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Abstract 

Using an Unmanned Aerial Vehicle (UAV) in bridge inspections can reduce human 

involvement in complex and hazardous inspection environments and automate the 

inspection process. Current practices require human operators to define task objectives, 

oversee safe flight operations, and evaluate bridge conditions. There is a growing 

demand for improving the seamless collaboration between UAVs and human inspectors 

to complete the inspection task efficiently and more safely, especially in post-disaster 

scenarios where critical bridges and other infrastructure facilities need to be inspected 

within hours or days. A significant gap exists in enabling UAVs to intelligently 

perceive and understand the bridge inspection scene according to human instructions. 

An intuitive human-UAV collaboration system using a multi-modal Vision Language 

Model (VLM) was proposed to partially fill this gap. This system leverages a few-shot 

Contrastive Language–Image Pretraining (CLIP)-based model to enable UAVs to 

visually and semantically understand the bridge inspection environment based on 

human commands. By incorporating text prompt learning with a cache adapter, the 

proposed model enhances the ability of CLIP to interpret both textual and visual inputs 

in the context of bridge inspection. The model was trained and evaluated in a bridge 

inspection image dataset and achieved an accuracy of 83.33%, outperforming other 

few-shot image classification methods, demonstrating its effectiveness in the bridge 

inspection domain. This approach is expected to improve collaboration between AI-

empowered UAVs, inspectors, and bridge environments, thereby enhancing the overall 

efficiency of bridge inspections. 

1 Introduction 

Bridges constitute essential elements of the transportation infrastructure, and the maintenance of 

bridges is imperative for safeguarding public safety. Assessing the structural health of bridges is 
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particularly problematic because the inspection processes are mainly conducted manually (Zhang et 

al., 2022). The traditional inspection of bridges is particularly challenging because many bridge 

structures are either too costly or too dangerous for human inspectors to access directly (Dorafshan & 

Maguire, 2018). Unmanned aerial vehicles (UAVs) have been introduced in recent years for bridge 

inspection, aiming to enhance efficiency, reduce labour demand, and minimize human exposure to 

hazardous environments (Bolourian & Hammad, 2020). Current practices still require significant 

manual effort because UAVs cannot perform inspections independently without human input and 

skilled pilots. There is a growing demand for a collaborative environment where human operators and 

UAV robotic systems work side by side during bridge inspections. When faced with emergencies 

such as post-disaster bridges, emergency inspection and repair are essential ways to restore bridge 

transportation capacity quickly. There is a growing need of the collaboration between inspectors and 

UAVs to enhance the efficiency, safety, and effectiveness of bridge inspections in complex and 

challenging conditions. 

Human-robot collaboration (HRC) is defined as the integration of human adaptability and 

decision-making capabilities with the physical precision, strength, and repeatability of robotic 

assistants to achieve common goals efficiently within shared workspaces (Ajoudani et al., 2018; 

Michalos et al., 2014). Current methods for controlling and interacting with UAVs in the physical 

world have been dominated by complex teleoperation controllers (Seo et al., 2018), hand gestures 

(Naseer et al., 2022), and rigid command protocols (Contreras et al., 2020), where the robots execute 

predefined tasks based on specialised programming languages. Among these methods, natural 

language-based HRC stands out for its intuitive and accessible nature. Natural language-based HRC 

allows non-experts in robot programming to intuitively communicate with robot assistants, making 

the interaction efficient and accessible (Park et al., 2024). Traditional natural language processing 

(NLP) models are usually trained on a limited dataset that shows limited adaptability in diverse 

working environments and with different inspectors. The application of HRC to bridge inspections 

comes with unique challenges and specifications. The inherent uncertainties and complexities in 

structural deterioration and failure contribute to varying probabilities and consequences of failure 

across different bridges. The advent of Large Language Models (LLMs), such as ChatGPT (OpenAI, 

2020), offers the potential to develop an interactive and communicative approach to HRC. LLMs 

trained on extensive and diverse datasets bring a deep understanding of natural language and human 

intentions, especially in the context of HRC tasks.  

While LLMs excel in understanding human interaction commands, they lack the visual and 

semantic comprehension needed to interpret the environment around robots. Previous research has 

primarily focused on using deep learning-based object detection algorithms, such as You Only Look 

Once (YOLO) (Redmon et al., 2016), Faster R-CNN (Ren et al., 2015), and Single Shot MultiBox 

Detector (SSD) (Liu et al., 2016), to enhance the scene understanding of robots through image 

processing. Applying these algorithms in bridge inspections presents challenges, including the high 

costs of data annotation, significant computational demands, and the scarcity of large-scale training 

datasets (Liang et al., 2024). There is a need for computer vision algorithms that can operate 

effectively with minimal training samples in bridge inspection tasks. With the further development of 

LLMs and the increasing demand for integrating multiple modalities such as language and vision, 

Vision-Language Models (VLMs) have emerged (Zhou et al., 2022b). VLMs facilitate open-

vocabulary visual recognition and make complex inferences about interactions between objects and 

agents within images (Kirillov et al., 2023). VLMs provide “eyes” to explore and find arbitrary 

objects described by humans, understand the environments, and provide context for decision-making. 

VLMs such as Contrastive Language–Image Pretraining (CLIP) (Pan et al., 2022), DALL-E (Ramesh 

et al., 2021), and Vision-and-Language BERT (ViLBERT) (Lu et al., 2019) have demonstrated strong 

zero-shot image classification performance on public datasets as a result of extensive training on 

large-scale image-text pairs. VLMs allow robots to navigate to and identify objects they have not been 

explicitly trained on, enhancing their adaptability and performance in unstructured and unforeseen 
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scenarios (Gadre et al., 2022). Although the robotic research community has integrated VLMs for 

robotic control, these systems are primarily used for industrial applications (Shibata et al., 2024) or 

household services (Brohan et al., 2023). There is a need to develop a low-cost, highly efficient 

human-UAV collaboration method that enables UAVs to perform semantic scene understanding 

based on human instructions for UAV-assisted bridge inspections.  

In early 2021, OpenAI released a large-scale multi-modal model for aligning images and texts 

called CLIP (Pan et al., 2022), which was trained on over 400 million image-text pairs. CLIP exhibits 

powerful zero-shot inference capabilities that can recognise and understand unseen images without 

being explicitly trained on specific tasks or datasets. The core concept of the CLIP model is to embed 

both text and images into a shared semantic space, where related text descriptions and image 

representations are positioned closely together. In contrast unrelated image-text pairs are placed 

farther apart. The CLIP model comprises two main components: an image encoder and a text encoder. 

The image encoder converts images into feature vectors, while the text encoder, typically a 

Transformer model, converts text into feature vectors. These two encoders operate within the same 

vector space, enabling cross-modal information interaction and fusion. CLIP has demonstrated 

excellent zero-shot performance on public datasets and performs effectively in many everyday tasks. 

Due to regulatory constraints, bridge inspection datasets are highly domain-specific and often 

unavailable on the Internet. The zero-shot capabilities of CLIP may be limited because it has not been 

trained in the context of bridge inspection. This highlights the need to adapt CLIP for this domain 

through transfer learning. Completely retraining CLIP for bridge inspection poses several challenges: 

1) Due to the large number of parameters in CLIP, fine-tuning the entire network requires substantial 

computing resources. 2) UAV-assisted bridge inspection is an emerging technology that has not yet 

been widely adopted, resulting in a limited dataset that cannot cover all inspection object categories. 

Therefore the data distribution in bridge inspection often diverges from the pre-training data of CLIP. 

3) Labelling bridge inspection data is time-consuming and labour-intensive, requiring domain 

expertise, further complicating the process. To address these challenges, it is essential to leverage 

few-shot learning techniques. By fine-tuning the CLIP model with a limited number of labelled 

samples, domain-specific knowledge can be transferred, enabling CLIP to perform well in bridge 

inspection tasks despite the scarcity of training data. 

The authors propose a few-shot CLIP-based model to enable UAVs to visually and semantically 

understand the bridge inspection environment based on human commands. First a few-shot CLIP 

model integrated with text prompt learning and a cache adapter was proposed to enable UAVs to 

visually and semantically interpret the bridge inspection environment based on human commands. 

Second a bridge inspection dataset, collected by UAVs, was developed to test the proposed model. 

This dataset includes four bridge components: pier, girder, railing, and pavement; four structural 

details: bearing, cover plate termination, gusset plate connection, and out-of-plane stiffener; and two 

types of damage: cracks and corrosion. To evaluate the performance of the proposed method in bridge 

inspection tasks, the accuracy of the proposed model was compared with baseline CLIP and other 

fine-tuned CLIP-based models. 

2  Method 

The core objective of this research was to develop an algorithm that enables UAVs to navigate 

toward specific target objects within an unknown bridge environment. Figure 1 shows the framework 

of the proposed human-UAV collaboration method. Successful navigation requires UAVs to possess 

semantic scene understanding and natural language processing capabilities. The capabilities allow 

UAVs to identify objects in the environment based on task goals defined by human inspectors and 

translate these goals into a semantic context in textual form. To achieve this goal the authors leverage 
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the CLIP model, which is a VLM that facilitates cross-modal understanding by learning to compare 

text and images. CLIP captures the semantic relationships between text and images through 

contrastive learning without supervision labels. 

 
Figure 1: The framework of human-UAV collaboration in bridge inspections 

The task is formulated as follows: A UAV is randomly placed within an unseen environment E, 

with a sequence of predefined navigation goals 𝐺 = {𝑔1, 𝑔2, … , 𝑔𝑛}, decoded from natural language 

inputs (e.g., “pier,” “girder,” or “crack”). The objective of the UAV is to navigate to any specified 

goal object. At time 𝑡, the UAV receives an observation in the form of an RGB image 𝐼𝑡 from its 

onboard camera and must select an action from the action space 𝐴 . Navigation is considered 

successful if the UAV stops within a safe distance of the object, and the object is visible without 

further movement. In this study, the authors focused on scene object recognition using CLIP. Given a 

set of navigation goals 𝐺 and the collected image 𝐼𝑡 at time 𝑡, the objective is to find if the image 𝐼𝑡 

contains the target object 𝑔𝑚 ∈ 𝐺. If the target is present, a semantic scene understanding prompt 

𝑃𝑔𝑚,𝑡 is generated to describe the goal object. The task can be formulated as the following equation: 

𝑃𝑔𝑚,𝑡 = 𝐶𝐿𝐼𝑃(𝐼𝑡 , 𝐺) (1) 

2.1 Few-shot CLIP for UAV-assisted Bridge Inspections 

Few-shot image classification offers a solution for fine-tuning CLIP with fewer training datasets, 

reduced computational resources, and shorter training time. Authors have explored few-shot 

adaptation techniques, leading to two primary strategies: prompt-based and adapter-based approaches 

(Liu et al., 2024). Prompt-based fine-tuning methods, such as CoOp (Zhou et al., 2022b) and CoCoOp 

(Zhou et al., 2022a), transform the fixed textual prompts of CLIP’s text encoder into learnable vectors. 

These vectors are then fine-tuned using a small dataset to improve the performance of CLIP on 

domain-specific tasks. Adapter-based methods, such as CLIP-Adapter (Gao et al., 2021) and Tip-

Adapter (Zhang et al., 2022), introduce lightweight adapter modules into the pre-trained model. These 

adapter parameters are fine-tuned with a small dataset, allowing the foundation model to address 

domain-specific tasks with minimal resource requirements effectively.  

CoOp and Tip-Adapter are representative works in prompt-based and adapter-based fine-tuning 

methods, respectively. CoOp is designed to optimise the prompt’s context to enhance the image 

recognition performance of CLIP. The goal is to iteratively refine the prompt based on the 

Human-UAV Collaboration Bridge Inspection using MMVLM Chen et al.

580



performance of CLIP on domain-specific tasks, ultimately finding the optimal prompt for 

classification. In the conventional zero-shot method, CLIP uses prompt templates such as “A photo of 

a {label},” where class labels are inserted into predefined text prompts, and image-text similarity is 

calculated for classification. CoOp improves this process by introducing a set of learnable vectors 

{[𝑉]1, [𝑉]2, … , [𝑉]𝑀} that model contextual text alongside class labels within the prompt. Both text 

and image features are computed during forward propagation, and cross-entropy loss is calculated 

concerning the labels. The learnable vectors are updated during backpropagation to minimise the loss, 

while the weights of the pre-trained CLIP model remain fixed, with only the learnable tokens being 

fine-tuned. CoOp focuses solely on prompt optimisation of the text. CoOp does not incorporate 

domain knowledge transfer on the image side, which may limit its effectiveness in domain-specific 

tasks. 

The Tip-Adapter method enhances few-shot classification by utilising a pre-trained CLIP model 

and constructing a key-value cache model. In a typical few-shot setting, there are 𝑁 classes, each with 

𝐾 samples (K-shot), resulting in 𝑁𝐾 images in the training set. Visual features are extracted from 

these 𝑁𝐾 images using the visual encoder of CLIP, which serves as the keys, while the corresponding 

one-hot encoded labels act as the values in the cache model. This cache model is integrated with the 

pre-trained CLIP classifier without requiring additional parameter tuning. During inference, the 

affinity between the test image features and the cache keys is calculated, and the corresponding values 

are aggregated to form the prediction of the adapter. Tip-Adapter effectively combines the zero-shot 

prediction capabilities of CLIP with domain-specific visual knowledge from few-shot tasks. Tip-

Adapter still relies on manually designed prompts for image classification, limiting its ability to fully 

harness the extensive knowledge embedded in the text encoder of CLIP. This dependency on manual 

prompts reduces its potential to leverage the complete semantic understanding of the model across 

modalities.  

This study incorporated text prompt learning by CoOP with the cache model of Tip-Adapter, as 

shown in Figure 2. Given the new bridge inspection dataset (K samples and N classes), image dataset 

𝐼𝐾), text labels LN, the process of text prompt learning with Tip-Adapter is as follows. A context 

vector Linitial was randomly initialised by drawing from a zero-mean Gaussian distribution. 𝐿𝑁 was 

converted into N-dimensional one-hot vectors 𝑂𝑛𝑒𝐻𝑜𝑡(𝐿𝑁). The learnable vector 𝐿𝑙𝑒𝑎𝑟𝑛  is trained 

through a tunable TextEncoder, with the input as 𝑂𝑛𝑒𝐻𝑜𝑡(𝐿𝑁) and Linitial to get the optimised prompt 

𝐿𝑙𝑒𝑎𝑟𝑛 in the training phrase: 

 

𝐿𝑙𝑒𝑎𝑟𝑛 = 𝑇𝑒𝑥𝑡𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐿𝑁 , Linitial) (2) 

According to CoOp, the prompt can be designed to put class labels at the end of 𝐿𝑙𝑒𝑎𝑟𝑛 : 

[𝑉]1[𝑉]2 … [𝑉]𝑀[𝐶𝑙𝑎𝑠𝑠} or in the middle of 𝐿𝑙𝑒𝑎𝑟𝑛: [𝑉]1 … 𝑉𝑀

2

[𝐶𝑙𝑎𝑠𝑠][𝑉]𝑀

2
+1

… [𝑉]𝑀.  

Then the parameters of the text prompt were frozen, and the pre-trained CLIP VisualEncoder was 

used to extract the L2-normalized C-dimensional visual features of each image 𝐼𝐾  in the training set: 

 

𝐹𝑡𝑟𝑎𝑖𝑛
𝑇 ∈ ℝ𝑁𝐾×𝐶 = 𝑉𝑖𝑠𝑢𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐼𝐾) (3) 

During inference the visual features 𝑓𝑡𝑒𝑠𝑡  from the test image 𝐼𝑡𝑒𝑠𝑡  are extracted using 

VisualEncoder: 

 

𝑓𝑡𝑒𝑠𝑡 ∈ ℝ1×𝐶 = 𝑉𝑖𝑠𝑢𝑎𝑙𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝐼𝑡𝑒𝑠𝑡) (4) 

Then the affinities A between 𝐹𝑡𝑟𝑎𝑖𝑛
𝑇  and 𝑓𝑡𝑒𝑠𝑡 are computed as follows: 

 

𝐴 = exp(−𝛽(1 − 𝑓𝑡𝑒𝑠𝑡𝐹𝑡𝑟𝑎𝑖𝑛
𝑇 )) (5) 

Where 𝛽 is used to control the sharpness of the similarity distribution, which ensures better 

classification performance, the ache model 𝐴𝐿𝑙𝑒𝑎𝑟𝑛 is built as the dot product of the affinities 𝐴 and 
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the optimised prompt 𝐿𝑙𝑒𝑎𝑟𝑛. The final logits are computed as the summation of cache model 𝐴𝐿𝑙𝑒𝑎𝑟𝑛 

and prior knowledge 𝑓𝑡𝑒𝑠𝑡𝑊𝑐
𝑇 from the pre-trained CLIP: 

 

𝑙𝑜𝑔𝑖𝑡𝑠 = 𝛼 ∙ A𝐿𝑡𝑟𝑎𝑖𝑛 + 𝑓𝑡𝑒𝑠𝑡𝑊𝑐
𝑇 (6) 

where 𝛼 is a weighting factor, 𝑊𝑐
𝑇 is the weight TextEncoder generates.  

 
Figure 2: Few-shot CLIP incorporated text prompt learning with a cache model 

3 Experiment and Results 

To evaluate the performance of the proposed few-shot CLIP algorithm for object recognition in 

bridge inspections, experiments were conducted using both public datasets and a newly developed 

domain-specific dataset. The evaluation involved 1-shot, 2-shot, 4-shot, 8-shot, and 16-shot image 

classification tasks, where a limited number of labelled examples were available for each class. The 

accuracy of the proposed method was compared with that of the baseline CLIP and other fine-tuned 

CLIP-based models. 

3.1 Dataset 

To train and evaluate the performance of few-shot image classification algorithms for bridge 

inspection tasks, experiments were conducted on three public datasets, including Common Objects in 

Context Dataset for Structural Detail Detection of Bridges (COCO-Bridge) (Bianchi et al., 2021), 

Labelled Cracks in the Wild (LCW) (Bianchi & Hebdon, 2022), and Corrosion Condition State 

Semantic Segmentation Dataset (CCSSSD) (Bianchi & Hebdon, 2022), along with a newly developed 

dataset, the Bridge Member Dataset (BMD). COCO-Bridge comprises 774 images and over 2,500 

object instances collected by UAV, targeting the detection of four key structural bridge details: 

bearing, cover plate termination, gusset plate connection, and out-of-plane stiffener. The dataset 

provides a broad range of structural features essential for bridge inspection. LCW contains 3,817 

finely annotated images of segmented cracks gathered from structural inspection reports provided by 

the Virginia Department of Transportation (VDOT). This dataset is focused on identifying and 

segmenting cracks, which are critical for assessing structural integrity.  

Similarly CCSSSD includes 440 finely annotated images of segmented corrosion sourced from 

VDOT Bridge Inspection Reports. Corrosion is another primary concern in bridge inspections, and 

this dataset enables detailed analysis and classification of such defects. In addition to these public 
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datasets, a new small-scale dataset, BMD, was developed specifically for this study. BMD comprises 

150 images and includes four segmented bridge components: pier, girder, railing, and pavement. 

Including this dataset allows for further testing on distinct bridge elements often inspected during 

UAV-assisted bridge inspection tasks. Together, these datasets provide a comprehensive testing 

environment for assessing the effectiveness of few-shot image classification models in real-world 

bridge inspection scenarios. 

 
Figure 3: Preprocessing of datasets 

The authors implemented a customisation process to adapt the datasets for classification, as shown 

in Figure 3. First the segmentation areas for each object in the BMD, LCW, and CCSSSD datasets 

were extracted using the annotated segmentation masks and class labels. In contrast the remaining 

areas were filled with black. Regions of Interest (ROIs) were cropped for the COCO-Bridge dataset 

based on the annotated bounding boxes and class labels. Next task-unrelated background areas in the 

cropped images were removed, and any segmented or cropped areas with low image quality were 

discarded to ensure the overall quality of the dataset. Finally the pre-processed datasets were split into 

80% for training, 10% for testing, and 10% for evaluation. Sample images and their corresponding 

descriptions are shown in Figure 4. 

 
Figure 4: Sample images and corresponding descriptions 
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3.2 Evaluation of the Proposed Few-shot CLIP model 

The authors conducted experiments using the proposed few-shot CLIP model incorporating text 

prompt learning with a cache model on the bridge inspection dataset. To evaluate few-shot learning, 

performances were compared across 1, 2, 4, 8, and 16-shot training sets, with testing conducted on the 

whole test set. ViT-B/16 (Dosovitskiy et al., 2021) was used as the visual encoder, and the training 

epoch for prompt tuning via CoOp was set to 50. Once the text prompt was trained, the optimised text 

weights were frozen and extracted as pre-trained text features, which were then used as input for the 

text encoder in Tip-Adapter. During Tip-Adapter training, the parameters were configured with 50 

training epochs, a batch size 256, and a learning rate of 0.001.  

Performance comparison was conducted between the model proposed by authors and Zero-shot 

CLIP (Pan et al., 2022), CoOp (Zhou et al., 2022b), COCoOp (Zhou et al., 2022a), MaPLe (Khattak et 

al., 2023), and Tip-Adapter ( Zhang et al., 2022). All experiments were performed on 1, 2, 4, 8, and 

16-shot training sets and evaluated on the complete test sets. For a fair comparison, the visual encoder 

backbone for all models was standardised to ViT-B/16. The training epoch was all set as 50. 

Following the framework of CoOp, four variants were tested: class token placed at the end or middle 

of the prompt, unified context (UC) versus class-specific context (CSC). The number of context 

tokens for CoOp was set to 16. 

Figure 5 illustrates the performance of various models across different shot settings, ranging from 

1 to 16 shots per class. At 16 shots, CoOp variants exhibit strong performance, with accuracy ranging 

from 79.43% to 80.33%, while Tip-Adapter, COCOOP, and MaPLe achieve 76.58%, 27.90%, and 

30.50%, respectively. The proposed model surpasses all these methods, achieving the highest 

accuracy of 83.33%, highlighting its effectiveness in improving accuracy for bridge inspection tasks. 

The proposed model consistently outperforms the other methods in lower-shot settings (1, 2, 4, and 8 

shots). For instance, in the 8-shot setting, it achieves 75.89%, outperforming CoOp (68.40% to 

71.67%) and Tip-Adapter (71.64%). This trend continues in the 1, 2, and 4-shot settings, where the 

proposed model remains competitive or superior, underscoring its robustness and adaptability in few-

shot bridge inspection image classification tasks. 

 
Figure 5: Few-shot classification accuracy of different models using 1, 2, 4, 8, 16 shots 

Human-UAV Collaboration Bridge Inspection using MMVLM Chen et al.

584



4 Discussion and Conclusions 

In this study the authors proposed a few-shot CLIP model incorporating text prompt learning with 

a cache model to enhance HRC in UAV-assisted bridge inspection and scene understanding tasks. 

The proposed model achieved the highest accuracy of 83.33%, outperforming other few-shot image 

classification methods, demonstrating its effectiveness in leveraging few-shot learning for bridge 

inspection tasks. By enabling UAVs to interpret the bridge environment based on human instructions, 

the model shows promise in improving the accuracy and efficiency of visual bridge inspections.  

The contributions of this paper are twofold. First the proposed approach combines a text prompt 

learning method introduced by CoOP with a cache model developed by Tip-Adapter within a unified 

CLIP-based framework to capture both language and visual knowledge for bridge inspection tasks. 

Second the newly developed BMD dataset is introduced along with three modified datasets: COCO 

Bridge, LCW, and CCSSSD, to train and evaluate the proposed algorithm. This work demonstrates 

the potential of vision language models to enhance HRC in UAV-assisted bridge inspections. 

Although the proposed model with pre-trained prompts outperforms manually designed prompts, 

the text prompts trained by CoOp are a string of vectors that are relatively difficult to interpret. Recent 

research has begun exploring external knowledge, such as knowledge graphs (e.g., CuPL by Pratt et 

al. (2022)), to help models better handle unseen samples, enhance semantic comprehension and 

robustness, improve interpretability, and specialise in specific domains. Incorporating domain 

knowledge from bridge inspection into both prompt engineering and visual adapter design presents a 

promising direction for improving performance in future bridge inspection scene understanding tasks. 

Future work will also focus on refining and integrating the model into the Robotic Operating System 

(ROS) for deployment on real UAVs to perform bridge inspection tasks. This study underscores the 

potential for AI-empowered UAVs to revolutionise bridge inspection processes, making UAVs more 

efficient and reliable in inspection tasks. 
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