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Abstract 

Robots offer a promising solution to relieve workers from physically demanding 

tasks and improve safety and productivity in construction. It is critical that the robots on 

construction sites are coordinated effectively. However, most multi-robot coordination 

algorithms are designed for planar areas, neglecting the multi-story nature of building 

construction sites. It is still unclear how construction robots should be coordinated 

given the constraints of elevators while adhering to construction schedules. To fill the 

gap, this paper introduced the deployment of commonly used elevator algorithms and 

robot target allocation strategies in a multi-story construction simulation environment. 

Through a series of group experiments conducted in a simulated multi-story 

construction environment, we evaluated the performance of these algorithms and 

examined the characteristics of robot-elevator coordination. The results reveal that 

while existing algorithms with strong generalization capabilities are useful, they may be 

less effective in specialized scenarios like multi-story construction. This research 

contributes valuable insights into the future of automation in construction, paving the 

way for enhanced integration of robotic systems and elevator operations. 

1 Introduction 

Robots are increasingly recognized as a transformative force in the construction industry, offering 

solutions that alleviate physically demanding tasks while enhancing safety and productivity 

(Aghimien et al. 2020). Various construction robots have been developed for executing specific 
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construction tasks, such as tiling (Le et al. 2020), plastering (Wang et al. 2024), painting (Seriani et al. 

2015) and so on. The coordination of this heterogeneous robotic system is essential for enhancing 

efficiency and effectiveness in construction projects. However, most multi-robot coordination 

algorithms are designed for planar areas, neglecting the multi-story nature of building construction 

sites. It is still unclear how construction robots should be coordinated given the constraints of 

elevators while adhering to construction schedules. 

There are two main characteristics of multi-story construction sites. In a multi-story construction 

project, there are several apartments on each floor, and each apartment has multiple processes that 

need to be completed, requiring careful management of numerous tasks to ensure that the entire 

project progresses smoothly. It is a dynamic and gradual process. Additionally, elevators play a 

critical role in transporting robots between floors in multi-story construction projects. Ineffective use 

of elevators can lead to delays in robot deployment across different construction sites, negatively 

impacting overall project timelines. Therefore, it is essential to develop a multi-robot coordination 

algorithm that considers elevator constraints and can complete all multi-story building construction 

tasks efficiently. 

In multi-story construction sites, coordinating the movement of elevators and robots presents 

unique challenges that are not adequately addressed by existing algorithms designed for other 

scenarios, such as warehouses (Nielsen et al. 2016) or assembly lines (Kousi et al. 2019; Kousi et al. 

2016). These algorithms typically do not account for the vertical movement requirements of robots, 

which is crucial in a multi-story environment. The complexity of determining where robots should go 

and how elevators should move complicates the coordination process, highlighting a significant gap in 

current research on multi-agent systems. 

Therefore, we conducted an experimental study on multi-robot coordination in a multi-story 

building construction site. In our exploration of coordinating elevators and robots in multi-story 

construction sites, we try to deploy commonly used elevator algorithms, specifically the LOOK 

algorithm and the nearest neighbor method. These algorithms are selected for their strong 

applicability to our scenario due to their effectiveness in managing requests and optimizing movement. 

For the robot target allocation, we investigated two strategies: the first-come-first-served method 

(FCFS) and the nearest-served method (NS). By combining these robot allocation strategies with 

the elevator algorithms, we form multiple experimental groups to evaluate their performance in the 

proposed multi-story environment. All algorithms are tested through a simulation of interior finishing 

work in a ten-story residential building. The experimental results provide valuable insights for future 

research on multi-agent coordination including elevators and robots, and the practical deployment of 

robots in multi-story construction scenarios. 

2  Literature Review 

The problem of finding the best elevator planning and robot target allocation in construction 

projects is similar to the Pickup and Delivery Problems (PDPs). In PDPs, goods or passengers must be 

transported from different departure locations to different destinations (Toth and Vigo 2014). In the 

proposed scenario, robots need to take the elevator from different departure floors to different 

destination floors depending on the task. According to the decision framework being considered and 

the availability of information, existing studies on these problems can be divided into two categories: 

static approaches and dynamic approaches. This section will first review existing related research, and 

then identify research gaps.  

Static approaches to PDPs operate under the assumption that all relevant information, such as 

demand, vehicle availability, and travel times, is known in advance (Berbeglia et al. 2007). Existing 

research can be summarized into mathematical methods and heuristic methods. 
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Mathematical methods for solving static PDPs typically involve formulating the problem using 

optimization models that aim to minimize costs or travel times. (Berbeglia et al. 2007) presents a 

comprehensive classification of static PDPs and discusses various mathematical formulations, 

including mixed-integer linear programming models. These models are often used to derive optimal 

routes while considering constraints such as time windows and vehicle capacities. Once accurate 

mathematical models are established, solving these models can yield the optimal solution. Techniques 

(Cordeau 2006; Garaix et al. 2011; Qu and Bard 2015) for solving these models are developed mainly 

based on upon the concept of branch-and-bound (B&B). B&B is designed for general discrete and 

combinatorial optimization problems. However, in construction scenarios, the robot's demand for 

elevators depends on actual construction efficiency and environmental factors, which is non-

deterministic. It is difficult to establish an accurate mathematical model to describe such a dynamic 

scenario. 

Heuristic methods have been shown to be effective and efficient compared to mathematical 

methods (Ho et al. 2018). In order to find the optimal solution, B&B usually enumerates a large 

number of solutions. In the worst case, the computation time of the B&B program may increase 

exponentially. On the contrary, although the heuristic method cannot guarantee optimality, it can 

always find an acceptable solution in a shorter time. Common methods include tabu search (Cordeau 

and Laporte 2003), simulated annealing algorithm (Mauri, Antonio, and Lorena 2009), genetic 

algorithm (Jorgensen, Larsen, and Bergvinsdottir 2007), and hybrid heuristic algorithm (Berbeglia, 

Cordeau, and Laporte 2012). In the heuristic method, instead of building an accurate mathematical 

model, feasible solutions are constructed based on the constraints of the environment, and then the 

existing solutions are improved through heuristic rules to make the new solutions better and better. 

However, in order to calculate the fitness function for the heuristic algorithm to improve current 

solutions, the distribution of all demands and the benefits of completing the demands must be known 

in advance. In the proposed scenario, the demands for the robots to cross floors is dynamically 

updated over time. 

Dynamic approaches typically provide a solution strategy rather than a deterministic static plan. 

The strategy uses the information revealed to specify what actions must be performed over time. 

Currently there are few studies on dynamic methods. A basic and commonly used strategy is to adapt 

an algorithm that solves a static version of the problem (Berbeglia, Cordeau, and Laporte 2010). 

There are two ways to implement this strategy. One is to treat all the information at the current time as 

a static problem to be solved whenever new information appears (Berbeglia, Cordeau, and Laporte 

2010). The disadvantage of this strategy is that it takes too much time to solve a complete static 

problem every time. The other is to solve the static problem once at the beginning using the known 

information to get a feasible solution, and then use heuristic methods to update the feasible solution as 

time goes by and new information is obtained (Berbeglia, Cordeau, and Laporte 2010). The second 

method is more common, but still requires time and memory to maintain and update existing solutions. 

Most importantly, existing solutions focus on improving the path of the vehicle. Construction is an 

irreversible process, and constantly changing strategies during construction is not a good option. 

Coordinating robot teams and elevators in multi-story construction projects is challenging due to 

the nature of multi-story buildings. The literature review to date shows that there is a lack of an 

effective method to coordinate robot teams and elevators in multi-story construction sites. Therefore, 

we explored the combination of commonly used elevator planning algorithms and robot target 

allocation algorithms to see how they perform on multi-story construction sites and further explore the 

characteristics of multi-agent coordination on multi-story construction sites. 
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3 Method 

his study focuses on the coordination of elevators and robots in multi-story construction sites, 

aiming to optimize their interactions to improve operational efficiency. In the proposed scenario, we 

deployed two types of elevator algorithms - LOOK and Nearest Neighbor. LOOK is a classic disk 

scanning algorithm. For the nearest neighbor method, in addition to the traditional distance-based 

nearest neighbor algorithm (DNN), we also improved the metric for evaluating "nearest" and 

proposed the improved nearest neighbor algorithm (INN). For the robot target allocation algorithm, 

the FCFS method and the NS method were applied. By combining these robot allocation strategies 

with the elevator algorithm, we formed multiple experimental groups to evaluate their performance in 

the proposed multi-story environment. This section is structured around the design of the simulation 

environment, the implementation of elevator and robot algorithms.  

3.1 Simulation Environment 

We created a simulated multi-story construction site based on C++. The environment consists of 

ten floors, with two elevators and multiple robots responsible for construction and delivery. The 

simulation framework is designed to generate requests for elevator service and robot allocation in a 

construction scenario to fully evaluate the algorithm under different conditions. Details are shown in 

Figure 1. 

 
 

Figure 1: The composition of the simulation environment. (CRobot means construction robot and DRobot 

means delivery robot.) 

Here comes the workflow of the environment. We consider three construction processes, 

plastering, puttying and painting. They follow a flow-through construction method from bottom to top. 

The construction robot of the next process will enter the site after the previous process is completed. 
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Each process is handled by a construction robot. When the construction robot runs out of materials, it 

will suspend the operation and issue a material demand. After the material demand is received by the 

idle delivery robot, it will deliver the materials to the construction robot. After receiving the materials, 

the construction robot continues to work until the process is completed, and then goes to the next 

construction. The delivery robot should return to the loading point to replenish material after 

completing the delivery. It is worth noting that the construction robots may work on different floors at 

the same time. Material requirements may come from multiple floors. All robots rely on elevators to 

go to other floors. As for elevators, considering the size of construction robots in reality, each elevator 

is limited to carrying two robots. The real-time location of robots and elevators is known in the 

simulation, which can be achieved by existing technology i.e., RFID systems (Motroni, Buffi, and 

Nepa 2021). 

In the above environment, there are three main cross-floor activities that rely on elevators. One is 

that the construction robot goes from the current floor to another floor to work, the second is that the 

delivery robot delivers materials from the loading point to the construction robot, and the last is that 

the delivery robot returns to the loading point after delivering materials on the current floor. The 

entities involved are the construction robot, the delivery robot, and the elevator. Figure 2 shows the 

states of these three entities. For an elevator, it can be in the state of going up, going down, and 

stopping. For the delivery robot, there are four places it can be located, namely the loading point, the 

apartment, inside the elevator, and the place waiting for the elevator. It may also be on the ways of 

loading point – elevator and apartment – elevator. A construction robot is similar. It could be in an 

elevator, in an apartment, or waiting for an elevator. Also, it could be on the way between the 

elevator-apartment. 

 
 

Figure 2: The states of Elevators, Delivery Robot, and Construction Robot 

3.2 Algorithms 

After the simulation environment is established, the algorithms are applied to it. The goal of the 

study is to coordinate multiple agents including robots and elevators to finish the whole construction 
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project. The coordination algorithm consists of two parts, one is the elevator scheduling algorithm, 

and the other is the robot target allocation algorithm. They will be explained in detail below. 

3.2.1. Robot Target Allocation Algorithms 

This part is to assign targets to available delivery robots. Specifically, when a delivery robot has 

multiple potential targets, which one should be assigned to it to determine the target floor it needs to 

go to. Available construction robots will cross floors from bottom to top in a flow-line construction 

manner according to the settings of the simulation environment, without the need to design an 

algorithm for allocation. Two strategies were employed: 

First-Come-First-Served: This method allocates tasks to robots based on the order in which 

requests are received, ensuring a straightforward allocation process. Figure 3 shows an example of 

FCFS method. There is an idle robot 1 that receives a task from the 7th floor. It accepts the task and 

takes the elevator to the 7th floor. During this process, there is a task from the 3rd floor, but according 

to the FCFS principle, the robot will ignore this task and go to the 7th floor first to complete the task. 

 
Figure 3: An example of FCFS method 

Nearest-Served Method: In this method, delivery robots of the same type share all potential 

targets. The delivery robot in the elevator will put all potential targets in a target set in chronological 

order. Once the elevator reaches a floor in the target floor set, it will assign the delivery robot that has 

that floor in its target floor set to serve that floor. Then the target floor sets of all delivery robots are 

updated. This approach prioritizes allocating the nearest target to the delivery robot, not necessarily 

the earliest target. Figure 4 shows an example of NS method. The same task situation as FCFS is used 

here. The difference is that when a task comes from the 3rd floor, the task will be added to the robot's 

target floor set. The robot passes the 3rd floor first with the updated target floor set, so it will 

complete the task on the 3rd floor first. 

 
Figure 4: An example of NS method 
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The difference between FCFS and NS is that the former focus on solving the material needs that 

are called early, while the latter solves the most recent material needs. 

3.2.2. Elevator Scheduling Algorithms 

The elevator scheduling algorithm is responsible for managing elevator requests efficiently. In this 

study, we implemented two primary algorithms: 

LOOK Algorithm: This classic disk scanning algorithm operates by moving the elevator in one 

direction, serving requests along its path before reversing direction. It effectively minimizes wait 

times by ensuring that all requests in one direction are addressed before changing course. Since the 

real-time positions of the robot and the elevator are known, two situations may occur. One is that the 

robot sends an elevator request when it is waiting for the elevator. In this way, the robot will get on 

the elevator as soon as the elevator arrives, but the robot needs to wait for the elevator to arrive. The 

other is that the robot sends an elevator request when it is on the way to the elevator. When the 

elevator arrives but the robot has not arrived yet, the elevator needs to wait for the robot to arrive and 

get on the elevator before leaving. Figure 5 shows the diagram of the LOOK algorithm with these two 

situations. 

 
 

Figure 5: The diagram of the LOOK algorithm 

Nearest Neighbor Method: This method focuses on fulfilling requests based on proximity. We 

utilized two variations: 

Distance-Based Nearest Neighbor (DNN): This traditional approach allocates requests based on 

the shortest distance from the elevator's current position. Figure 6 shows the diagram of DNN. 
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Figure 6:. The diagram of DNN 

Improved Nearest Neighbor (INN): This enhanced version refines the evaluation metric for 

"nearest" requests by incorporating additional factors such as current wait times and the elevator's 

position relative to pending requests. This adjustment aims to improve responsiveness and overall 

service efficiency. Figure 7 shows the diagram of INN. 

 
 

Figure 7: The diagram of INN 

As can be seen from Figure 4 and Figure 5, the main difference between DNN and INN lies in the 

definition of "nearest". In DNN, the nearest request is selected as the target floor based on the distance 

(d1) between the request and the current floor of the elevator. In INN, the nearest target is evaluated 

based on the maximum value of the distance (d1) and the actual waiting time (d2). It is worth noting 

that in the case of the robot waiting for the elevator, this INN will collapse into a DNN, because the 

actual waiting time is equal to the distance at this time. 

3.2.3. Multi-agent Coordination Algorithms 

To evaluate the performance of the combined algorithms, multiple experimental groups were 

formed by pairing each robot assignment strategy with each elevator algorithm. This resulted in four 

distinct experimental configurations: 

• LOOK Algorithm + FCFS; 
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• LOOK Algorithm + NS; 

• Distance-based Nearest Neighbor (DNN) + FCFS; 

• Distance-based Nearest Neighbor (DNN) + NS; 

• Improved Nearest Neighbor (INN) + FCFS; 

• Improved Nearest Neighbor (INN) + NS. 

The total construction duration (TCD) is used to estimate the performance, as shown in Equation 

(1). 
𝜋∗ = a𝑟𝑔min

𝜋
(TCD) (1) 

𝜋 is the coordination strategy generated by the above configurations. The objective is to find the 

best strategy 𝜋∗ to minimize the total construction duration. 

4 Results 

The performance of each coordination strategy was assessed using key metrics such as total 

construction duration. Data collected during simulation runs were analyzed to determine which 

combinations of algorithms yielded optimal results in coordinating elevators and robots within a 

multi-story environment. Taking into account the cost of the robots and the information obtained from 

visits to robot construction companies (Guangdong Bright Dream Robotic Co. Ltd (BDR)), we set the 

parameters of construction robot as shown in Table 1 and Table 2.  
 

 Plastering Puttying Painting 

Work speed 

(Percentage/unit time) 
0.48 1.16 0.76 

Call material 

frequency 

(unit time/1 times) 

20 5 20 

Table 1. The parameters of construction robot 

 Plastering Puttying Painting 

Loading time  

(unit time /1 times) 
3 3 3 

Supply time  

(unit time/1 times) 
5 5 5 

Table 2: The parameters of delivery robot 

In particular, the above settings are only for the simulation environment to make it run smoothly. 

These parameters are not considered as known information in all the proposed coordination 

algorithms. 

In order to fully explore the performance of the algorithm, we set the number of robots in various 

ways to describe different situations, as shown in Table 3. It can be divided into three categories. The 

first category is groups 1-3, which is to explore the impact of increasing the number of construction 

robots when the number of delivery robots is very small. The second category is groups 4-6, where 

the number of construction robots is set inversely proportional to their construction efficiency. On this 

basis, we explored setting the number of delivery robots inversely proportional to the frequency of 

calling materials, the same number of delivery robots, and the same number of delivery robots as 
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construction robots. The third category is groups 7-9. Here we keep the number of construction robots 

and delivery robots the same, and gradually increase the number of robots. 

 

No.  Plastering Puttying Painting 

1 

Construction 

robot 
1 1 1 

Delivery robot 1 1 1 

2 

Construction 

robot 
2 2 2 

Delivery robot 1 1 1 

3 

Construction 

robot 
5 5 5 

Delivery robot 1 1 1 

4 

Construction 

robot 
5 2 3 

Delivery robot 1 2 1 

5 

Construction 

robot 
5 2 3 

Delivery robot 2 2 2 

6 

Construction 

robot 
5 2 3 

Delivery robot 5 2 3 

7 

Construction 

robot 
2 2 2 

Delivery robot 2 2 2 

8 

Construction 

robot 
3 3 3 

Delivery robot 3 3 3 

9 

Construction 

robot 
5 5 5 

Delivery robot 5 5 5 
Table 3. Number settings of construction robot and delivery robot 

Table 4 and Table 5 show the results of the combination of LOOK with different robot target 

allocation algorithms. Table 6 and Table 7 show the total construction duration by applying DNN 

with different robot target allocation algorithms. Table 8 and Table 9 show the total construction 

duration by applying INN with different robot target allocation algorithms. All the serial numbers of 

results are consistent with Table 3. 
 

 Total Construction Duration (unit time) 

No. Robots wait elevators Elevators wait robots 

1 23727 24214 

2 24330 24393 

3 25147 24952 

4 18001 17639 

5 14204 14212 

6 13728 13631 

7 14113 14176 
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8 10939 10999 

9 8084 7982 

Table 4: Total Construction Duration by applying LOOK Algorithm + FCFS 

 Total Construction Duration (unit time) 

No. Robots wait elevators Elevators wait robots 

1 23535 23468 

2 23664 23881 

3 24511 24383 

4 16471 16165 

5 13326 13246 

6 13021 12827 

7 13266 13273 

8 9715 9954 

9 6732 6629 
Table 5: Total Construction Duration by applying LOOK Algorithm + NS 

 Total Construction Duration (unit time) 

No. Robots wait elevators Elevators wait robots 

1 24639 24420 

2 25298 24816 

3 26023 25812 

4 17972 17408 

5 14398 14041 

6 13643 13304 

7 14048 13835 

8 10578 10390 

9 7419 7240 
Table 6: Total Construction Duration by applying DNN + FCFS 

 Total Construction Duration (unit time) 

No. Robots wait elevators Elevators wait robots 

1 24639 24420 

2 25285 24975 

3 26400 25674 

4 17266 17344 

5 14259 13961 

6 13647 13252 

7 14024 13760 

8 10692 10359 

9 7494 7344 
Table 7: Total Construction Duration by applying DNN + NS 

 

 Total Construction Duration 

(unit time) 

No. Elevators wait robots 

1 24375 

2 24784 
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3 25735 

4 17356 

5 13986 

6 13324 

7 13823 

8 10183 

9 7205 
Table 8: Total Construction Duration by applying INN + FCFS 

 Total Construction Duration 

(unit time) 

No. Elevators wait robots 

1 24375 

2 24756 

3 25596 

4 17222 

5 13945 

6 13302 

7 13718 

8 10070 

9 7337 
Table 9: Total Construction Duration by applying INN + NS 

From the above results, we can draw the following inferences: 

• The combination of LOOK algorithm + NS performed best in almost all experimental 

groups; 

• When there is only one delivery robot for each process, increasing the number of 

construction robots will not improve construction efficiency but will increase the total 

construction duration. (Refer to the experimental results of groups 1-3); 

• From the perspective of elevators waiting for robots or robots waiting for elevators, most 

results are that the former is better than the latter, no matter which combination it is; 

• For the nearest neighbor method, INN always performs better than DNN, whether 

combined with FCFS or NS; 

The detailed analysis will be discussed in the following section. 

5 Discussion 

As mentioned in Section 3.1, there are three main types of activities that rely on elevators to cross 

floors in the proposed scenario. Among them, the most frequent is the delivery robot delivering 

materials and returning to the loading point after delivering materials. In the simulation environment, 

the loading point is fixed on the ground floor. Therefore, the movement of the delivery robot is a 

scanning movement from the ground floor to the high floor, which explains why the LOOK algorithm 

performs best, because the LOOK algorithm is an efficient scanning algorithm.  

When the number of delivery robots is limited, blindly increasing the number of construction 

robots is not a viable choice, because this will increase the proportion of construction robots moving 

across floors. Due to the limited capacity of elevators, more construction robots will compete with 

delivery robots for elevators, thereby reducing the delivery efficiency of delivery robots, prolonging 
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the waiting time for construction robots in need of materials, and reducing the overall construction 

efficiency. 

The robot waiting for the elevator means that the robot will not work for a long time, and the 

robot's working time is directly related to the overall construction progress. The mode of waiting for 

the robot for the elevator can shorten the time the robot waits for the elevator, which means that the 

robot will be put into work faster. 

In DNN, the distance between the request and the current floor of the elevator is the only factor 

that determines the movement of the elevator. But in reality, it is possible that when the elevator 

reaches the nearest requested floor, the robot is still on the way. In this case, the elevator needs to wait 

for the robot to arrive and pick it up before it can move. In INN, the actual time when the robot 

reaches the elevator and the distance from the elevator to the requested floor are taken into account, 

and the "closest" is evaluated more accurately in time and space. This reduces the time the elevator 

waits for the robot. 

We also make some speculations as to why the nearest neighbor method does not perform as 

expected in the proposed scenario. Previous studies (Sheridan et al. 2013) have shown that the nearest 

neighbor is a promising method for solving the traveling salesman problem. However, in order to 

increase the generalization ability of the method, they relax the constraints and assumptions of the 

problem, such as the random generation of vehicle demand (Ghiani et al. 2003). In this study, the 

scenario is a specific multi-story construction site, and the construction robots follow the top-down 

flow construction, which greatly reduces the randomness of the demand for elevators. In this case, 

some special algorithms, such as the scanning algorithm LOOK, may produce better results because 

they match the movement mode of the majority of delivery robots. This observation suggests that 

while existing algorithms with strong generalization capabilities are valuable in broader contexts, they 

may have limited effectiveness in specialized scenarios such as robot-elevator coordination in 

construction. The findings indicate a significant research potential for developing multi-agent 

scheduling algorithms tailored specifically to unique operational environments like multi-story 

construction sites. 

6 Conclusions 

In conclusion, this study experimentally investigated multi-robot coordination within a multi-story 

construction site. We created a simulated environment consisting of ten floors, equipped with two 

elevators and teams of robots tasked with various cross-floor requirements. We approached the 

situation by implementing established elevator algorithms and robot target allocation strategies that 

were adapted to fit this particular context. Through group experiments, we explored the performance 

of these algorithms in multi-story construction settings and examined the characteristics of robot-

elevator coordination. The results indicated that the combination of LOOK algorithm and NS, which 

operates by systematically scanning floors, is particularly well-suited for this environment. Its design 

aligns with the predominant motion patterns of delivery robots, facilitating more efficient elevator 

scheduling. By comparing our findings with conclusions from previous studies, we observed that 

algorithms that excel in general scenarios often perform significantly worse than those specifically 

tailored to the unique characteristics of multi-story construction sites. This disparity underscores the 

potential for further research in developing multi-agent coordination algorithms that cater to 

specialized operating environments. Currently, the total construction duration is the only metric 

considered in this study. But minimizing task completion time may increase total travel distance, 

leading to higher energy usage. It would provide a more comprehensive evaluation by adding 

additional metrics, such as resource utilization and energy consumption. Looking ahead, we plan to 

conduct more in-depth explorations of elevator-robot coordination in multi-story construction sites. 
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Our future research will focus on improving these algorithms and evaluating their applicability in 

more complex construction scenarios, ultimately contributing to improving operational efficiency and 

automation in the construction industry. 
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