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Abstract 

This paper presents a lightweight transfer learning approach for water body 

segmentation by applying Adaptor-based fine-tuning on general image datasets. 

Traditional deep learning models often require full-scale retraining for each new task, 

which is computationally expensive and time-consuming. In contrast, Adaptor 

networks—lightweight modules that selectively fine-tune task-specific layers while 

retaining most pre-trained model parameters—offer an efficient alternative. Water bodies 

present unique challenges for segmentation, such as varying lighting, reflections, and 

seasonal fluctuations. These factors can confuse distinguishing water from land, 

particularly in cases where reflections resemble adjacent features. Adaptor-based fine-

tuning helps to reduce computational costs while ensuring the model captures the fine 

distinctions between similar regions like shallow water and land. This paper evaluated 

the method on the ATLANTIS dataset, which includes diverse categories of water bodies 

such as lakes, rivers, and wetlands. This dataset is recognized as a comprehensive 

collection for evaluating semantic segmentation performance in varied environmental 

conditions. The results indicate that Adaptor-based fine-tuning achieves comparable 

performance to fully fine-tuned models, with a significant reduction in computational 

costs and training time. The method also demonstrated high precision in segmenting 

water bodies under challenging conditions, such as occlusions and reflections. This study 

highlights the potential of lightweight transfer learning in resource-constrained 

environments, with applications in environmental monitoring, hydrological modeling, 

and geographic information systems (GIS). By demonstrating the effectiveness of 

Adaptor networks, this work contributes to the broader field of efficient transfer learning, 

showcasing how minimal adjustments to pre-trained models can yield accurate task-

specific performance. 
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1   Introduction 

Water body segmentation is a fundamental task in environmental monitoring, particularly for 

applications in geographic information systems (GIS), hydrological modeling, and urban planning 

(Kadhim & Premaratne, 2023). The increasing frequency of extreme weather events due to climate 

change makes accurate segmentation of water bodies crucial for disaster management, urban flood 

prediction, and resource allocation (Zaffaroni & Rossi, 2020). Satellite imagery provides an efficient 

means for this purpose, but the complexity of natural environments, including reflections, occlusions, 

and seasonal variations, complicated the accurate delineation of water boundaries (Saleh et al., 2018).  

Traditional deep learning approaches, such as convolutional neural networks (CNNs), have been 

widely employed for semantic segmentation (Pinaya et al., 2020; Yuan et al., 2021). However, these 

methods often require a complete retraining process for each new segmentation task, making them 

computationally expensive and unsuitable for scenarios with limited computational resources (Chen et 

al., 2017; Zhao et al., 2017). Moreover, the need for vast labeled datasets and the high computational 

cost associated with full-scale retraining limit the scalability of these models to new environments and 

tasks. In contrast, recent advancements leverage Vision Transformers (ViTs), which have shown great 

promise for segmentation tasks due to their ability to model long-range dependencies efficiently 

(Dosovitskiy, 2020). 

To address these challenges, we were the first to apply Adaptor-based fine-tuning with Vision 

Transformer (ViT) architecture to the task of waterbody segmentation, proposing a lightweight transfer 

learning approach. This approach leverages Vision Transformers (ViTs), specifically the SegFormer 

architecture (Xie et al., 2021), which has shown promise in capturing multi-scale features suitable for 

segmentation (Xie et al., 2021). By selectively fine-tuning task-specific layers using lightweight 

Adaptor modules (Liu et al., 2023), this method retains most pre-trained model parameters while 

adapting efficiently to the unique characteristics of water bodies, such as their dynamic boundaries and 

varying appearances. This strategy effectively reduces the computational load, facilitating the 

deployment of the model in resource-constrained environments (Dong et al., 2023). The experimental 

evaluation presented in this paper highlights the efficacy of our method when applied to 15 different 

water body categories, demonstrating its robustness and efficiency in real-world scenarios. 

2   Related Work 

Recent advancements in semantic segmentation have seen a shift from conventional convolutional 

neural networks (CNNs) to transformer-based architectures, such as Vision Transformers (ViTs) 

(Dosovitskiy, 2020). These models have shown notable improvements in capturing global context and 

multi-scale information, which are essential for accurately delineating objects. The SegFormer model, 

in particular, has gained prominence for its hierarchical transformer architecture, which is effective for 

extracting multi-scale features suitable for segmentation tasks (Xie et al., 2021). 

Adaptor-based fine-tuning methods have also been explored in natural language processing (NLP) 

applications, such as BERT (Kenton & Toutanova, 2019) and T5 (Raffel et al., 2020), to reduce 

computational costs while retaining model performance. This technique has gradually been introduced 

to the computer vision domain to address similar challenges (Dong et al., 2023). This approach draws 

upon these advancements, extending the idea of adaptor modules to the  

segmentation of water bodies—a task characterized by diverse and challenging environmental 

conditions, including fluctuating water levels, occlusions, and reflections. 

Prior studies have utilized datasets such as COCO for semantic segmentation of multiple categories. 

For instance, the ATLANTIS dataset, proposed by Erfani et al., (2022), contains 5,195 training images 

and 1,296 testing images, with a wide variety of water body types. This study focuses on 15 specific 
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categories from ATLANTIS to validate the method. Compared to state-of-the-art models like DNLNet, 

GCNet, and AQUANet (Cao et al., 2019; Erfani et al., 2022; Ni et al., 2022), this adaptor-based method 

offers improved performance by selectively fine-tuning high-frequency components and embedding 

features critical to water body segmentation. 

3  Method 

In this section, a lightweight transfer learning framework for water body segmentation by applying 

Adaptor-based fine-tuning is introduced. The framework utilizes Vision Transformers pre-trained on 

large-scale image datasets such as ImageNet (Deng et al., 2009). This method focuses on selectively 

fine-tuning layers critical to task-specific segmentation, which allows to avoid the computational cost 

of full-scale retraining. By targeting high-frequency components and image embeddings, the model 

effectively adapts to challenges such as varying lighting conditions, occlusions, and reflections in water 

body segmentation. 

Figure 1 presents an overview of the Adaptor-based fine-tuning approach. The frozen pretrained 

Transformer model, represented with an ice symbol, indicates the components that remain unchanged 

during the training process. The Adaptor module, marked with a flame symbol, highlights the elements 

that are specifically fine-tuned to adapt to the target water body segmentation task. This Adaptor module 

leverages the generalization capabilities of the pretrained model while enabling efficient adaptation to 

the specific requirements of water body segmentation. The input image undergoes processing through 

the model, producing a segmented output that accurately delineates the water body. 

 

 
 

Figure 1. Overview of Adaptor-Based Fine-Tuning for Water Body Segmentation 

 

3.1    Pre-trained Model Architecture 

This approach builds upon the hierarchical structure of SegFormer (Xie et al., 2021), a Vision 

Transformer (ViT) model renowned for its multi-scale feature extraction. The encoder of SegFormer is 

composed of a series of transformer blocks that progressively capture finer image details. Each block 

outputs features at different resolutions, providing multi-level representations. 

As Figure 1 shows, given that the pre-trained model already captures essential structural features, 

its backbone layers are frozen to retain general visual knowledge learned from ImageNet. Only a small 

number of task-specific layers are leveraged for fine-tuning. These layers learn to specialize  

in water body segmentation without the need to modify the majority of the pre-trained parameters, 

drastically reducing computational overhead. The frozen layers are shown in Equation (1):  

                                                        𝜃𝑓 ∈ R𝑑                                                                                   (1) 

 

where 𝜃𝑓 represents the frozen parameter set, the symbol R represents the set of real numbers, and d is 

the number of parameters in the backbone. 
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3.2    High-frequency Component Extraction 

One of the core aspects of the Adaptor model is the extraction and fine-tuning of high-frequency 

components (HFC) (Wang et al., 2020), which capture fine structural details crucial for water body 

segmentation. These high-frequency components are extracted using the Fourier Transform. The 

process decomposes the input image into low- and high-frequency components, where the high-

frequency components focus on sharp boundaries and textures, essential for delineating water from land. 

                                             f() = {1,    if 
4(

𝐻

2
−𝑥)(

𝑊

2
−𝑦)

𝐻𝑊
≤

0,                otherwise

                                           (2) 

 

As Equation (2) shows, 𝐻 and 𝑊 are the height and width of the image, 𝑥 and 𝑦 are the coordinates 

of a given pixel, and  controls the frequency threshold. After applying this mask, the high-frequency 

component is obtained using the inverse Fourier transform using Equation (3). The high-frequency 

components 𝐼ℎ𝑓  are computed by applying a binary mask 𝑀ℎ𝑓, which retains frequencies above a 

threshold . 𝑓𝑓𝑡 is the Fourier transform and 𝑖𝑓𝑓𝑡 is its inverse, and 𝐼 represents the input image.  

                                                              𝐼ℎ𝑓 =  𝑖𝑓𝑓𝑡(𝑀ℎ𝑓) ∙ 𝑓𝑓𝑡(𝐼)                                                  (3) 

 

3.3    Adaptor-based Fine-tuning 

Figure 2 shows the structure of an Adaptor module used for fine-tuning. The tunable components 

(marked with flames) are updated. The Embedding Tune and HFC Tune modules adapt the embeddings 

and high-frequency features, respectively, and their outputs are combined. The GELU activation 

introduces non-linearity. The MLP𝑡𝑢𝑛𝑒
 𝑖  is specifically fine-tuned, while MLP 𝑢𝑝 layer, both shared and 

unshared, manage up-projection, allowing for a balance between shared learning and task-specific 

adaptation. 

Figure 3 illustrates the integration of Adaptor modules within a Vision Transformer (ViT) for water 

body segmentation. It includes both frozen and tunable components: the frozen parts (marked with an 

ice crystal) remain unchanged during training, while the tunable components (marked with flames) are 

updated. The model starts with patch embedding of the input dataset, followed by a series of transformer 

layers that leverage frozen pre-trained features. The key innovation lies in integrating Adaptors between 

these transformer layers. Each Adaptor is specifically fine-tuned to handle unique aspects of water body 

segmentation, such as distinguishing between water and non-water regions under varying 

environmental conditions. This selective fine-tuning mechanism effectively balances computational 

efficiency with task-specific adaptability, resulting in robust segmentation outcomes suitable for diverse 

real-world scenarios. 

The core contribution of this work is the Adaptor-based fine-tuning mechanism, which allows 

selective tuning of the frozen model layers. The Adaptors are lightweight modules designed to modify 

both the image embeddings and the high-frequency components in a task-specific manner. 

Two types of tunable components are defined. One is Embedding Tune: This module fine-tunes the 

image embeddings 𝐸 by learning a projection to a lower-dimensional space using the Equation (4): 

                                                  𝐹𝑝𝑒  =  𝐿𝑝𝑒  (𝐸)                                                                (4)   

   

where 𝐿𝑝𝑒 is a linear layer that maps the embeddings to a task-specific feature space, and 𝐹𝑝𝑒  is the fine-

tuned embedding output. Another one is HFC Tune: For high-frequency components 𝐼ℎ𝑓, an additional 
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layer of fine-tuning is applied. The high-frequency patches are mapped into a low-dimensional 

representation through a linear layer using the Equation (5): 

                                 𝐹ℎ𝑓𝑐  =  𝐿ℎ𝑓𝑐(𝐼ℎ𝑓)                                                    (5) 

 

where, 𝐿ℎ𝑓𝑐  is a linear transformation that compresses the high-frequency information into a task-

specific form,  𝐹ℎ𝑓𝑐, which is then combined with the embeddings. 

The final feature used for segmentation is the combination of both embedding and high-frequency 

tuned components using the Equation (6):  

                                                𝑝𝑖  =  𝑀𝐿𝑃𝑎𝑑𝑎𝑝𝑡𝑜𝑟 (𝐺𝐸𝐿𝑈(𝐹𝑝𝑒 +  𝐹ℎ𝑓𝑐))                                (6) 

 

where 𝑝𝑖  is the prompt for the i-th transformer layer and 𝑀𝐿𝑃𝑎𝑑𝑎𝑝𝑡𝑜𝑟  is a multi-layer perceptron tasked 

with merging these features. The activation function 𝐺𝐸𝐿𝑈 introduces non-linearity, and the summed 

features are passed to subsequent layers in the transformer. 

 

 
 

Figure 2. The Architecture of Adaptor-Based Fine-Tuning Modules 

 

 
 

Figure 3. Adaptor Integration in Vision Transformer for Water Body Segmentation 

3.4    Efficiency of the Adaptor Network 

The Adaptor network works by adjusting only the critical layers responsible for handling task-

specific challenges in segmentation, such as reflections or occlusions that are common in water body 

images. This selective fine-tuning drastically reduces the computational cost compared to traditional 

methods that retrain entire models. 

Given the task of water body segmentation, which often involves challenging scenarios such as 

subtle distinctions between water and land under different environmental conditions, the fine-tuned  

high-frequency and embedding components enhance the model's robustness. The compact nature of the 

Adaptor enables efficient transfer learning without sacrificing performance. 

The efficiency of the model can be quantified by comparing the total number of parameters trained 

in traditional full-scale fine-tuning versus the parameters trained in the Adaptor-based method. 𝜃𝑡 

denotes the parameters trained in a traditional method and 𝜃𝑎 denotes the parameters trained in the 

Adaptor-based method, achieving a significant reduction in trainable parameters, as Equation (7) shows: 

                                                        
𝜃𝑎

𝜃𝑡
≪ 1                                                                   (7) 
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where 𝜃𝑎 is typically an order of magnitude smaller than 𝜃𝑡. The computational complexity is further 

reduced due to the focused fine-tuning of high-frequency components. Instead of performing a full 

forward and backward pass for all model layers, the complexity is concentrated in the computation of 

the high-frequency components and their subsequent fine-tuning, as Equation (8) shows. 

                                                        𝑂(𝐴𝑑𝑎𝑝𝑡𝑜𝑟) =  𝑂(𝐿𝑝𝑒) + 𝑂(𝐿ℎ𝑓𝑐)                                                  (8) 

 

𝑂(𝐴𝑑𝑎𝑝𝑡𝑜𝑟)  represents the overall computational complexity of the Adaptor-based method. 

𝑂(𝐿𝑝𝑒)  represents the computational complexity of the linear layer 𝐿𝑝𝑒  used for fine-tuning the 

embeddings. 𝑂(𝐿ℎ𝑓𝑐) represents the computational complexity of the linear layer 𝐿ℎ𝑓𝑐 used for fine-

tuning the high-frequency components. This complexity remains manageable, even for large images, as 

only the most important task-specific features are adjusted, making the method suitable for real-world 

applications in resource-constrained environments. 

4   Experiments 

The experiments was conducted using Adaptor-based fine-tuning on the SegFormer model as 

backbone. The training was performed on a single NVIDIA GeForce RTX 3080 GPU for 50 epochs, 

using a batch size of 4 and an initial learning rate of 0.0002, with the Adam optimizer. 

4.1   Dataset 

 The ATLANTIS dataset (Erfani et al., 2022) is recognized as the largest annotated collection for 

semantic segmentation of water bodies and their related facilities, consisting of 56 categories of 5,195 

training images and 1,296 testing images as Table 1 shows. This study specifically focused on 15 distinct 

water body categories without their related facilities from the ATLANTIS dataset, as Table 2 shows. 

This subset includes 1,609 training images, 260 validation images, and 662 testing images. The images 

are resized to 352 × 352 for consistent evaluation. For performance assessment, the mean Intersection 

over Union (mIoU) is utilized as the evaluation metric. 

 

Table 1. Complete List of Categories from the ATLANTIS Dataset 
Number Label Number Label Number Label Number Label 

0 background 1 bicycle 2 boat 3 Breakwater 

4 bridge 5 building 6 bus 7 canal 

8 car 9 cliff 10 culvert 11 cypress 
tree 

12 dam 13 ditch 14 fence 15 hydrant 

16 fjord 17 flood 18 glaciers 19 hot spring 

20 lake 21 levee 22 lighthouse 23 mangrove 

24 marsh 25 motorcycle 26 offshore 27 parking 

28 person 29 pier 30 pipeline 31 pole 

32 puddle 33 rapids 34 reservoir 35 river 

36 river delta 37 road 38 sea 39 ship 

40 shoreline 41 sidewalk 42 sky 43 snow 

44 spillway 45 swimming 
pool 

46 terrain 47 traffic sign 

48 train 49 truck 50 umbrella 51 vegetation 
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52 wall 53 water 
tower 

54 water 
well 

55 waterfall 

56 wetland       

 

Table 2. Selected Water Body Categories Used for Segmentation in This Study 
Number Label Number Label Number Label Number Label 

0 background 7 canal 13 ditch 16 fjord 

17 flood 19 hot spring 20 lake 32 puddle 

33 rapids 34 reservoir 35 river 36 River 
delta 

38 sea 45 swimming 
pool 

55 waterfall 56 wetland 

 

4.2 Data Preprocessing 

 In the data preprocessing stage, the raw images were transformed to facilitate effective 

segmentation. As illustrated in Figure 4, the original images were annotated with multi-class masks, 

distinguishing between various elements within the scene, including different types of water bodies and 

non-water features. To enhance the focus of water body segmentation and simplify the model's learning 

process, these original multi-class masks were converted into binary masks. This conversion produced 

processed masks, where the water bodies were distinguished from the background, thereby framing the 

segmentation task as a foreground-background classification problem. 

This approach reduced the complexity of the segmentation model by focusing solely on the target 

water bodies, thus allowing the model to concentrate on differentiating water from non-water  

areas without the need to classify multiple object categories. The preprocessing pipeline ensured that 

each image was represented consistently, facilitating robust training of the segmentation network across 

diverse types of water body environments. 

4.3 Comparison with Existing Models 

The results of the introduced Adaptor-based fine-tuning method for water body segmentation are 

presented in Table 3 and Table 4. The evaluation metric used is Intersection over Union (IoU),  

which measures the accuracy of segmentation by comparing the predicted output with the ground truth 

data. 

Table 3 presents the performance comparison of this method, Adaptor, against various state-of-the-

art models such as DNLNet, GCNet, DeepLabv3, and AQUANet across 15 water body categories. The 

Adaptor method demonstrates a clear improvement in the mean IoU (mIoU) with 79.38%, 

outperforming all the baseline models significantly. For example, fjord: The Adaptor method achieves 

an IoU of 91.7%, which is much higher compared to DNLNet (48.8%) and GCNet (44.7%). River delta: 

Adaptor achieves 88.8% IoU, surpassing all other methods, including PSPNet (65.5%) and OCNet 

(65.9%). Flood: The performance of the Adaptor method is 84.6%, whereas models like CCNet and 

EMANet achieve only 26.9% and 23.0%, respectively. 

These results indicate that the selective fine-tuning of task-specific layers using Adaptor-based 

networks effectively captures the unique characteristics of water bodies under varying conditions, such 

as occlusions and reflections, leading to superior segmentation accuracy. 
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Figure 4. Transformation of Original Dataset Labels into Processed Masks for Model Training and 

Testing 

4.4   Comparison with Different Fine-Tuning Methods 

Figures 5, 6, and 7 demonstrate the performance of different fine-tuning methods, namely 

AdaptFormer, Linear, and Adaptor, on water body segmentation across various types of water bodies. 

Each figure presents a comparison of segmentation results for distinct water body categories, 

highlighting the Intersection over Union (IoU) values achieved by each method. 

Table 4 illustrates the performance comparison between the Adaptor method and other related 

approaches, Adaptformer, and the Linear fine-tuning method, all based on the same backbone model, 

Segformer. The experimental results show that the Adaptor method consistently outperforms both 

Adaptformer and the Linear approach across various water body categories. Specifically, in the canal 

category, the Adaptor method achieved an Intersection over Union (IoU) score of 83.6%, significantly 

surpassing Adaptformer (26.0%). In the lake category, the Adaptor method reached an IoU of 90.9%, 

compared to Adaptformer at 37.1% and Linear at 85.1%. For the reservoir category, the Adaptor method 

achieved an IoU of 82.7%, while the Linear method performed slightly lower, with an IoU of 75.2%. 

The results demonstrate that the Adaptor-based fine-tuning strategy is more effective than both 

Adaptformer and Linear, in challenging water body categories. The method’s ability to tune high-

frequency components and embedding features enables it to handle variations in water appearance, such 

as seasonal changes and reflective surfaces. 
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The experimental results clearly highlight the strength of the Adaptor-based fine-tuning method in 

achieving high segmentation accuracy across diverse water body types. By focusing on selective tuning, 

the approach significantly reduces computational costs compared to full-scale retraining while 

maintaining a high level of accuracy. These results demonstrate the feasibility of using Adaptor-based 

models for real-world water body segmentation tasks, offering both efficiency and robustness. 

 

Table 3. Performance Comparison of State-of-the-Art Models for Water Body Segmentation, 

   the best result is bold 

 

Table 4. Performance Comparison of Adaptor-Based Fine-Tuning with Other Methods, 

      the best result is bold 

5. Discussion 

The experimental results demonstrate that the Adaptor-based fine-tuning approach provides superior 

segmentation performance across diverse water body categories compared to conventional full-scale 

retraining methods. This approach, which utilizes Adaptors, significantly reduces computational costs 
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DNLNet 54.4 26.3 48.8 36.3 55.3 35.5 52.3 40.4 32.1 31.3 37.1 61.7 52.4 48.7 54.6 44.48 

GCNet 56.6 19.0 44.7 34.8 36.1 35.8 39.4 39.9 41.6 32.4 67.0 62.2 42.9 50.7 59.7 44.19 

OCRNet 52.4 19.4 46.9 34.9 58.8 30.4 39.7 42.5 29.8 31.9 55.5 55.4 43.6 56.8 51.5 43.30 
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Adaptor 83.6 58.1 91.7 84.6 74.1 90.9 74.9 86.1 82.7 84.2 88.8 86.7 61.5 71.9 72.4 79.38 
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26.0 12.6 30.4 19.1 25.4 37.1 13.3 33.0 32.9 31.5 24.8 35.1 26.6 31.0 24.6 26.68 

linear 79.3 50.2 83.2 76.9 68.7 85.1 59.2 79.0 75.2 78.2 78.4 82.1 59.1 68.7 65.0 72.65 

Adaptor 83.6 58.1 91.7 84.6 74.1 90.9 74.9 86.1 82.7 84.2 88.8 86.7 61.5 71.9 72.4 79.38 
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without sacrificing accuracy. The improvement in mean Intersection over Union (mIoU), highlights the 

efficacy of leveraging high-frequency component tuning alongside embedding-based adjustments. The 

significant gains observed for categories such as fjord, river delta, and flood indicate that the Adaptor-

based method effectively handles challenges like occlusions, reflections, and seasonal variations. 

Unlike traditional models, which often struggle to distinguish between visually similar regions, this 

approach's ability to retain pre-trained knowledge while adapting to specific features of water bodies 

leads to a more robust segmentation output.  

Another key observation is the effectiveness of Adaptor networks when compared to recent related 

approaches such as adaptformer and linear fine-tuning. The Adaptor method consistently 

outperforms these methods, particularly in challenging categories such as "canal" and "lake," which 

require precise boundary detection. The combination of embedding and high-frequency component 

tuning allows the ViT model to handle complex water body characteristics, ensuring that subtle 

differences between water and non-water regions are accurately captured. The reduction in trainable 

parameters, quantified in equation (7), further validates the efficiency of the method, making it suitable 

for deployment in real-world, resource-constrained environments. This efficiency is critical for 

applications in environmental monitoring, where computational resources are often limited, and rapid 

processing is required for decision-making. 

Compared to existing segmentation models, the adaptor-based method significantly reduces the 

number of parameters. Models such as ANNet (63.1M), GCNet (28.1M), and DeepLabv3 (15.4M) 

exhibit substantially higher parameter counts, whereas the adaptor-based method achieves remarkable 

efficiency with only 0.55M parameters. This parameter efficiency makes it highly suitable for resource-

constrained environments, enabling a substantial reduction in computational demands while 

maintaining competitive performance. Notably, training this model required only 3 hours. Furthermore, 

the existing segmentation models used for comparison were trained from scratch on the dataset in this 

study, rather than leveraging pre-trained models, with training times ranging from 7 hours to 2 days. 

The adaptor-based method demonstrates a clear advantage in terms of speed and efficiency. 
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Figure 5. IoU for Various Water Body Segmentation using Different Light-Weight Fine-Tuning 

Methods 
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Figure 6. IoU for Various Water Body Segmentation using Different Light-Weight Fine-Tuning 

Methods 
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Figure 7. IoU for Various Water Body Segmentation using Different Light-Weight Fine-Tuning 

Methods 

6. Conclusions 

This paper presents a lightweight, Adaptor-based fine-tuning framework for water body 

segmentation that significantly improves both computational efficiency and segmentation accuracy. By 

adding Adaptors in Vision Transformers, the approach avoids the need for full-scale retraining, thereby 

reducing the computational load and training time. The experimental results indicate that this Adaptor-

based method outperforms existing state-of-the-art models and related fine-tuning approaches, 

achieving a mean IoU of 79.38% across 15 water body categories. The ability to effectively capture 

high-frequency details and adapt embeddings to specific segmentation tasks allows for robust 

performance, even under challenging conditions such as occlusions, reflections, and seasonal variations. 

This research’s contributions include demonstrating the feasibility of using lightweight Adaptor 

networks for effective transfer learning, particularly in the context of water body segmentation. Future 

work will explore extending this methodology to other environmental monitoring tasks, leveraging the 

flexibility and efficiency of Adaptor-based models to address various segmentation challenges in remote 

sensing and geographic information systems (GIS). 
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