
Kalpa Publications in Computing

Volume 18, 2024, Pages 53–68

LPAR 2024 Complementary Volume

Certification of Tail Recursive Bubble–Sort

in Theorema and Coq

Isabela Drămnesc1, Tudor Jebelean2, and Sorin Stratulat3

1 Department of Computer Science, West University of Timisoara, Romania
Isabela.Dramnesc@e-uvt.ro

2 ICAM, West University of Timisoara, Romania
RISC, Johannes Kepler University, Linz, Austria

Tudor.Jebelean@e-uvt.ro
3 Université de Lorraine, CNRS, LORIA, Metz, F-57000, France

Sorin.Stratulat@univ-lorraine.fr

Abstract

Algorithm certification or program verification have an increasing importance in the
current technological landscape, due to the sharp increase in the complexity of software
and software using systems and the high potential of adverse effects in case of failure. For
instance robots constitute a particular class of systems that can present high risks of such
failures. Sorting on the other hand has a growing area of applications, in particular the
ones where organizing huge data collections is critical, as for instance in environmental
applications.

We present an experiment in formal certification of an original version of the Bubble-
Sort algorithm that is functional and tail recursive. The certification is performed in
parallel both in Theorema and in Coq, this allows to compare the characteristics and the
performance of the two systems. In Theorema the proofs are produced automatically in
natural style (similar to human proofs), while in Coq they are based on scripts. However,
the background theory, the algorithms, and the proof rules in Theorema are composed by
the user without any restrictions – thus error prone, while in Coq one can only use the
theories and the proof rules that are rigurously checked by the system, and the algorithms
are checked for termination.

The goal of our experiments is to contribute to a better understanding and estimation
of the complexity of such certification tasks and to create a basis for further increase of
the level of automation in the two systems and for their possible integration.

1 Introduction

Sorting algorithms are essential in a variety of computational activities, forming the foundation
for numerous applications across different fields, especially those concerning the environment,
climate change, and more. This is because of the considerable amount of data that needs to
be organized and handled efficiently. With data size and complexity increasing rapidly, the
effectiveness and accuracy of sorting algorithms are more crucial than ever. A particularly

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024C (Kalpa Publications in Computing, vol. 18),
pp. 53–68



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

important application of program verification is the area of robotics. In this area there are
various important aspects as human interaction, robot interaction, possibility of accidents, etc.
that make formal certification of most robotic algorithms absolutely necessary.

In this paper we focus on the certification of the tail recursive version of the Bubble-Sort
algorithm that was firstly introduced in [8]. Initially, the authors applied some special techniques
for the automated synthesis from proofs of the algorithm Max-Sort and the corresponding
auxiliary functions. The use of the two auxiliary functions max (that extracts the maximum
from a list), and Trimm (that returns the list without the maximum element) is inefficient
as the scan of the list is performed twice. For efficiency, the authors transformed these two
functions into one single function maxTrimm that returns the maximum and the list without it.
Then, the tail recursive sorting algorithm that uses the function maxTrimm leads in fact to the
tail recursive version of Bubble-Sort. The definition of these algorithms is given in Theorema
and in Coq in Section 2. Other versions of Bubble-Sort (with a flag, functional and imperative)
are also derived in [8], however in this paper the authors focus on the cerification of the tail
recursive version together with the auxiliary function.

In Theorema the background theory, the algorithms, and the proof rules are composed ad-
hoc by the user without any restrictions, therefore they are error prone. In Coq, in contrast, one
can only use the theories and the proof rules that are rigurously checked by the system, and the
algorithms are checked for termination. Therefore it is very useful to perform the certification
in both systems, thus benefiting both from the natural style of Theorema and by the rigor of
Coq.

The Theorema system[4, 5, 25] is a framework built upon Mathematica1 that supports the
processes of defining mathematical theories, including definition of algorithms by logical formu-
lae, experimenting by running the algorithms, and developing and using mechanical provers.
The system facilitates the certification of algorithms because their implementation in Theorema
does not use a programming language, they being defined directly in predicate logic together
with their specification. A distinctive feature of the Theorema system is the use of natural style
(similar to human) for expressing the logical formulae and the algorithms, for the inference
rules of the provers, and for the presentation of the proofs.

The Coq system [23, 1] is a skeptical proof assistant widely used to certify algorithms. The
certification procedure is based on the Curry-Howard isomorphism [17], where the proofs are
interpreted as programs/terms and formulas as types, and allows to check if, given a proof p of
a formula f , the type of the p term is of type f .

The proofs in the Theorema system are generated automatically, without the need of human
interaction, are easy to read as they are similar to human proofs. In contrast, in Coq the user
needs the computer to run the proof scripts step by step and to display the current state of the
proof.

Related work. Classical algorithms on arrays/lists [16, 24, 20, 26, 6, 3, 21] have been certified
in formal certification environments like Coq [1] and Isabelle/HOL [19].

[14] proves the correctness of various sorting algorithms using the Why3 [15] platform.
In [16], the authors verify three imperative sorting algorithms, insertion sort, quick sort

and heap sort, in Coq. To prove the permutation property, they propose to express that the
set of permutations is the smallest equivalence relation containing the transpositions (i.e., the
exchanges of elements). In [22], the authors follow this approach to formally define permutation
and they introduce a generic pattern to verify the permutation property of bubble sort, selection

1www.wolfram.com/mathematica

54

www.wolfram.com/mathematica


Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

sort, insertion sort, parallel odd-even transposition sort, quick sort, two in-place merge sorts
and TimSort for any arbitrary size of input using VerCors [2].

Although there is much literature on the verification of sorting algorithms, none of the
approaches uses natural style proving (except our work on verification and synthesis that we
summarize below). The algorithms Insert–Sort and Merge–Sort have been formally verified by
the authors in the Theorema system in [11]. The automated certification in both Theorema and
Coq of the sorting algorithms: Quick–Sort, Patience–Sort, Min–Sort, Max–Sort, Min–Max–Sort
is submitted for review to [13]. These algorithms have been synthesized in authors’ previous
research, see [12, 10, 7, 9]. The tail recursive version of Bubble-Sort that is certified in this
paper, was firstly introduced in [8].

Also, there is no previous work neither in Coq nor in Theorema on the verification of the
algorithms presented here.

The novelty/contribution of the paper consists in:

• the first certification of the tail recursive version of Bubble-Sort in Theorema and Coq;

• the comparison of the two systems on a similar task;

• the use in Theorema of multisets in order to express the fact that lists have same elements
and to simplify the proofs related to this.

2 Notations and algorithms

2.1 Notations in Theorema

We consider multisets and lists over a totally ordered domain and we use uppercase roman
letters for lists (U, V, T ). ⟨⟩ is the empty list, and in the form head–tail this is denoted by
a ⌣ U, (a is the head and U is the tail of the list – which is always a list). Lowercase roman
letters like a, b, c, x denote the elements of lists or multisets. These are objects from a totally
ordered domain (notation < and ≤). ∅ denotes the empty set, {{a}} is the multiset containing
the element a with multiplicity one, and M[U ] denotes the multiset of the list U. ⊎ is the
additive union of multisets (keeps the multiplicity of elements), like in [18]. The total ordering
between the elements is extended also between an element and a list (el ≤ U denotes that the
element el is smaller or equal to each element of the list U, U ≤ el denotes that each member
of the list U are smaller or equal to the element el); and between two lists (U ≤ V denotes that
each member of U is smaller or equal to each element of V ).

The type of the objects is not used explicitly, but this is automatically detected by the
prover according to the notations and depending on the context in which the objects occur.

In Theorema, for function and predicate application we use squared brackets (e.g.,
F [x], P [x]). Quantified variables are written under the quantifier (e.g. ∀

X
“for all X”, ∃

X
“exists

X”), and Skolem constants have integer indices (e.g., U0, a0).

Basic definitions.

Definition 1. ∀
a,U

(
IsSorted[⟨⟩]

IsSorted[a ⌣ U ] ⇐⇒ (a ≤ U ∧ IsSorted[U ])

)
Definition 2. ∀

a,U

(
M[⟨⟩] = ∅

M[a ⌣ U ] = {{a}} ⊎M[U ]

)
55



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Tail recursive Bubble–Sort in Theorema. In [8] the authors synthesized the Max-Sort
algorithm together with the auxiliary functions max and Trimm. For efficiency, by applying
some transformation rules, the authors derived the tail recursive versions of these algorithms,
resulting in the ones presented below.

The use of the two functions max and Trimm together is quite inefficient because the scan
of the list is performed twice, using the same test at each step. Therefore, the two functions
are merged into one, which returns the pair of maximum and the list without it:

Algorithm 1. Tail recursive max and Trimm.

∀
a,b,U,V


maxTrimm[a ⌣ U ] = maxTrA[U, a, ⟨⟩]

maxTrA[⟨⟩, a, V ] = ⟨V, a⟩

maxTrA[b ⌣ U, a, V ]=

{
maxTrA[U, b, V ⌢ a], if a ≤ b
maxTrA[U, a, V ⌢ b], if b < a


The nontrivial branch of the sorting algorithm is expressed in the following way, also as a

tail recursive function, which is in fact the algorithm Bubble-Sort :

Algorithm 2. Bubble-Sort.

∀
a,b,U,V

 BSort[a ⌣ U ]=BSortA[maxTrA[U, a, ⟨⟩], ⟨⟩]
BSortA[⟨⟨⟩, a⟩, V ]=a ⌣ V

BSortA[⟨b ⌣ U, a⟩, V ]=BSortA[maxTrA[U, b, ⟨⟩], a ⌣ V ]


This algorithm is known as its more efficient version which finishes as soon as the list is

already sorted.

2.2 Notations in Coq

In the Coq script, the multisets manipulated by the sorting algorithm are represented as lists
of naturals, of type list nat. The constructors for list are nil and ::, and for nat are 0 and S.
The operations on multisets can be reproduced via a permutation relation on lists, based on the
built-in In predicate and the used-defined count function, as explained in the ’Basic definitions’
paragraph. The predicates are defined inductively, using the Inductive keyword.

In Coq, any recursive function should be total and terminating. The totality can be syntac-
tically checked if the function definition uses match constructs to detail its behavior according
to the values that some (matching) expression e, usually one of the function arguments, can
take by using the constructors of the type of e. The termination property requires that some
function argument should decrease (w.r.t. some well-founded order) after each recursive call.
Coq uses the Fixpoint keyword for defining the recursive functions for which Coq automatically
identifies the recursive function argument and some subterm (syntactic) well-founded order.
The keyword Function is used when the well-founded order is explicitly defined using the wf
keyword.

Basic definitions. The definitions for the sorting and permutation predicates are :

Inductive IsSorted : list nat → Prop :=
snil : IsSorted nil

| s1 : ∀ x, IsSorted (x ::nil)
| s2 : ∀ x y l, IsSorted (y ::l) → x ≤ y →

IsSorted (x ::y ::l).

56



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Definition permutation l l’ :=
∀ x, (In x l ↔ In x l’ ) ∧ count x l = count x l’.

where the count function is defined as:

Fixpoint count x l :=
match l with
nil ⇒ 0

| hd :: tl ⇒ if x =? hd then S (count x tl) else count x tl
end.

The =? notation represents the boolean equality that helps to compare two naturals.

Tail recursive Bubble–Sort in Coq. The Coq definitions for the auxiliary maxTrA and
BSortA recursive functions from Theorema are:

Fixpoint maxTrA l a V :=
match l with
nil ⇒ (V, a)

| b :: U ⇒ if leb a b then maxTrA U b (V ++ [a]) else maxTrA U a (V ++ [b])
end.

Function BSortA p {wf (fun p1 p2 ⇒
Nat.lt (length (fst (fst p1 ))) (length ((fst (fst p2 ))))) p}:=

match p with

((nil, a),V ) ⇒ a :: V
| (((b :: U ), a), V ) ⇒ BSortA ((maxTrA U b nil), (a :: V ))

end.
The leb function returns the boolean result of the ’less or equal’ comparison between the two

naturals given as arguments, while Nat.lt is the inductive predicate ’less than’ over naturals.
The length function returns the length of a list and ++ is the concatenation operator on lists.

Contrary to the Theorema notation, BSortA takes only one argument, which is the pair of
the first and second arguments used for the Theorema notation. The function fst (resp., snd)
returns the first (resp., second) element of a pair.

Finally, BSort is defined as:

Definition BSort l :=
match l with
nil ⇒ nil

| a :: U ⇒ BSortA ((maxTrA U a nil), nil)
end.

3 Verification in Theorema

For the verification of the sorting algorithm BSort we have to prove the following two theorems:
that the algorithm preserves multisets (Theorem 1) and that the output is sorted (Theorem 2).

Theorem 1. ∀
X

(
M[X] = M[BSort[X]]

)
Theorem 2. ∀

X

(
IsSorted[BSort[X]]

)
57



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

3.1 Proof of Theorem 1

For proving Theorem 1 we consider the following properties in the knowledge base: ⊎ is asso-
ciative, is commutative, has unit; ≤ is transitive, for any X : X ≤ ⟨⟩, ⟨⟩ ≤ X; and:

Property 1. ∀
a,b,X

(
(a ⌣ X ≤ b) ⇐⇒ (X ≤ b ∧ a ≤ b)

)
Property 2. ∀

a,b,X

(
(b ≤ a ⌣ X) ⇐⇒ (b ≤ X ∧ b ≤ a)

)
Property 3. ∀

a,X

(
M[X ⌢ a] = M[X] ⊎ {{a}}

)
Property 4. ∀

X,Y

(
M[X ≍ Y ] = M[X] ⊎M[Y ]

)
Property 5. ∀

a,X

(
M[⟨X, a⟩] = M[X] ⊎ {{a}}

)
Property 6. ∀

X,Y

(
M[⟨X,Y ⟩] = M[X] ⊎M[Y ]

)
Property 7. ∀

a,U,V

(
M[maxTrA[U, a, V ]] = M[U ] ⊎ {{a}} ⊎M[V ]

)
Property 8. ∀

U,V

(
M[BSortA[U, V ]] = M[U ] ⊎M[V ]

)
Proof. Take a0, U0 arbitrary, but fixed, and according to the Algorithm 2 prove:

M[a0 ⌣ U0] = M[Bubble-Sort[a0 ⌣ U0]] (1)

which becomes

M[a0 ⌣ U0] = M[BSortA[maxTrA[U0, a0, ⟨⟩], ⟨⟩]] (2)

By Definition 2 the goal becomes:

{{a0}} ⊎M[U0] = M[BSortA[maxTrA[U0, a0, ⟨⟩], ⟨⟩]] (3)

By Property 8 the goal becomes:

{{a0}} ⊎M[U0] = M[maxTrA[U0, a0, ⟨⟩]] ⊎M[⟨⟩] (4)

By Definition 2 and by union properties, the goal becomes:

{{a0}} ⊎M[U0] = M[maxTrA[U0, a0, ⟨⟩]] (5)

By Property 7 the goal becomes:

{{a0}} ⊎M[U0] = M[U0] ⊎ {{a0}} ⊎M[⟨⟩] (6)

This holds by Definition 2 and by properties of multiset union.

58



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

The proof of Property 7.

Proof. Prove ∀
a,U,V

(
M[maxTrA[U, a, V ]] = M[U ] ⊎ {{a}} ⊎M[V ]

)
by induction on U :
Base case: Take a0, V0 arbitrary but fixed and prove

M[maxTrA[⟨⟩, a0, V0]] = M[⟨⟩] ⊎ {{a0}} ⊎M[V ] (7)

By Definition 2 and by union properties, the goal becomes:

M[maxTrA[⟨⟩, a0, V0]] = {{a0}} ⊎M[V0] (8)

By Algorithm 1 the goal becomes:

M[⟨V0, a0⟩] = {{a0}} ⊎M[V0] (9)

By Property 5 the goal becomes:

M[V0] ⊎ {{a0}} = {{a0}} ⊎M[V0] (10)

This holds by the commutativity of ⊎.
Inductive step: Take b0, U0 arbitrary but fixed (a, V remains universally quantified), assume:

∀
a,V

(M[maxTrA[U0, a, V ]] = M[U0] ⊎ {{a}} ⊎M[V ]) (11)

and prove

∀
a,V

(M[maxTrA[b0 ⌣ U0, a, V ]] = M[b0 ⌣ U0] ⊎ {{a}} ⊎M[V ]) (12)

We take a0, V0 arbitrary but fixed. By Definition 2 the goal becomes:

M[maxTrA[b0 ⌣ U0, a0, V0]] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (13)

We prove (13) by cases using Algorithm 1:
Case 1: a0 ≤ b0. The goal becomes:

M[maxTrA[U0, b0, V0 ⌢ a0]] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (14)

By induction hypothesis (11) the goal becomes:

M[U0] ⊎ {{b0}} ⊎M[V0 ⌢ a0] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (15)

This holds by properties of multiset union.
Case 2: b0 < a0. The proof is analogous to the previous case.

The proof of Property 8.

Proof. According to Algorithm 2 the first argument of BSortA always consists of a pair between
a list and an element. Therefore it is sufficient to show:

∀
a,U,V

(
M[BSortA[⟨U, a⟩, V ]] = M[U ] ⊎ {{a}} ⊎M[V ]

)
(16)

59



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Take a0, V0 arbitrary, but fixed and prove by induction on the multilist (with respect to
strict inclusion) of the first argument of BSortA:

∀
U

(
M[BSortA[⟨U, a0⟩, V0]] = M[U ] ⊎ {{a0}} ⊎M[V0]

)
(17)

Base case: Prove

M[BSortA[⟨⟨⟩, a0⟩, V0]] = M[⟨⟩] ⊎ {{a0}} ⊎M[V0] (18)

By Definition 2 and by property unit the goal becomes:

M[BSortA[⟨⟨⟩, a0⟩, V0]] = {{a0}} ⊎M[V0] (19)

By Algorithm 2 the goal becomes:

M[a0 ⌣ V0] = {{a0}} ⊎M[V0] (20)

By Definition 2 the goal becomes:

{{a0}} ⊎M[V0] = {{a0}} ⊎M[V0] (21)

This holds by reflexivity of equality.
Induction step: Take b0, U0 arbitrary, but fixed and prove

M[BSortA[⟨b0 ⌣ U0, a0⟩, V0]] = M[b0 ⌣ U0] ⊎ {{a0}} ⊎M[V0] (22)

By Definition 2 the goal becomes:

M[BSortA[⟨b0 ⌣ U0, a0⟩, V0]] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (23)

By Algorithm 2 the goal becomes:

M[BSortA[maxTrA[U0, b0, ⟨⟩], a0 ⌣ V0] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (24)

Since maxTrA preserves multisets, the first argument of BSortA in the current goal is strictly
included in the first argument of the inductive goal, thus by generalized induction the goal
becomes:

M[maxTrA[U0, b0, ⟨⟩]] ⊎M[a0 ⌣ V0] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (25)

By Property 7 the goal becomes:

M[U0] ⊎ {{b0}} ⊎M[⟨⟩] ⊎M[a0 ⌣ V0] = {{b0}} ⊎M[U0] ⊎ {{a0}} ⊎M[V0] (26)

This holds by Definition 2, and by the properties of multiset union.

3.2 Proof of Theorem 2

For proving ∀
X

(
IsSorted[BSort[X]]

)
we need certain properties among the current arguments of

maxTrA, namely when we have a call maxTrA[U, a, V ], then V ≤ a. In order to reason about the
arguments of maxTrA we define the relation E that describes the evolution of the arguments
and the corresponding property P.

60



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Definition 3.
∀

G,H

(
E[G,H] ⇐⇒

(
∃

a,b,U,V
(G = ⟨b ⌣ U, a, V ⟩ ∧ ((a ≤ b) ∧ (H = ⟨U, b, V ⌢ a⟩))∨

(b < a ∧H = ⟨U, a, V ⌢ b⟩))
))

∀
G,H

(
E∗[G,H] ⇐⇒ (G = H ∨ (∃

K
(E∗[G,K] ∧ E[K,H])))

)


Definition 4.

∀
G

(
P [G] ⇐⇒

(
∃

a,U,V
(G = ⟨U, a, V ⟩ ∧ V ≤ a)

))
The following is an elementary consequence of this definition:

Property 9. ∀
a,U,V

(
P [⟨U, a, V ⟩] =⇒ V ≤ a

)
We also need the following properties in the knowledge base:

Property 10. ∀
a,b,L

(
b ≤ a ∧ L ≤ a ⇐⇒ b ⌣ L ≤ a

)
Property 11. ∀

a,b,L

(
a ≤ b ∧ V ≤ a ⇐⇒ V ⌢ a ≤ b

)
Property 12. ∀

x,y ̸=⟨⟩,z

(
x ≤ y ∧ y ≤ z =⇒ x ≤ z

)
Property 13. ∀

G,H

(
E[G,H] =⇒ (P [G] =⇒ P [H])

)
Proof. We take arbitrary but fixed G,H and we assume E[G,H], whose existential definition
allows us to find a0,b0,U0,V0 such that:

G = ⟨b0 ⌣ U0, a0, V0⟩ (27)

and
(a0 ≤ b0 ∧ (H = ⟨U0, b0, V0 ⌢ a0⟩)) ∨ (b0 < a0 ∧H = ⟨U0, a0, V0 ⌢ b0⟩) (28)

We also assume P[G] which by (27) becomes:
This property is the most important becaue it shows that the evolution relation transports

the property.

P [⟨b0 ⌣ U0, a0, V0⟩] (29)

From this by (9) we obtain
V0 ≤ a0 (30)

In order to prove P [H], by the definition of P , we prove:

∃
a,U,V

(H = ⟨U, a, V ⟩ ∧ V ≤ a) (31)

We take U = U0 and prove:
∃

a,V
(H = ⟨U0, a⟩ ∧ V ≤ a)

by cases using the disjunction (28).

61



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Case 1: a0 ≤ b0, H = ⟨U0, b0, V0 ⌢ a0⟩
We take a = b0, V=V0 ⌢ a0 and from 30 and a0 ≤ b0 by properties of ordering we obtain:

V0 ⌢ a0 ≤ b0 that is necessary for P [⟨U0, b0, V0 ⌢ a0⟩].
Case 2: b0 < a0, H = ⟨U0, a0, V0 ⌢ b0⟩
We take a = a0 , V=V0 ⌢ b0 and from 30 and b0 < a0 by properties of ordering we obtain:

V0 ⌢ b0 ≤ a0 that is necessary for P [⟨U0, a0, V0 ⌢ b0⟩]]

Property 14. ∀
G,H

(
E∗[G,H] =⇒ (P [G] =⇒ P [H])

)
The proof of Property 14 is straightforward by Definion 3, and by Property 13.

Property 15. ∀
a,b,U,V,W

(
E∗[⟨U, a, ⟨⟩⟩, ⟨W, b, V ⟩] =⇒ V ≤ b

)
The proof of Property 15 uses Definion 4, and the property a ≤ ⟨⟩.
The algorithm maxTrA terminates because the only recursive calls from Algorithm 1 reduce

the argument b ⌣ U to U. On the other hand the only terminating definition is the base case
of Algorithm 1, and this gives the result in the form ⟨V, a⟩. From this and Property 15 we can
infer:

Property 16. ∀
b,U

∃
a,V

(
maxTrA[U, b, ⟨⟩] = ⟨V, a⟩] ∧ V ≤ a

)
In order to prove that Bubble-Sort returns a sorted list we need a certain property among

the current arguments of BSortA, namely when we have a call BSortA[⟨U, a⟩, V ], then a ≤ V
and V is sorted. In order to reason about the arguments of BSortA we define the relations Es
and Es∗ that describe the evolution of the arguments and the corresponding property Ps.

Definition 5. ∀
G,H

(
Es[G,H] ⇐⇒

(
∃

a,b,U,V

(
G = ⟨⟨b ⌣ U, a⟩, V ⟩ ∧H = ⟨maxTrA[U, b, ⟨⟩], a ⌣ V ⟩

)))
∀

G,H

(
Es∗[G,H] ⇐⇒

(
G = H ∨ ∃

K
(Es∗[G,K] ∧ Es∗[K,H])

))


Definition 6. ∀
G

(
Ps[G] ⇐⇒

(
∃

a,U,V
(G = ⟨⟨U, a⟩, V ⟩ ∧ IsSorted[a ⌣ V ] ∧ U ≤ V )

))
The following is an elementary consequence of this definition:

Property 17. ∀
a,U,V

(
Ps[⟨⟨U, a⟩, V ⟩] =⇒ (IsSorted[a ⌣ V ] ∧ U ≤ a ⌣ V )

))
We prove now that the evolution relation transports the property.

Property 18. ∀
G,H

(
Es[G,H] =⇒ (Ps[G] =⇒ Ps[H])

))
Proof. The proof of Property 18 applies general inference rules and by Algorithm 2 the goal is

∃
a,b,U,V

(
G0 = ⟨⟨b ⌣ U, a⟩, V ⟩ ∧H0 = ⟨maxTrA[U, b, ⟨⟩], a ⌣ V ⟩

)
(32)

By the above we can find a0, b0, U0, V0 such that

G0 = ⟨⟨b0 ⌣ U,a0⟩, V0⟩ (33)

and
H0 = ⟨maxTrA[U0, b0, ⟨⟩], a ⌣ V0⟩ (34)

62



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

From the previous assumption by (33) we obtain

Ps[⟨⟨b0 ⌣ U0, a0⟩, V0⟩] (35)

From this by Property 17 we obtain IsSorted[a0 ⌣ V0] and b0 ⌣ U0 ≤ a0 ⌣ V0. In order to prove
Ps[H0] by Definition 6 we prove

∃
a,U,V

(
H0 = ⟨⟨U, a⟩, V ⟩ ∧ IsSorted[a ⌣ V ] ∧ U ≤ a ⌣ V

)
(36)

We instantiate Property 16 with a → b0 and U → U0 and take V1, b1 such as:

maxTrA[U0, b0, ⟨⟩] = ⟨V1, b1⟩ (37)

and

V1 ≤ b1 (38)

By applying Definition 2, Properties 7, 5, and multisets preserve ordering we obtain: b1 ≤ a0 ⌣
V0, and V1 ≤ a0 ⌣ V0. From (34) by using the derived assumptions we obtain

H0 = ⟨⟨V1, b1⟩, a0 ⌣ V0⟩ ∧ IsSorted[b1 ⌣ (a0 ⌣ V0)] ∧ V1 ≤ b1 ⌣ (a0 ⌣ V0) (39)

In order to prove (36) we take U → V1, a → b1 and V → b1 ⌣ (a0 ⌣ V0), and by (39) the goal
reduces to:

IsSorted[b1 ⌣ (a0 ⌣ V0)] ∧ V1 ≤ b1 ⌣ (a0 ⌣ V0) (40)

which by Definition 1 and our assumptions derived so far reduces to (38).

Property 19. ∀
G,H

(
Es∗[G,H] =⇒ (Ps[G] =⇒ Ps[H])

))
The proof is straightforward, by cases using Definition 5 and Property 18.

Property 20. ∀
a,b,U,V

(
Es∗[⟨maxTrA[U, a, ⟨⟩], ⟨⟩⟩, ⟨⟨⟩, b⟩, V ⟩] =⇒ IsSorted[b ⌣ V ]])

))
Proof. Take a0, b0, U0, V0 arbitrary but fixed. Assume

Es∗[⟨maxTrA[U0, a0, ⟨⟩], ⟨⟩⟩, ⟨⟨⟩, b0⟩, V0⟩]
)

(41)

and prove

IsSorted[b0 ⌣ V0] (42)

(41) by Property 19 becomes:

Ps[⟨maxTrA[U0, a0, ⟨⟩], ⟨⟩⟩] =⇒ Ps[⟨⟨⟨⟩, b0⟩, V0⟩]
)

(43)

First we prove the left hand side of (43) by using Property 16, and Definitions 4,1. From this
we know

Ps[⟨⟨⟨⟩, b0⟩, V0⟩]
)

(44)

From (44) by Definition 6 we obtain IsSorted[b0 ⌣ V0]∧⟨⟩ ≤ b0 ⌣ V0 which proves our goal.

63



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

The algorithm BSortA terminates because the only recursive call of the Algorithms 2 reduces
the argument ⟨b ⌣ U, a⟩ to maxTrA[U, b, ⟨⟩]. This follows from Property 7 and to properties of
multisets:

M[maxTrA[U, b, ⟨⟩]] = M[U ] ⊎ {{b}} is strictly included in M[U ] ⊎ {{a, b}} = M[⟨b ⌣ U, a⟩]
On the other hand the only terminating definition is the first from Algorithm 2. This has

as argument the shape specified in Property 20 as final configuration, and it gives the result in
the form a ⌣ V which by Property 20 has the property IsSorted[b ⌣ V ].

From this follows easily:

Property 21. ∀
a,U

∃
b,V

(
BSortA[maxTrA[U, a, ⟨⟩], ⟨⟩] = b ⌣ V ∧ IsSorted[b ⌣ V ]])

))
The proof of Theorem 2 follows from Property 21 and the Algorithm 2.

4 Certification in Coq

The BSort algorithm can be certified by proving the following main theorem:

Lemma BS is sound : is a sorting algorithm BSort.

where is a sorting algorithm is the function used to check the soundness property to be
satisfied by the sorting function f given as argument:

Definition is a sorting algorithm (f : list nat → list nat) :=
∀ al, permutation (f al) al ∧ IsSorted (f al).

In line with the results from [22], we certified only the ’permutation’ property, based on the
following two (’In’ and ’count’) lemmas:

Lemma BS in equiv : ∀ x l, In x l ↔ In x (BSort l).

Lemma BSort count : ∀ x l, count x l = count x (BSort l).

The proof of the BS in equiv lemma is based on the following lemmas:

Lemma BSortA in rev : ∀ x p, In x (BSortA p) → (snd (fst p)) = x ∨ In x (fst (fst p)) ∨
In x (snd p).

Lemma BS in rev : ∀ x l, In x (BSort l) → In x l.

Lemma maxTrA in fst : ∀ U a b L, In b L → In b (fst (maxTrA U a L)).

Lemma maxTrA in : ∀ U x b L, In x (U++L++[b]) → snd (maxTrA U b L) = x ∨
In x (fst (maxTrA U b L)).

Lemma BSortA in : ∀ x p, (snd (fst p)) = x ∨ In x (fst (fst p)) ∨ In x (snd p) →
In x (BSortA p).

Lemma BS in : ∀ x l, In x l → In x (BSort l).

The proof of the BSort count lemma is based on the lemmas:

Lemma count app : ∀ x l1 l2, count x (app l1 l2 ) = count x l1 + (count x l2 ).

Lemma count maxTrA : ∀ x U b L, count x (U++L++[b]) =
(if x =? snd (maxTrA U b L) then 1 else 0) + count x (fst (maxTrA U b L)).

64



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Lemma BSortA count : ∀ x p, count x (BSortA p) =
((if x =? (snd (fst p)) then 1 else 0) + count x (snd p)) + (count x (fst (fst p))).

Lemma BSortA count : ∀ x p, count x (BSortA p) =
((if x =? (snd (fst p)) then 1 else 0) + count x (snd p)) + (count x (fst (fst p))).

Most of lemmas have been proved using explicit induction, using

• the induction tactic (7 times), based on induction schemas issued from the inductive
definitions of the list datatype, and

• the functional induction tactic (3 times), based on induction schemas resulting from
the recursive definition of BSortA and implemented using the RecDef library and the
Functional Scheme construction.

The proofs of the four ’count’-related lemmas are more complex as they involve arithmetic
reasoning. It can be noticed that simpler proofs can obtained if the lists represent sets instead
of multisets, for which a simpler permutation relation can be defined as:

Definition permutation l l’ := ∀ x, (In x l ↔ In x l’ ).

Also, the ’In’-related lemmas are useless if the following (weaker) definition of permutation
on multisets is employed instead:

Definition permutation l l’ := ∀ x, count x l = count x l’.

The certification of the ’sorting’ property was more involved. It required the two-parameter
(non tail-recursive) version of maxTrA, referred to as maxTrN and defined as:

Fixpoint maxTrN l a :=
match l with

nil ⇒ ([], a)
| b :: U ⇒ if leb a b
then ((a :: (fst (maxTrN U b))), Nat.max b (snd (maxTrN U b)))
else ((b :: (fst (maxTrN U a))), Nat.max a (snd (maxTrN U a)))

end.

We have shown its equivalence with maxTrA:

Lemma maxTrN maxTrA nil : ∀ l a, maxTrA l a [] = maxTrN l a.

The equivalence proof was based on the following two lemmas:

Lemma maxTrN max : ∀ l a, snd (maxTrN l a) = list max (a :: l).

Lemma maxTrN maxTrA : ∀ l a U, maxTrA l a U = (U ++ fst (maxTrN l a),
snd (maxTrN l a)).

The crucial lemma for proving the ’sorting’ property is:

Lemma BSort is sorted’ : ∀ n l U n1, (∀ x, In x (n1 :: l) → IsSorted (x :: U )) →
length l = n → IsSorted (BSortA ((maxTrA l n1 []), U )).

Instead, we have proved the BSort is sorted lemma:

Lemma BSort is sorted : ∀ n l U n1, (∀ x, In x (n1 :: l) → IsSorted (x :: U )) →
length l = n → IsSorted (BSortA ((maxTrN l n1 ), U )).

65



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

which resulted from the replacement of (maxTrA l n1 []) by (maxTrN l n1 ). Finally,
in the proof of the ’sorting’ property, we have replaced maxTrA by maxTrN using the max-
TrN maxTrA nil lemma before calling BSort is sorted.

Other lemmas that we found useful are:

Lemma maxTrA nil : ∀ a l n V, ([], a) = maxTrA l n V →l = [] ∧ V = [].

Lemma maxTrA max : ∀ max l U b L x, (U, max ) = maxTrA l b L → (In x (b :: l) →
le x max ).

Lemma permutation MaxTrA: ∀ U max l b, (U, max ) = maxTrA l b [] →
permutation (max :: U ) (b :: l).

Lemma maxTrA n : ∀ l L1 U max a, (U,max ) = maxTrA l a [] ↔ (L1 ++ U, max ) =
maxTrA l a L1.

For proving the ’sorting’ property, we have used the induction tactic for 17 times. There
was no need to use the functional induction tactic.

5 Conclusions and Future Work

We have presented two different specifications and verification proofs for a tail recursive version
of the Bubble-Sort algorithm, by using the Theorema and Coq systems. Below we mention the
main differences between them.

In the Theorema specifications, the types are not explicitly declared, the functions can be
partial and the recursive functions not terminating. In Coq, the specifications are typed, the
functions are total and the recursive functions should terminate. In order to properly define
induction schemas from the definition of recursive functions, we had to represent multiple
arguments as one argument under the form of a tuple grouping them. The Theorema proofs
use multisets and their properties defined ad-hoc by the user. The Coq proofs use lists and the
permutation relation instead of multisets. In Theorema we have: 6 definitions, 2 algorithms,
2 theorems, 21 properties (from which 12 properties are specific to the certification of the
algorithm). On the other side, in Coq we used about 30 lemmas.

The verification proofs in both systems required crucial human intervention, especially when
performing the induction reasoning (e.g., finding the right induction variables and induction
schemas), as well as automatic reasoning for executing specific tasks (e.g., the lia tactic for
arithmetic reasoning in Coq). The proofs in Theorema are based on general inference rules,
mainly for performing basic logical reasoning, as well as special inference rules, as those based
on the natural properties of total order (e.g. transitivity). The general proof strategy was
based on cascading, which requires the ad-hoc generation of new lemmas when the proof of the
current goal fails. Most of the new lemmas had to be proved as the current goal, others have been
imported from the standard libraries of the used system. In Coq, the definition for permutation
presented in the paper and the related properties were user-defined, but could have also used
other definitions, as those based on inductive predicates included in the Sorting.Permutation
library.

The files in Theorema and the script in Coq described in Sections 3, 4 can be found at
https://members.loria.fr/SStratulat/files/LPAR2024.zip.

As future work we consider to certify the Bubble-Sort with a flag (see [8]) in Theorema and
Coq, and to increase the automation of proving and of finding necessary lemmata in Theorema.
Another interesting research direction is to integrate the two systems in order to obtain natural
style proofs that are also rigurously certified.

66

https://members.loria.fr/SStratulat/files/LPAR2024.zip


Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

Acknowledgements

This work is co-funded by the European Union, Erasmus+ project AiRobo: Artificial Intelli-
gence based Robotics, 2023-1-RO01-KA220-HED-000152418.

References

[1] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development Coq’Art:
The Calculus of Inductive Constructions, volume XXV of Texts in Theoretical Computer Science.
Springer, 2004.

[2] S. Blom, S. Darabi, M. Huisman, and W. Oortwijn. The VerCors Tool Set: Verification of Parallel
and Concurrent Software. In IFM 2017, pages 102–110. Springer International Publishing, 2017.

[3] J. Bockenek, P. Lammich, Y. Nemouchi, and B. Wolff. Using Isabelle/UTP for the verification of
sorting algorithms: A case study. EasyChair Preprint no. 944, 2019.

[4] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A survey on the
Theorema project. In In International Symposium on Symbolic and Algebraic Computation, pages
384–391. ACM Press, 1997.

[5] B. Buchberger, T. Jebelean, T. Kutsia, A. Maletzky, and W. Windsteiger. Theorema 2.0:
Computer-Assisted Natural-Style Mathematics. Journal of Formalized Reasoning, 9(1):149–185,
2016.

[6] M. P. F. Burgos. Formalization of sorting algorithms in Isabelle/HOL. Master’s thesis, Vrije
Universiteit Amsterdam, 2019.

[7] I. Dramnesc and T. Jebelean. Synthesis of List Algorithms by Mechanical Proving. Journal of
Symbolic Computation, 68:61–92, 2015.

[8] I. Dramnesc and T. Jebelean. Deductive Synthesis of Bubble-Sort Using Multisets. In SAMI 2020,
pages 165–172. IEEE, 2020.

[9] I. Dramnesc and T. Jebelean. Deductive synthesis of Min-Max-Sort using multisets. In SACI
2020, pages 165–172. IEEE, 2020.

[10] I. Dramnesc and T. Jebelean. Synthesis of sorting algorithms using multisets in Theorema. Journal
of Logical and Algebraic Methods in Programming, 119(100635), 2020.

[11] I. Dramnesc and T. Jebelean. Mechanical Verification of Insert-Sort and Merge-Sort Using Mul-
tisets in Theorema. In SISY 2023, pages 55–60. IEEE, 2023.

[12] I. Dramnesc, T. Jebelean, and S. Stratulat. Combinatorial Techniques for Proof-based Synthesis
of Sorting Algorithms. In SYNASC 2015, pages 137–144, 2015.

[13] I. Dramnesc, T. Jebelean, and S. Stratulat. Certification of Sorting Algorithms Using Theorema
and Coq. In SCSS 2024. Submitted, 2024.

[14] J. C. Filliâtre. Deductive Program Verification with Why3 a tutorial (2013).

[15] J. C. Filliâtre and A. Paskevich. Why3 — Where Programs Meet Provers. In Matthias Felleisen
and Philippa Gardner, editors, Programming Languages and Systems, pages 125–128, Berlin, Hei-
delberg, 2013. Springer Berlin Heidelberg.

[16] Jean-Christophe Filliâtre and Nicolas Magaud. Certification of Sorting Algorithms in the Coq
System. In Theorem Proving in Higher Order Logics: Emerging Trends, 1999.

[17] William A. Howard. The formulae-as-types notion of construction. In Jonathan P. Seldin and
J. Roger Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism,, pages 479–490, 1980.

[18] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison
Wesley, 2 edition, 1998.

[19] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic, volume 2283 of Lecture Notes in Computer Science. Springer, 2002.

67



Certification of Tail Recursive Bubble–Sort in Theorema and Coq Drămnesc, Jebelean and Stratulat

[20] D. Petrovic. Verification of selection and heap sort using locales. Arch. Formal Proofs, 2014, 2014.

[21] S. Quarfot Orrevall and A. Gengelbach. Implementation and Verification of Sorting Algorithms
with the Interactive Theorem Prover HOL. Student thesis, Department of Information Technology,
Mathematics and Computer Science, Disciplinary Domain of Science and Technology, Uppsala
University, 2020-11-04T08:12:02.574+01:00 2020.

[22] M. Safari and M. Huisman. A Generic Approach to the Verification of the Permutation Property of
Sequential and Parallel Swap-Based Sorting Algorithms. In Brijesh Dongol and Elena Troubitsyna,
editors, Proceedings of IFM 2020, volume 12546 of Lecture Notes in Computer Science, pages 257–
275. Springer, 2020.

[23] The Coq development team. The Coq Reference Manual. INRIA, 2020. http://coq.inria.fr/doc.

[24] E. Tushkanova, A. Giorgetti, and O. Kouchnarenko. Specifying and Proving a Sorting Algorithm.
Technical report, Laboratoire d’Informatique de l’Université de Franche-Comte, 2009.

[25] W. Windsteiger. Theorema 2.0: A system for mathematical theory exploration. In ICMS’2014,
volume 8592 of LNCS, pages 49–52, 2014.

[26] Y. Zhang, Y. Zhao, and D. Sanán. A verified Timsort C implementation in Isabelle/HOL. CoRR,
abs/1812.03318, 2018.

68

http://coq.inria.fr/doc

	1 Introduction
	2 Notations and algorithms
	2.1 Notations in Theorema
	2.2 Notations in Coq

	3 Verification in Theorema
	3.1 Proof of Theorem 1
	3.2 Proof of Theorem 2

	4 Certification in Coq
	5 Conclusions and Future Work
	References

