be a language for developing mathematical theories; only secondarily is it
a language for representing solutions to arbitrary reasoning problems, as we are using it in this
paper. One could try to detect definitions either by scanning the problem looking for formulas

8
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that have the form of definitions, or, if the original TPTP problem is available, one can extract
the formulas whose TPTP role is definition. Such definition detection and synthesis has no
semantic effect, but could make the generated Mizar texts more manageable and perhaps even
facilitate new compressions.

At the moment the tool simply translates E derivations to Mizar proofs. A web-based
frontend to the translator could help to spur increased usage (and testing) of our system. One
can even imagine our tool as part of the SystemOnTPTP suite [21].

An important incompleteness of the current solution is the treatment of equality. Some
atomic equational reasoning steps (specifically, inferences involving non-ground equality literals)
in E derivations can be non-Mizar-obvious. One possible solution is to use Prover9’s Ivy proof
objects. Ivy derivations provide some information (namely, which instances of which variables
in non-ground literals) that (at present) is missing from E’s proof object output.

For the sake of clarity in the mapping of skolemization steps in E derivation to Mizar steps,
we restricted attention to those E derivations in which each skolemization step introduces
exactly one new skolem function. The restriction does not reflect a weakness of Mizar; it is a
merely technical limitation and we intend to remove it.

We have thus completed the cycle started in [19] and returned from ATPs to Mizar. We
leave it to the reader to decide whether he wishes to escape again.
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A Pelletier’s Dreadbury Mansion Puzzle: From E to Mizar

Ax1: ex X1 st (lives X1 & killed X1,agatha) by AXIOMS:1;
Ax2: lives X1 implies (X1 = agatha or X1 = butler or X1 = charles) by AXIOMS:2;
Ax3: killed X1,X2 implies hates X1,X2 by AXIOMS:3;
Ax4: killed X1,X2 implies (not richer X1,X2) by AXIOMS:4;
Ax5: hates agatha,X1 implies (not hates charles,X1) by AXIOMS:5;
Ax6: (not X1 = butler) implies hates agatha,X1l by AXIOMS:6;
Ax7: (not richer X1,agatha) implies hates butler ,X1 by AXIOMS:7;
Ax8: hates agatha,Xl implies hates butler ,X1 by AXIOMS:8;
Ax9: ex X2 st (not hates X1,X2) by AXIOMS:9;
Ax10: not agatha = butler by AXIOMS:10;
S1: killed skoleml,agatha by Ax1l,SKOLEM:def 1;
S2: agatha = skoleml or butler = skoleml or charles = skoleml by Ax2,Ax1,SKOLEM:def 1;
S3: not hates agatha,(skolem2 butler) by Ax9,SKOLEM:def 2,Ax8;
S4: hates charles,agatha or skoleml = butler or skoleml = agatha by Ax3,Ax1,SKOLEM:def 1,52;
S5: butler = (skolem2 butler) by S3,Ax6;
S6: not hates butler ,butler by Ax9,SKOLEM:def 2,85;
S7: hates butler ,butler or skoleml = agatha by Ax4,Ax7,Ax1,SKOLEM:def 1,Ax5,54,Ax6,Ax10;
S8: skoleml = agatha by S7,S6;
theorem
killed agatha,agatha
proof

now

assume S9: not killed agatha,agatha;
thus contradiction by S1,88,89;
end;

hence thesis;
end;

Pelletier’s Dreadbury Mansion [16] goes as follows:

Someone who lives in Dreadbury Mansion killed Aunt Agatha. Agatha, the butler,
and Charles live in Dreadbury Mansion, and are the only people who live therein. A killer
always hates his victim, and is never richer than his victim. Charles hates no one that
Aunt Agatha hates. Agatha hates everyone except the butler. The butler hates everyone
not richer than Aunt Agatha. The butler hates everyone Aunt Agatha hates. No one hates
everyone. Agatha is not the butler.

The problem is: Who killed Aunt Agatha? (Answer: she killed herself.) The problem belongs
to the TPTP Problem Library (it is known there as PUZ001+1) and can easily by solved by
many automated theorem provers. Above is the result of mapping E’s solution to a standalone
Mizar text and then compressing it as described in Section 3.4. Two skolem functions skoleml
(arity 0) and skolem2 (arity 2) are introduced. There are 10 axioms and 8 steps that do not
depend on the negation of the conjecture (killed agatha,agatha) This problem is solved
essentially by forward reasoning from the axioms; proof by contradiction is unnecessary, but
that is the nature of E’s solution.
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