
A Roadmap to Gradually Compare and

Benchmark Description Logic Calculi

Fred Freitas
1 Centro de Informática, Universidade Federal de Pernambuco (CIn/UFPE)

fred@cin.ufpe.br

Abstract

DL reasoners were developed with cutting-edge performance, implementing plenty

of specific optimization techniques over tableaux-based methods, which took over the

field. However, promising methods may have been neglected in such a scenario, in which

the tough competition is often focused on gains through optimizations. Therefore,

perhaps there is still room available for “basic research” on DL reasoning. The purpose

of this work is to stimulate research on trying out DL calculi other than tableaux. Such

endeavors should be carried out by making a careful, detailed comparison between

tableaux and other inference methods in a systematic way: first starting with simpler

languages (like ALC) without any optimizations. Then gradually including optimizations

and comparing them; and continuing these interactive steps: enhancing language

expressivity, including optimizations, and testing until reaching the most expressive DL

fragments such as SROIQ. The comparison can also be done by in terms memory usage

and algorithm asymptotic analysis, with worst and average cases, etc. The rationale is

identifying whether there are fragments which are more suitable to certain inference

methods, as well as which aspects or constructs (e.g., the costliest combinations, which

usually involve inverses, nominals, equalities, etc) are sensitive to which calculus.

1 Introduction

 The most expressive layer of the Semantic Web is based on Description Logic (DL) (Baader, 2003).

This fact naturally brought about a larger interest in this family of formalisms and their languages. The

Semantic Web choice for DL was surely based in two main pros from these formalisms: its rich

expressiveness and its inherent reasoning possibilities.

 Concerning this last aspect, DL reasoners were developed with cutting-edge performance,

implementing plenty of specific optimization techniques over tableaux-based methods, which took over

the field for years. On the other hand, promising methods may have been neglected in such a scenario,

in which the tough competition is often focused on gains through optimizations. Therefore, perhaps

Kalpa Publications in Computing

Volume 10, 2019, Pages 15–19

Selected Student Contributions and
Workshop Papers of LuxLogAI 2018

C. Benzmüller, X. Parent and A. Steen (eds.), LuxLogAI 2018 (Kalpa Publications in Computing, vol. 10),
pp. 15–19

there is still room available for “basic research” on DL reasoning, in the sense that other efficient calculi

need to be adapted to DL, tuned and tested.

The purpose of this work is to stimulate research on trying out DL calculi (other than tableaux) by

making a careful, detailed comparison between tableaux and other inference methods in a systematic

way: first starting with simpler languages (like ALC) without any optimizations. Then gradually

including optimizations and comparing them; and continuing these interactive steps: enhancing

language expressivity, including optimizations, and testing until reaching the last advances on

optimizations and the most expressive DL fragments such as SROIQ (Kroetsch, 2010).

The comparison can also be done by in terms of two other additional aspects: memory usage and

algorithm asymptotic analysis, with worst and average cases, etc. The rationale is identifying whether

there are fragments which are more suitable to certain inference methods, as well as which aspects or

constructs (e.g., the costliest combinations, which usually involve inverses, nominals, equalities, etc)

are sensitive to which calculus.

This article is organized as follows. Section 2 discusses adapting first-order logic (FOL) calculi to

DL in its aspects. Section 3 describes an iterative process to compare and benchmark DL calculi and

their respective reasoners with tableaux solutions (and even among themselves). Section 4 presents

conclusions and future work.

2 Adapting First-Order Calculi to DL

 Conceiving DL systems by adapting of first-order logic (FOL) ones is, unfortunately, not a trivial

task. The traps and pitfalls along the way, together with the subtleties involved, like the risk of non-

termination, and the consequent need for proofs of completeness, soundness and termination demand

plenty of investigation and care in their design. The aim of this section is therefore to provide a non-

exhaustive discussion based on experience to facilitate the job for researchers who are knowledgeable

in FOL reasoning and are willing to adapt a FOL inference system to DL.

 The adaptation process is different when clausal inference systems are being dealt with. For such

systems, the steps involved in this transformation are usually representation (without variables, when

possible, like the usual DL representation), and normalization (in which a normal form needs to be

defined, so as to facilitate reasoning and/or save memory). For any system, being it clausal or non-

clausal, reasoning, formalization and benchmarking are the remaining steps.

 Reasoning requires solutions for at least two main issues:

• Taking into account the substitution of Skolem functions by some mechanism which can

guarantee soundness and completeness, i.e., assuring that the system will display the same

result (true, false) for a same query entered for a FOL reasoner

• Dealing with cycles constitutes a key aspect, which have to be looked into carefully. The

lack of the binomial Skolem functions-unification demand a blocking mechanism to ensure

termination, as shown in (Freitas & Otten, 2016) and (Freitas, 2017). Blocking for simple

languages such as ALCN usually does not constitute a barrier. It suffices checking if the

set of concepts (τ) of the last two instances created in the cycle is not changing (Schmidt,

2007). For more expressive DLs, e.g., the ones with inverse roles, more sophisticated forms

of blocking are called for, like dynamic and double blocking.

 The author started an effort to use connection calculi (Bibel, 1993) for DL reasoning, which arrived

at the formalization of a DL connection calculus for ALC. Thus, an example on how blocking was

introduced in the calculus is presented below in a quick manner (due to text space restrictions). Detailed

explanations can be found at (Freitas & Otten, 2016).

A Roadmap to Gradually Compare and Benchmark Description Logic Calculi Fred Freitas

16

Example 1 (ALC θ-CM blocking). The treatment of cycles in the original connection method (CM) is

hidden behind a multiplicity function μ (Bibel, 1993), and, thus, not shown in the formalized calculus.

Therefore, with Skolem functions ruled out and unification replaced by a new type of substitutions (θ-

substitutions, which play a similar role than unification), the new Copy rule (Cop), shown in Figure 1,

explicits the cycle treatment by copying a required column in the matrix (as CM represents formulae as

columns in a matrix). More important, it brings the blocking condition, hence, regulating the generation

of new individuals.

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶𝑜𝑝)
𝐶 ∪ {𝐿1}, 𝑀 ∪ {𝐶2

𝜇
}, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1}, 𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝑤𝑖𝑡ℎ 𝐿2 ∈ 𝐶2, 𝜇 ← 𝜇 + 1, 𝑎𝑛𝑑

(𝑥𝜇
𝜃 ∉ 𝑁𝑂 𝑎𝑛𝑑 𝜏(𝑥𝜇

𝜃) ⊈ 𝜏(𝑥𝜇−1
𝜃)) (𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛), 𝜃(𝐿1) = 𝜃(𝐿2

̅̅ ̅)

Figure 1. The Copy Rule for the ALC θ-CM connection calculus (Freitas F. O., 2016)

 The new calculus naturally led to the production of a reasoner for the DL ALC, RACCOON

(ReAsoner based on the Connection Calculus Over ONtologies) (Freitas, 2017). RACCOON was

benchmarked against the most well-known DL reasoners Hermit (Glimm, 2014), FaCT++ (Tsarkov,

2006) and Konclude (Steigmiller, 2014)

In our performance comparisons, the sensation was indeed to compare apples and oranges. For

instance, Konclude (Steigmiller, 2014) uses all CPU cores and multi-threading, while the other

reasoners do not. RACCOON runs only over ALC, while the others were conceived and are prepared to

deal with “larger“and more expressive DLs, like SROIQ. Consequently, they may have lost time on

applying techniques which are suitable for more expressive fragments, but only waste processing time

in ALC. Other relevant aspect in this discussion is parsing: RACCOON seems to have the best parsing

in our experiments and could process the smaller ontologies much faster than the others. But we wanted

to assess reasoning, in the experiments, not parsing. Such aspects hamper a fair comparison among DL

calculi. In the next section, a discussion on how to effectively compare than in a reasonable manner is

proposed.

3 Proposal: A Process to Compare and Benchmark DL Calculi

and their Respective Reasoners

A clear iterative process for comparing and benchmarking other calculi and their respective

reasoners with tableaux (and even among themselves) is envisaged and is depicted in Figure 2. An

initial remark about parsing is needed here, As mentioned earlier, to make a fair comparison between

two inference systems may lead to either use the same parser or, in case this alternative is not available,

to compute parsing time separately.

The comparison should start with the basic DL language ALC (with cycles), which presents two

interesting features as a starting point for the comparison: it combines a good expressiveness with

tractable reasoning*.

The comparison begins with a version of the reasoner for the new calculus and a similar based on

tableaux (or even other calculus), both without any implemented optimizations. Then, they are

benchmarked and compared. The next step is to include one optimization at a time, and then benchmark

again. After iteratively analyzing all possible optimizations for the current DL fragment (which may

* The simpler language EL can be avoided as a starting point since it is solvable even with a finite automata approach, thus

falling into a smallest complexity category (Baader, 2003).

A Roadmap to Gradually Compare and Benchmark Description Logic Calculi Fred Freitas

17

encompass many or all combinations of optimizations), the next step, is experimenting the next DL

fragment (in terms of expressiveness), by commencing with the reasoners for this fragment again

without any optimizations.

However, sometimes it is not easy to devise how to implement in a calculus a particular

optimization, which is a crucial step for the comparison. Indeed, here lies an advantage of a calculus

which consists of a set of rules, like tableaux and – more recently – the connection calculus (Bibel,

1993) – instead of an algorithm: when a new optimization or technique needs to be added to the calculus,

it is possible to just augment the rule set with one more rule or constraint in a single rule or a rule subset

for getting the job done.

Figure 2: A proposed iterative process to compare and benchmark DL calculi and their respective reasoners.

A crucial step to accomplish such an analysis is to devise how to implement optimizations and techniques in a

particular calculus. Calculus described as a rule set are easier to be modified than algorithmic ones.

A Roadmap to Gradually Compare and Benchmark Description Logic Calculi Fred Freitas

18

4 Conclusions and Future Work

In this work, an iterative proposal for comparing and benchmarking DL calculi and reasoners has

been sketched, which can be a solution for checking whether other calculus than tableaux could

constitute effective competitors in terms of efficiency.

 As for future work, concretely the idea is to start out with our DL connection calculus (Freitas &

Otten, 2016) and reasoner, the RACCOON, which for now takes on ALC, the basic DL fragment, and

displayed a surprisingly effective performance in comparison with other well-established reasoners. A

solution for dealing with equality and, therefore, processing instance in/equalities and cardinality

restrictions has already been presented (Freitas & Varzinczac, 2018) and is currently under

implementation. It will enable RACCOON to infer over ALCHQ= ontologies.

References

Baader, F. C.-S. (2003). The Description Logic Handbook. Cambridge: Canbridge University Press.
Bibel, W. (1993). Deduction: Automated Logic. London: Academic Press.

Freitas, F. M. (2017). RACCOON: A Connection Reaosner for ALC. LPAR-21 - 21st International

Conference on Logic for Programming Artificial Intelligence and Reasoning . Maun,

Botswana: Epic Series, EasyChair.

Freitas, F. O. (2016). A Connection Calculus over the Description Logic ALC. Canadian Conference

on Artificial Intelligence. Victoria, CA: Springer Verlag.

Freitas, F. V. (2018). Cardinality Restrictions for Description Logic Connection Calculi. International

Joint Conference on Rules and Reasoning (RuleML+RR). Luxembourg: Springer verlag.

Glimm, B. H. (2014, 3 3). HermiT: An OWL 2 Reasoner. Journal of Automated Reasoner, 3, pp. 245-

269.

J., O. (2017). nanoCoP: Natural Non-clausal Theorem Proving. Interntional Joint Conference on

Artificial Intelligence (pp. 4924-4928). Buenos Aires: IJCAI.

Kroetsch, M. (2010). Description Logic Rules. Studies on the Semantic Web. (Vol. 008). Amsterdam:

IOS Press.

Schmidt, R. T. (2007). Analysis of Blocking Mechanisms for Description Logics. Workshop on

Automated Reasoning.

Steigmiller, A. L. (2014, 3 3). Konclude: System Description. Journal of Web Semantics: Science,

Services and Agents on the World Wide Web, 1, pp. 78-85.

Tsarkov, D. H. (2006). FaCT++ Description Logic Reasoner: System Description. International Joint

Conference on Automated Reasoning (pp. 292-297). Berlin: Springer.

A Roadmap to Gradually Compare and Benchmark Description Logic Calculi Fred Freitas

19

