
Turchin’s Relation and Subsequence Relation in Loop

Approximation

Antonina Nepeivoda

Program Systems Institute, Pereslavl-Zalessky, Russia
a nevod@mail.ru

Abstract

The paper studies the subsequence relation through a notion of an intransitive binary
relation on words in traces generated by prefix-rewriting systems. The relation was in-
troduced in 1988 by V.F. Turchin for loop approximation in supercompilation. We study
properties of this relation and introduce some refinements of the subsequence relation that
inherit the useful features of Turchin’s relation.

1 Introduction

In computer science the homeomorphic embedding is investigated from two completely different
points of view, for it is of both theoretical and practical interest.

On the one hand, the embedding showed itself to be useful as a branch termination criterion
in constructing tools for program transformation ([13], [2]). What makes the homeomorphic
embedding reasonable as a termination criterion is the non-existence of an infinite sequence
of finite labeled trees such that no tree in the sequence is embedded into some its derivative
(the fact was proved by Kruskal and is called Kruskal’s theorem; for an elegant proof of the fact
see [7]). Relations with this property are called well-binary relations.

Definition 1. R,R ⊂ S × S, is called a well binary relation, if every sequence {Φn} of
elements from S such that ∀i, j(i < j ⇒ (Φi,Φj) /∈ R) is finite. If R is well binary and
transitive it is called a well quasiorder (wqo).

A sequence {Φn} with the property ∀i, j(i < j ⇒ (Φi,Φj) /∈ R) is called a bad sequence with
respect to R. Thus, well-binariness of R can be formulated equivalently as “all bad sequences
with respect to R are finite”.

On the other hand, well-binariness of the homeomorphic embedding is shown to be non-
provable in the Peano arithmetic with the first-order induction scheme [12], and this fact aroused
interest of logicians and computer scientists with background in mathematical logic (a thorough
study of the proof-theoretical strength of the fact is in [16]). Studies of the homeomorphic em-
bedding as a termination criterion for term rewriting systems ([11, 14]) are located in the middle
between these poles of pure theory and practice.

The problem is that since these two domains live their own separate lives, it is not always
obvious how to use the theoretical investigations in the practical program transformations. The-
oricists study properties of the homeomorphic embedding (and similar relations) on arbitrary
(maybe not even computable) sequences of trees, and that can imply somewhat obscure view
on practical features of the relations: in particular it was established that the upper bound on
a bad sequence length with respect to the homeomorphic embedding dominates every multiple
recursive function [12], which looks redundantly from the practical point of view. But in real
applications the opposite problem becomes much more frequent: the homeomorphic embedding
yields branch termination too early [6, 11]. In some algorithms of program analysis this flaw was

30 I. Virbitskaite, A. Voronkov (eds.), PSI 2014 (EPiC Series, vol. 23), pp. 30–42

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

partially fixed either by making an additional annotation [5] or by intersecting the embedding
with other wqos [1].

In this paper we study properties of a special case of the homeomorphic embedding on
a restricted set of computable sequences.

Definition 2. Having two words Φ, Ψ in an alphabet Υ let us say that Φ is embedded in Ψ
with respect to the subsequence relation (Φ E Ψ) (E is also called the scattered subword
relation) if Φ is a subsequence of Ψ.

The subsequence relation is proved to be a well quasiorder by G. Higman [3]. We prove that
while applied only to sequences generated by prefix grammars the relation admits bad sequences
not more than exponential over a grammar size. If we apply the relation to a direct product of
sequences generated by prefix grammars we receive the multiple recursive upper bound found by
H. Touzet [14]. Also we show how to make a refinement of the subsequence relation that solves
the empty word problem for languages generated by alphabetic prefix grammars and inherits
some useful features of Turchin’s relation, which was also used in program transformation (in
particular, in the supercompiler SCP4 [8]).

The paper is organized as follows. First, we introduce notion of a prefix grammar. Then
we give a definition of the Turchin relation and shortly prove its well-binariness. After that we
show how to build maximal bad sequences with respect to the Turchin relation and give some
discussion on using this relation combined with other well binary relations. Finally, we show
how our refinement for the Turchin relation allows to refine the subsequence relation and, using
our knowledge about the Turchin relation, we investigate properties of the subsequence relation
on traces generated by prefix grammars.

The main contributions of the paper are the following:

1. We outline the concept of Turchin’s relation in terms of prefix grammars and investigate
properties of the relation.

2. We link Turchin’s relation with the subsequence relation and show how to model the former
by the latter not using a notion of time for sequences generated by prefix grammars.

3. We determine upper bounds of bad sequence length with respect to both relations for
sequences generated by a single prefix grammar and for direct products of two sequences
generated by prefix grammars.

4. We show that a minimal natural well binary generalization of Turchin’s relation on direct
products of sequences generated by prefix grammar is the subsequence relation.

2 Prefix Grammars

We consider a restricted class of generative indeterministic grammars, in which rewriting rules
are applied in an arbitrary order.

Definition 3. A tuple 〈Υ,R,Γ0〉, where Υ is an alphabet, Γ0 ∈ Υ+ is an initial word, and
R ⊂ Υ+ × Υ∗ is a finite set of rewrite rules1, is called a prefix grammar if R : Rl → Rr

can be applied only to words of the form RlΦ (where Rl is a prefix and Φ is a (possibly empty)
suffix) and generates only words of the form RrΦ.

If the left-hand side Rl of a rule R : Rl → Rr has the length 1 (only the first letter is
rewritten) then the prefix grammar is called an alphabetic prefix grammar.

1It is usually said that Υ is finite, but this restriction is unnecessary in our case. Only finiteness of R matters
in our study.

31

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

A trace of a prefix grammar G = 〈Υ,R,Γ0〉 is a word sequence {Φi} (finite or infinite)
where Φ1 = Γ0 and for all i ∃R(R : Rl → Rr & R ∈ R & Φi = RlΘ & Φi+1 = RrΘ)
(Θ is a suffix). In other words, the elements of a trace are derived from their predecessors by
applications of rewrite rules from G.

Example 1. Consider the following prefix grammar GΛ with Υ = {a, b, c} and the following
rewrite rules:

R[1] : Λ → ba R[2] : b → Λ R[3] : aac → Λ

R[4] : aad → Λ

We cannot apply the rule R[3] to baacb, for baacb starts not by aac. If we apply R[1] or R[2]

to baacb the only correct results of the applications are babaacb and aacb respectively.

When V.F. Turchin discussed a search of semantic loops in Refal programs he considered
a stack model, which resembles a prefix grammar [15]. V. F. Turchin proposed to observe call
stack configurations to prevent infinite unfolding of a special sort. He aimed at cutting off
branches where a stack top derives a path that ends with the same stack top. If we denote
the stack top as Φ, the derivation of Φ with Φ on the top as ΦΨ, and the part of the initial
stack that is not modified as Θ then we can say that a branch is dangerous with respect to
Turchin’s relation if it contains pairs of the form ΦΘ, ΦΨΘ. We can notice that the terms form
a pair with respect to the subsequence relation, but V. F. Turchin proposed a stronger relation
for more precise identification of such stack configurations in his work [15]. V. F. Turchin used
this relation to construct better loop approximations in residual programs, but the relation can
be also used to forbid a program transformation process to halt driving on finite computation
branches. The last property is analyzed in this paper for prefix-grammar-generated traces.

3 Turchin’s Relation

To describe the Turchin relation for grammar-generated traces we use a formalization presented
in [8]. The formalization introduces a notion of time indices. The main idea of the formalization
is to mark every letter in the trace by a natural number that points to the position in the trace
where the letter first appears. The order of words in a trace is from up to down.

The length of Φ is denoted by |Φ|.

Definition 4. Consider a trace {Φi} generated by a prefix grammar G, G = 〈Υ,R,Γ0〉. Supply
letters of Φi by numbers that correspond to their time indices as follows. The i-th letter of
Γ0 is marked by the number |Γ0| − i; if the maximal time index in the trace {Φi}

k
i=1 is M

and Φk+1 is derived from Φk by an application of R : Rl → Rr then the i-th letter Φk+1

(i ≤ |Rr|) is marked by M + |Rr| − i + 1. Time indices of the other letters of Φk+1 coincide
with the corresponding time indices of Φk.

We call such annotation time indexing and we call a trace with the annotation a compu-

tation.

Example 2. Let us consider a grammar GLOG with Υ = {f, g, h} and the following rewrite
rules:

R[1] : f → Λ R[3] : g → Λ R[5] : h → Λ

R[2] : f → gf R[4] : g → h R[6] : h → g

32

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

Γ0 = f . A first segment of a computation yielded by the grammar GLOG can look as:

Γ0 : f(0)

R
[2]

��

Γ2 : h(3)f(1)

R
[6]

��

Γ4 : f(1)

Γ1 : g(2)f(1)

R
[4] 44

❥
❥
❥
❥
❥
❥
❥
❥
❥
❥

Γ3 : g(4)f(1)

R
[3]

55
❦
❦
❦
❦
❦
❦
❦
❦
❦
❦

The time indices are in subscripts, enclosed in brackets. Note that the letter f(0) in Γ0 is
replaced by f(1) in Γ1, and f(0) 6= f(1).

In the sequel Greek capitals (Γ, ∆, Θ, Ψ, Φ) denote words in a computation (with the time
indexing). ∆[k] denotes the k-th letter of ∆ (counting from the beginning).

An equivalence up to the time indices is formally defined as follows. Φ ≈ Ψ if |Φ| = |Ψ| and
∀i(i ≥ 1 & i ≤ |Φ| ⇒ (Φ[i] = a(n) & Ψ[i] = b(m) ⇒ a = b)). The definition has the following
simple meaning: if we erase time indices of all letters in Φ and Ψ then Φ and Ψ will coincide
literally. For instance, in Example 2 f(0) 6= f(1), but f(0) ≈ f(1).

Now we are ready to define Turchin’s relation Γ � ∆. Loosely speaking, it in-
cludes pairs 〈Γ,∆〉, where Γ can be presented as [Top][Context], ∆ can be presented as
[Top][Middle][Context], and the suffix [Context] is not modified in the computation seg-
ment thar starts from Γ and ends with ∆.

Definition 5. Γ � ∆ ⇔ Γ = ΦΘ0 & ∆ = Φ′ΨΘ0 & Φ′ ≈ Φ. Pairs Γ, ∆ such that Γ � ∆ are
called Turchin pairs2.

� is not transitive but it is reflexive and antisymmetric up to ≈ [10]. Well-binariness of
the relation can be proved using the following observation. If a rule R has a non-empty right-
hand side Rr, Φ ≈ Rr, Φ

′ ≈ Rr, ΦΘ0 precedes Φ′Θ1, and ∃i(Θ1[i] = Θ0[1]) then ΦΘ0 � Φ′Θ1.
So the maximal word length in a bad sequence with respect to � is bounded by

|Γ0|+
∑

(|R[i]
r | − 1)

where Γ0 is the initial word and
∑

(|R
[i]
r | − 1) runs over the set of different right-hand sides of

all rules.
The upper bound is not exact due to the following two limitations. First, not every letter

can be rewritten to the chosen right-hand side, i.e. the letter f cannot be rewritten to h in
a one step. Second, some rules can accidentally share some letters in their right-hand sides. I.e.
the letter g in the right-hand side of the rule f → gf and the letter g in the right-hand side
of the rule h → g have different nature and the coincidence of the two letters is occasional. In
the next section we show how to partly avoid this difficulty.

4 Annotated Prefix Grammars

If in the rules h → g and f → gf we write down the corresponding letters as e.g. g[f] and g[h]

and say that g[f] 6≈ g[h] then the prefix grammar will generate computations with less number
of occasional Turchin’s pairs.

Let us give more formal definition of this sort of prefix grammars.

2In [8] it is also specified that |Φ| > 0. If a computation is yielded by a grammar only with non-empty
left-hand sides of rules then this limitation is unnecessary. Otherwise the condition |Φ| > 0 becomes essential
to make the upper bound C′

Max
constructed with a help of Lemma 1 exact.

33

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

Definition 6. A prefix grammar G=〈Υ,R,Γ0〉, R ⊂ Υ+ ×Υ∗ is called annotated3 if

1. For every two rules R : Rl → Rr, R
′ : R′

l → R′
r, if ∃i, j(Rr[i] ≈ R′

r[j]), then Rr ≈ R′
r;

2. If Rl → Rr ∈ R and there is a rule R′
l → R′

r in R then R′
l → Rr ∈ R.

3. The initial word contains only unique letters: ∀i, j, k(R
[k]
r [i] 6= Γ0[j]).

Consider the following algorithm that transforms a prefix grammar G to an annotated G′.

1. Let a = R
[n]
r [i], a ∈ Υ, n be an unique number of the rule with the right-hand side R

[n]
r .

a corresponds to the pair 〈a, 2n ∗ 3i−1〉. We set n = 0 for the initial word Γ0 and denote
the corresponding tuple of the pairs 〈Γ0[1], 1〉〈Γ0[2], 3〉 . . . 〈Γ0[|Γ0|], 3

|Γ0|〉 as Γ′
0.

2. A rewrite rule R′ : R′
l → Φ of the grammar G′ corresponds the the equivalence class up

to left-hand sides of rules 〈ai, ni〉 → Φ, where Φ is a right-hand side of a rule from G after
the first step, and 〈ai, ni〉 is arbitrary.

If the initial grammar G yields a bad sequence then the computation by G′ that is derived
from Γ′

0 by application of the rules from the equivalence classes that correspond to the right-
hand sides of the rules that are applied in the computation by G is also a bad sequence.

We do not differ rewrite rules with the different left-hand sides in annotated grammars and
write them as x → Rr where x denotes an arbitrary pair sequence of a bounded length.

Example 3. Let us transform the prefix grammar GLOG from Example 2 into an annotated.

G′
LOG

:

Γ0 = 〈f, 1〉 R[2] : x → 〈g, 4〉
R[1] : x → 〈g, 2〉〈f, 6〉 R[3] : x → 〈h, 8〉

R[4] : x → Λ

The computation by GLOG that corresponds to the computation from Example 2 now begins as
follows:

Γ0 : 〈f , 1〉(0)

R
[1]

��

Γ2 : 〈h, 8〉(3)〈f , 6〉(1)

R
[2]

��
Γ1 : 〈g, 2〉(2)〈f , 6〉(1)

R
[3] 33❣❣❣❣❣❣❣❣❣❣❣❣❣

Γ3 : 〈g, 4〉(4)〈f , 6〉(1)

Note that now Γ1 6� Γ3.

A useful feature of annotated grammars is their ability to generate longest bad sequences.
There are no intersections in the right-hand sides of rewrite rules and thus ≈ discerns prefixes
that are yielded by distinct rule applications. 4

Now we can find the upper bound of a bad sequence length in a computation yielded by
a prefix grammar. The proof uses the following lemma.

Lemma 1. Every computation by an annotated prefix grammar ends either by Λ or by a Turchin
pair ΦΘ0, Φ′ΨΘ0 such that there exists a rule Rl → Rr, for which Φ ≈ Rr, Φ′ ≈ Rr, and
Rr 6= Λ.

3This grammar property 2 plays a role only in the construction of a longest bad sequences. So in most
propositions grammars with only the properties 1 and 3 are also considered as annotated.

4This can be very useful if there is a rule R with the left-hand side Rl embedded in the right-hand side Rr .
Note that if Rl E Rr then the subsequence termination criterion is always activated after an application of the
rule Rl → Rr. This problem was pointed in [11].

34

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

Proof. Let us consider a pair Φ1Θ0, Φ2ΨΘ0 such that Φ1Θ0 � Φ2ΨΘ0, (Φ1 ≈ Φ2), and the
trace segment ending with Φ2ΨΘ0 is a bad sequence. According to the properties of annotated
grammars, Φ1[1] and Φ2[1] must be generated by different applications of the same rule R :
x → Rr with |Rr| > 0, and if Φ1[1] ≈ Rr[i] then necessarily Φ2[1] ≈ Rr[i]. Let us denote the

prefix Rr[1]Rr[2]...Rr[i− 1] as R
(i−1)
(z) (z is the time index of Rr[i− 1]). Now turn back to the

two applications of R. The result of the former must be of the form R
(i−1)
(k1)

Φ1Θ0, the result of

the latter is of the form R
(i−1)
(k2)

Φ2ΨΘ0. They form a Turchin pair and therefore coincide with

Φ1Θ0 and Φ2ΨΘ0.
So Φ1 = Rr1Φ

′
1, Φ2 = Rr2Φ

′
2 (Φ′

1 ≈ Φ′
2, and Rr1 and Rr2 coincide up to the time indices

with some right-hand side of a rewrite rule). Let Φ′
1 be non-empty. Then ∃R′, j(Φ′

1[1] ≈ R′
r[j] &

Φ′
2[1] ≈ R′

r[j]), and Φ′
1[1] 6= Φ′

2[1]. The prefix R′
r[1]R

′
r[2]...R

′
r[j − 1] is denoted as R

′(j−1)
(z) . Now

turn back to the R′ applications that generate Φ′
1[1] and Φ′

2[1]. They look as R
′(j−1)
(l1)

Φ′
1Θ0 and

R
′(j−1)
(l2)

Φ′
2ΨΘ0 and form a Turchin pair. This contradicts the choice of Φ1Θ0 and Φ2ΨΘ0.

Hence Φ1Θ0 = Rr1Θ0 and Φ2ΨΘ0 = Rr1ΨΘ0.

Note that the proof is for not only alphabetic prefix grammars but for prefix grammars that
allow rules of the form Φ → Ψ. With the help of Lemma 1 we proved that the exact upper
bound of a bad sequence length for an annotated prefix grammar is

C′
Max = |Γ0| ∗ (1 + |R[0]

r | ∗ (1 + |R[1]
r | ∗ (· · · ∗ (1 + |R[N]

r |) . . .)))

where rules in the sequence R[0], R[1], . . . , R[N] are placed by a non-increasing order with respect

to the length of their right-hand sides |R
[i]
r | (the proof of this fact is by induction; for details

see [10]).

Note that N in the formula |Γ0| ∗ (1+ |R
[0]
r | ∗ (1+ |R

[1]
r | ∗ (· · · ∗ (1+ |R

[N]
r |) . . .))) denotes not

the cardinality of the set of rewrite rules but the cardinality of the set of the right-hand sides
of rewrite rules. Thus when we do the annotation there is no exponential growth of the upper
bound.

Example 4. Let us estimate the length of a longest bad sequence yielded by the grammar

G′
LOG

(Example 3). The length of the initial word is 1, |R
[1]
r | has the length 2, and two rules

have the right-hand sides of the length 1. The corresponding bad sequence length is 7.
Now let us build such bad sequence explicitly. For the sake of readability different pairs of

the form 〈 letter, number〉 are denoted by different letters (thus 〈f, 1〉 = a, 〈g, 2〉 = c, 〈f, 6〉 = c,
〈g, 4〉 = d, and 〈h, 8〉 = e).

G′
LOG

:
Γ0 = a R[2] : x → d

R[1] : x → bc R[3] : x → e
R[4] : x → Λ

One of the maximal bad sequences is:

Γ1 : b(2)c(1)

R[2]

��

Γ3 : e(4)c(1)

R[4]

��

Γ5 : d(5)

R[3]

��
Γ0 : a(0)

R[1]

77
♦
♦
♦
♦
♦
♦
♦
♦
♦

Γ2 : d(3)c(1)

R[3]

66
♥
♥
♥
♥
♥
♥
♥
♥
♥

Γ4 : c(1)
R[2]

77
♦
♦
♦
♦
♦
♦
♦
♦
♦

Γ6 : e(6)

35

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

Note that the segment Γ5–Γ6 cannot be generated by the initial grammar GLOG.

If we aim to find embeddings not only in traces generated by single prefix grammars but
also in direct products of the traces then usage of � causes some questions. Namely we must
know whether well-binariness is preserved on intersections of the Turchin relation with some
wqo. The problem is that the Turchin relation is not well binary on arbitrary computations’
subsequences — we only can prove that it is well binary on the whole computations.

Example 5. Consider the following computation yielded by a prefix grammar.
Γ0 : a(2)b(1)c(0) Γ7 : b(5)c(3)
Γ1 : b(1)c(0) Γ8 : c(3)
Γ2 : c(0) Γ9 : b(10)c(9)
Γ3 : b(4)c(3) Γ10 : a(12)b(11)c(9)
Γ4 : a(6)b(5)c(3) Γ11 : a(14)a(13)b(11)c(9)
Γ5 : a(8)a(7)b(5)c(3) Γ12 : a(16)a(15)a(13)b(11)c(9)
Γ6 : a(7)b(5)c(3)

No two elements of the sequence Γ0, Γ5, Γ12, Γ21, . . . form a Turchin pair.

The following lemma verifies well-binariness of the intersections.

Lemma 2. � contains a wqo T that is well binary on all computations yielded by an annotated
prefix grammar.

Proof. Let 〈Υ,R,Γ0〉 be an annotated prefix grammarG. Consider all traces {Φi}
∞
i=1 generated

by G such that ∃N ∀i ∃j(i < j & |Φj | ≤ N).
For every trace J from this set choose the least N that satisfies this property. Due to

finiteness of the set R words generated by the rules from R can contain finite set of letters.
Therefore some word Ψ of the length N must repeat itself (with respect to ≈) infinitely in J .
The first letter of Ψ is generated by a single rule R with a non-empty right-hand side. Every
two results of these applications of R look as ∆Ψ and ∆′Ψ′ where Ψ ≈ Ψ′ and ∆ ≈ ∆′ for
they are same prefixes of the same right-hand side Rr that end at Ψ[1] so ∆Ψ and ∆′Ψ′ form
a Turchin pair.

All other traces {Φi}
∞
i=1 have an infinite growth of the minimal word length: ∀N ∃iN ∀j(j >

iN ⇒ |Φj | > N). For every such trace and every N choose a minimal iN such that all
successors of ΦiN never have the length less than N : ∀j(j < iN ⇒ ∃k(k ≥ j & |Φk| < N)).
So |ΦiN−1| < N , |ΦiN | ≥ N , and ΦiN is generated from its predecessor by some R with a non-
empty right-hand side, |Rr| ≥ 2: ΦiN = Rr(l)Φ

−
iN−1 where Φ−

iN−1 is a suffix of ΦiN−1. Φ−
iN−1

stays constant because |ΦiN−1| < N . All the elements of {ΦiN }∞N=1 begin with a non-empty
right-hand side of a some rewrite rule, therefore exists an infinite subsequence {ΦiK}∞K=1 of
{ΦiN }∞N=1 such that all elements of {ΦiK}∞K=1 begin with the right-hand side of a same rule.
Every two elements of {ΦiK}∞K=1 form a Turchin pair.

The set T of pairs of these two sorts is a wqo on traces generated by an annotated prefix
grammar.

T contains Turchin pairs of a special sort. Namely it contains 〈Γ,∆〉 such that Γ = ΦΘ0,
∆ = Φ′ΨΘ0, there exists a rule R : Rl → Rr with |Rr| > 0, Rr ≈ Φ, Rr ≈ Φ′, and Ψ[1] is
never modified in the further computation. So the Turchin relation may not be checked after
erasures with no loss of well-binariness.

What is more, existence of T guarantees that the Turchin relation can be intersected with
an arbitrary wqo without loss of well-binariness. On the other hand, the idea of intersecting
two Turchin relations looks appealing but implies a possible existence of infinite bad sequences
with respect to the intersection.

36

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

Definition 7. Let us say that Γ is embedded in ∆ with not more than with a single gap if there
exist words Φ, Ψ, Θ (maybe empty) such that Γ = ΦΘ, ∆ = ΦΨΘ.

Let us say that Γ is embedded in ∆ with not more than with n + 1 gaps if there exist
(maybe empty) Φ, Ψ, Θ1, Θ2 such that Γ = ΦΘ1, ∆ = ΦΨΘ2 and Θ1 is embedded in Θ2 with
not more than with n gaps.

Let us give a simple example. abac is embedded in abrac with not more than a single gap
and in abracadabra — with not more than two gaps (abac is divided into only two parts ab
and ac, but the end of a word is also considered as its part. The end of the word abracadabra

is not at the same position as the end of ac, so the gap between ac and the end of the word is
also taken into account).

Lemma 3. If a relation R of word embedding allows only finite number of gaps then it is not
well binary on sequences that are yielded by a direct product of prefix grammars G1 ×G2, even
when the grammars are deterministic.

Proof. Let us consider a class of grammars G[n] on pairs of words in the alphabet
{a1, . . . , an, A1, . . . , An, e, E} × {a1, . . . an, A1, . . . , An, e, E}.

Let the initial word be 〈e, A1A2 . . . AnE〉 and R consist of the following rewrite rules:
R[00] : 〈e, a1〉 → 〈E, a1a1〉
R[01] : 〈E,A1〉 → 〈e, A1A1〉
R[02] : 〈e, A1〉 → 〈a1e,Λ〉
R[03] : 〈E, a1〉 → 〈A1E,Λ〉
. . .
R[i0] : 〈ai, ai〉 → 〈Λ, aiai〉
R[i1] : 〈Ai, Ai〉 → 〈Λ, AiAi〉
R[i2] : 〈ai, Ai〉 → 〈aiai,Λ〉
R[i3] : 〈Ai, ai〉 → 〈AiAi,Λ〉
R[i4] : 〈ai, ai+1〉 → 〈Λ, aiai+1ai+1〉
R[i5] : 〈Ai, Ai+1〉 → 〈Λ, AiAi+1Ai+1〉
R[i6] : 〈ai, Ai+1〉 → 〈ai+1aiai,Λ〉
R[i7] : 〈Ai, ai+1〉 → 〈Ai+1AiAi,Λ〉
. . .
R[n0] : 〈an, e〉 → 〈Λ, ane〉
R[n1] : 〈An, E〉 → 〈Λ, AnE〉
R[n2] : 〈an, E〉 → 〈anan, e〉
R[n3] : 〈An, e〉 → 〈AnAn, E〉

For every N there exists some n such that G[n] yields a trace with no pair 〈Φ1,Ψ1〉, 〈Φ2,Ψ2〉
such that Φ1 is embedded in Φ2 and Ψ1 is embedded in Ψ2 with not more than N gaps.

So the Turchin relation can be intersected with any relation that is well binary on the whole
{Υ∗}, but not with the other Turchin relation.

5 Turchin’s Relation and Subsequence Relation

The Turchin theorem not only guarantees existence of a Turchin pair for every infinite com-
putation but also gives the exponential upper bound of a bad sequence length. In the case
of computations yielded by annotated prefix grammars the upper bound of a bad sequence
with respect to the subsequence relation coincides with the upper bound of a bad sequence

37

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

C′
Max = |Γ0| ∗ (1 + |R

[0]
r | ∗ (1 + |R

[1]
r | ∗ (· · · ∗ (1 + |R

[N]
r |) . . .))) for the Turchin relation. What is

more, in a computation yielded by an annotated prefix grammar the lengths of bad sequences
with respect to these two relations always coincide.

Lemma 4. The first pair in a computation yielded by an annotated prefix grammar that satisfy
the subsequence relation is a Turchin pair.

Proof. Consider Φ1 and Φ2 such that Φ1 E Φ2, there are no pairs with respect to the sub-
sequence relation in the trace before Φ2, and Φ1 is embedded into Φ2 with n + 1 gaps
(up to time indices). Let Θ0 be their common suffix. Then Φ1 = A1A2 . . . AnΘ0 and
Φ2 = B1A

′
1B2A

′
2 . . . BnA

′
nBn+1Θ0, where Ai ≈ A′

i for all i from 1 to n. Consider the words
where letters An[1] and A′

n[1] are generated. The grammar features guarantee that both
letters are generated by a same rule R : x → Rr, so the words look as ∆AnΘ0 and
∆′A′

nBn+1Θ0. ∆ ≈ ∆′ for they are same prefixes of the same right-hand side. This implies
that ∆AnΘ0 E ∆′A′

nBn+1Θ0. In the computation Φ1 and Φ2 are the first pair with respect to
the subsequence relation, consequently i = 1 = n, and Φ1 = A1Θ0, and Φ2 = A′

1Bn+1Θ0, so
Φ1 � Φ2.

Lemma 4 may have some practical meaning for systems of program transformation that
use the homeomorphic embedding as a branch termination criterion. We discuss this option in
Section 6.

Then the question emerges if the annotated subsequence relation can prevent too early
terminations for every prefix-grammar-generated computation. Namely, whether the annotated
subsequence relation allows unfolding to find a trace ending by Λ if Λ is in the language of
the prefix grammar. The answer is yes for alphabetic prefix grammars [9] and is negative in
the general case when R ⊂ Υ∗ ×Υ∗. To illustrate the last claim, consider the grammar GΛ of
Example 1 if Γ0 = cd. Λ belongs to the language of the grammar since

Γ1 : bacd

R
[2]

��

Γ3 : baacd

R
[2]

��

Γ5 : d

R
[1]

��

Γ7 : ad

R
[1]

��

Γ9 : aad

R
[4]

��
Γ0 : cd

R
[1]

77
♣
♣
♣
♣
♣
♣
♣

Γ2 : acd
R

[1]

66
♠
♠
♠
♠
♠
♠
♠
♠

Γ4 : aacd
R

[3]

77
♥
♥
♥
♥
♥
♥
♥
♥

Γ6 : bad
R

[2]

77
♦
♦
♦
♦
♦
♦
♦
♦

Γ8 : baad
R

[2]

77
♦
♦
♦
♦
♦
♦
♦
♦

Γ10 : Λ

The grammar belongs to the class of annotated grammars. But there are several pairs with
respect to E (and �) on the trace leading to Λ: e. g. Γ1 � Γ3. To solve the empty word problem
for languages generated by non-alphabetic prefix grammars using the subsequence relation as
a termination criterion we need to do some more annotation, which is proved in [9].

Recall that in the case of pairs overE the upper bound on arbitrary sequences with restricted
word length growth is multiple recursive [14]. We show that the upper bound is exact even if
the sequences are built by a direct product of two prefix grammars.

Example 6. Consider the following rewrite grammar (it not necessarily rewrites only prefixes;
the grammar is similar to the one described in [14]).

R[1] : su → ss R[2] : tu → tt R[3] : ts → tt

R[4] : wu → ws R[5] : tws → utw R[6] : tw → ws

R[7] : sws → wt R[8] : sw → wsss
If the rules are applied to the initial word sss . . . swww . . . w then the trace of the length
O(B(m,n)) with no pairs with respect to trianglelefteq is generated.

Now we build a system of two prefix grammars that models the example of H. Touzet (x de-
notes an arbitrary letter).

38

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

1. The first letter of a word rewritten by the first prefix grammar G1 represents a current
state of the Turing machine.

2. The last letter of a word rewritten by the second prefix grammar G2 represents the end of
data [EOW] and is always rewritten into itself.

3. The word rewritten by G1 represents the initial fragment of data which is before the counter
of Turing machine. The word rewritten by G2 represents the final fragment of data which
is behind the counter of Turing machine.

4. There is an auxiliary set of rules moving the counter to the beginning of the data
〈State0x, y〉 → 〈State0, xy〉.

5. There is a rule that starts the rewrite process 〈State0, y〉 → 〈StateF1 , y〉.

6. R[i] : R
[i]
l → R

[i]
r are modeled by 〈StateFi x, [EOW]〉 → 〈StateBi x, [EOW]〉 (if i 6= 8), a rule

〈StateFi R
[i]
l , x〉 → 〈State0Λ, R

[i]
r x〉 and a set of rewrite rules 〈StateFi x, y〉 → 〈StateFi xy,Λ〉

where x does not coincide with R
[i]
l .

7. The set of rules 〈StateBi x, y〉 → 〈StateBi , xy〉 is similar to the one for State0 but the last
rule now looks like 〈StateBi , y〉 → 〈StateFi+1, y〉 instead of 〈State0, y〉 → 〈StateF1 , y〉.

If there are two pairs 〈a1Φ,Ψ〉, 〈a2Φ
′,Ψ′〉 such that a1Φ E a2Φ

′ and Ψ E Ψ′ then a1 = a2
and ΦΨ E Φ′Ψ′. There can be no such pairs if a2 is not changed on the trace fragment from
〈a1Φ,Ψ〉 to 〈a2Φ

′,Ψ′〉 because then |Ψ′| < |Ψ|. If a2 is changed on the trace fragment from

〈a1Φ,Ψ〉 to 〈a2Φ
′,Ψ′〉 then one of the rules 〈StateFi R

[i]
l , x〉 → 〈State0Λ, R

[i]
r x〉 is applied on

the fragment and thus ΦΨ 6E Φ′Ψ′. Therefore the bad sequence length on the trace generated by
G1 ×G2 with respect to the subsequence relation must be also estimated by O(B(m,n)).

6 Possible Practical Applications

Let us see how the annotation can help to do more precise program analysis when the analyzed
program is unfolded in the call-by-value style.

Example 7. Consider a program that computes the least power of 2 that is greater than input.
Let us build a prefix grammar that describes the call stack behavior when the program is executed
in the call-by-value style.

Function definitions Rewrite rules

f(Z)=S(Z); ⇒ f → Λ
f(S(x))=S(f(g(S(Z)))); ⇒ f → gf

g(Z)=Z; ⇒ g → Λ
g(S(x))=h(x); ⇒ g → h

h(Z)=Z; ⇒ h → Λ
h(S(x))=S(g(x)); ⇒ h → g

If we want to unfold a semantic tree of the program runs on the call f(S(S(x))) (with an
indefinite parameter x) then Γ0 = f . The initial segment of the trace looks as:
f → gf → hf → gf . Then an ambiguity appears: x can have the value either Z or S(x′), so
there are multiple possible traces representing the ways in the corresponding semantic tree.

39

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

The order of letters in the rewrite rules of Example 7 is univocal. In the following situation:

f(Z)=Z;

f(S(x),y)=f(g(x),h(y));

an ambiguity appears. There is no explicit rule in what order the two operands of the outermost
function f are placed in a stack so the corresponding rule can look either as f → ghf or f → hgf .

In the case of the call-by-value execution style (i.e. as in Refal) we can straightforwardly
build a grammar that describes a stack behavior. Namely we must do the following two actions:

1. For every function in the program determine a letter from Υ that represents the function
name (arities of the functions are ignored).

2. For every function definition in the program determine a rewrite rule that represents it as
follows. A letter that represents the name of the defined function is placed to the left-hand
side of the rule and the word consisting of the corresponding letters in the order from the
innermost to the outermost function call is placed to the right-hand side of the rule.

If there are no function calls in the left-hand sides of definitions then the algorithm generates
an alphabetic prefix grammar. The grammar representation is consistent with a call stack
behavior, though incomplete.

Now we can see with the help of Example 7 how annotating the subsequence relation can
help to get a finite computation branch to be computed when the usual subsequence relation
as a termination criterion makes the branch to construct a syntactic loop.

Example 8. The definition line f(S(x))=S(f(g(S(x)))) has a “badness” of the discussed sort:
its left-hand side is embedded in the right-hand side in the sense of the subsequence relation.
So even an unfolding of the call f(S(Z)) yields a pair with respect to E and if the subsequence
relation plays a role of termination criterion then the unfolding will be terminated too early. If
we use the Turchin relation on stack configurations then the computation is analyzed as follows
(the second column represents the call stack configuration):

f(S(Z)) f(0)
S(f(g(S(Z)))) g(2)f(1)
S(f(h(Z))) h(3)f(1)
S(f(Z)) f(1)
S(Z) Λ

Now let us try to unfold the computation of f(S(S(Z))).

f(S(S(Z)))) f(0)
S(f(g(S(S(Z)))))) g(2)f(1)
S(f(h(S(Z))))) h(3)f(1)
S(f(S(g(Z)))) g(4)f(1)
S(f(S(Z))) f(1)
S(S(f(g(S(Z))))) g(6)f(5)
S(S(f(h(Z)))) h(7)f(5)
S(S(f(Z))) f(5)
S(S(Z)) Λ

Note that the annotated Turchin relation (not intersected with the subsequence relation on
the whole term) terminates the computation on the pair 〈S(f(g(S(S(Z)))))), S(S(f(g(S(Z)))))〉.

40

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

But if we consider the intersection of these two relations as a termination criterion, not only
the computation of f(S(S(Z))) but a computation of every call f(x) where x is a unary Peano
number is a bad sequence with respect to the intersection 5. The other way to prevent too early
termination is to use the annotated subsequence relation: it is only enough to annotate function
calls to avoid unwanted embeddings with the effect similar to the usage of the Turchin relation
intersected with E.

7 Conclusion

Now we can see that the transition from only stack transformations to stack-plus-data trans-
formations even in the unary case lifts the computational model from the finite automata up
to full power of Turing machines. Thus it becomes interesting to investigate how the popular
wqos work on intermediate prefix grammar constructions (as −2 or −1-class prefix grammars
[4]), which are widely used in term rewriting theory.

Acknowledgments

The author is grateful to A. P. Nemytykh for fruitful discussions and inspiration on investigating
properties of the Turchin relation.

References

[1] E. Albert, J. Gallagher, M. Gomes-Zamalla, and G. Puebla. Type-based homeomorphic embedding
for online termination. Journal of Information Processing Letters, 109(15):879–886, 2009.

[2] M. C. Bolingbroke, S. L. Peyton-Jones, and D. Vytiniotis. Termination combinators forever. In
Proceedings of the 4th ACM SIGPLAN Symposium on Haskell, pages 23–34. Tokyo, 2011.

[3] G. Higman. Ordering by divisibility in abstract algebras. Bulletin of London Mathematical Society,
3(2):326–336, 1952.

[4] P. Jancar and J. Srba. Undecidability Results for Bisimilarity on Prefix Rewrite Systems, volume
3921 of Lecture Notes in Computer Science, pages 277–291. IEEE Computer Society Press, 2006.

[5] I. Klyuchnikov. Inferring and proving properties of functional programs by means of supercompi-
lation. Ph. D. Thesis, 2010.

[6] M. Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Methods, volume
2566 of Lecture Notes in Computer Science, pages 379–403. IEEE Computer Society Press, 2002.

[7] C. St. J. A. Nash-Williams. On well-uasi-ordering infinite trees. Proceedings of Cambridge Philo-

sophical Society, 61:697–720, 1965.

[8] A. P. Nemytykh. The Supercompiler Scp4: General Structure. URSS, Moscow, 2007.

[9] A. Nepeivoda. Ping-pong protocols as prefix grammars and turchin’s relation. In VPT 2013. First

International Workshop on Verification and Program Transformation, volume 16, pages 74–87.
EPiC Series, EasyChair, 2013.

[10] A. N. Nepeivoda. Turchin’s relation and loop approximation in program analysis. In Proceedings

on the Functional Language Refal, pages 170–192. Sbornik, Pereslavl–Zalessky, 2014.

[11] L. Puel. Using unavoidable set of trees to generalize kruskal’s theorem. Journal of Symbolic

Computation, 8:335–382, 1985.

[12] S. Simpson. Nonprovability of certain combinatorial properties of finite trees. Harvey Friedmans

research on the foundations of mathematics, pages 87–117, 1985.

5A termination criterion of this type is used in the supercompiler SCP4 [8].

41

Turchin’s Relation and Subsequence Relation in Loop Approximation Antonina Nepeivoda

[13] M. H. Sørensen and R. Glück. An algorithm of generalization in positive supercompilation. In
Proceedings of ILPS’95, the International Logic Programming Symposium, pages 465–479. MIT
Press, 1995.

[14] H. Touzet. A characterisation of multiply recursive functions with higman’s lemma. Information

and Computation, 178:534–544, 2002.

[15] V.F. Turchin. The algorithm of generalization in the supercompiler. Partial Evaluation and Mixed

Computation, pages 341–353, 1988.

[16] A. Weiermann. Phase transition thresholds for some friedman-style independence results. Mathe-

matical Logic Quarterly, 53:4–18, 2007.

42

	Introduction
	Prefix Grammars
	Turchin's Relation
	Annotated Prefix Grammars
	Turchin's Relation and Subsequence Relation
	Possible Practical Applications
	Conclusion

