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Abstract
This paper reports on establishing Hybrid Systems Theorem Proving (HSTP) as a

new category in the ARCH-COMP Friendly Competition 2018. The most important char-
acteristic features of the HSTP category are: i) The flexibility of programming languages
as structuring principles for hybrid systems, ii) The unambiguity and precision of program
semantics, and iii) The mathematical rigor of logical reasoning principles. The HSTP
category especially features many nonlinear and parametric continuous and hybrid sys-
tems. Owing to the nature of theorem proving, HSTP is able to accomodate three modes:
A) Automatic in which the entire verification is performed fully automatically without
any additional input beyond the original hybrid system and its safety specification. H)
Hints in which select proof hints are provided as part of the input problem specification,
allowing users to communicate specific advice about the system such as loop invariants. S)
Scripted in which a significant part of the verification is done with dedicated proof scripts
or problem-specific proof tactics. This threefold split makes it possible to better identify
the sources of scalability and efficiency bottlenecks in hybrid systems theorem proving.
The existence of all three categories also makes it easier for new tools with a different
focus to participate in the competition, wherever they focus on in the spectrum from fast
proof checking all the way to full automation. The types of benchmarks considered and
experimental findings are described in this paper as well.

1 Introduction
This report summarizes the experimental results of the Hybrid Systems Theorem Proving
(HSTP) category in the ARCH-COMP18 friendly competition. The benchmark examples in the
HSTP competition strive for a large variety in hybrid systems modeling patterns of basic extent
to provide a low entry barrier for tools as well as examples at scale to identify opportunities
for improving on proof automation, scalability and efficiency. The almost 140 examples in the
benchmark competition are grouped into the following categories:
• Hybrid systems design shapes: small-scale examples over a large variety of model shapes
to test for prover flexibility.

G. Frehse (ed.), ARCH18 (EPiC Series in Computing, vol. 54), pp. 110–127



ARCH-COMP18 Hybrid Systems Theorem Proving Mitsch et al.

• Nonlinear continuous models: test for prover flexibility in terms of generating and proving
properties about continuous dynamics.

• Hybrid systems case studies: hybrid systems models and specifications at scale to test for
application scalability and efficiency.

In each of these categories, tools can select the degree of automation as follows, depending
on their focus in the spectrum from fast proof checking to full proof automation:
(A) Automated: hybrid systems models and specifications are the only input, proofs and

counterexamples are produced fully automatically.
(H) Hints: select proof hints (e.g., loop invariants) are provided as part of the specifications.
(S) Scripted: significant parts of the verification is done with dedicated problem-specific scripts

or tactics.
All benchmark examples are available at https://github.com/LS-Lab/KeYmaeraX-projects/
tree/master/benchmarks and specified in differential dynamic logic (dL) [Pla08, Pla17], whose
format and ASCII syntax are presented in Section 2. The participating tools are presented in
Section 3. An overview of the examples together with the findings from the competition is given
in Section 4. To establish further trustworthiness of the results, the tools with which the results
have been obtained are available at gitlab.com/goranf/ARCH-COMP.

2 Problem Format
All benchmarks in the Hybrid Systems Theorem Proving (HSTP) category are written in dif-
ferential dynamic logic (dL) [Pla08, Pla17] which has axioms and an unambiguous semantics
available [BRV+17] in KeYmaera 3, KeYmaera X, Isabelle/HOL, and Coq. To make it easier
for tools to participate in the HSTP category, almost all benchmarks in the HSTP category are
differential dynamic logic formulas of the particular safety form

φ→ [α]ψ (1)

where
φ is a real arithmetic formula describing the initial conditions,
ψ is a real arithmetic formula describing the postcondition / set of safe states, and
α is the hybrid system described using hybrid programs as a program notation.

The dL formula (1) means that if the system starts in a state satisfying the initial condition
φ, then all final states of all possible runs of the hybrid system α satisfy postcondition ψ. The
operators / statements of hybrid programs are summarized in Table 1. Those of logical formulas
in dL are summarized in Table 2. In particular, the hybrid program α contains both the discrete
and continuous dynamics of the hybrid system.

An example with a purely continuous system is:

−4
5 < x < −1

3 ∧−1 ≤ y < 0 → [x′ = 2x− 2xy, y′ = 2y − x2 + y2]
(
x+y ≤ 1∧ (x 6= 0∨y 6= 0)

)
(2)

An example with a trivial hybrid system is:

v ≥ 0 ∧A > 0 ∧ b > 0→ [
(
?v ≤ 5; a :=A ∪ a :=−b); {x′ = v, v′ = a& v ≥ 0}

)∗] v ≥ 0 (3)

This particular example is completely trivial, because the postcondition v ≥ 0 directly follows
from the evolution domain constraint v ≥ 0 in the differential equation. But safety properties
become more exciting and more challenging when the postcondition is a different one. For
example, x ≥ 10 to say that the position is at least 10 always is much more complicated (and
not even true for the above example).
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Table 1: Statements of hybrid programs (Q is a first-order formula, α, β are hybrid programs)

Statement Effect
α; β sequential composition where β starts after α finishes
α ∪ β nondeterministic choice, following either alternative α or β
α∗ nondeterministic repetition, repeating α n times for any n ∈ N
x := θ discrete assignment of the value of term θ to variable x (jump)
x := ∗ nondeterministic assignment of an arbitrary real number to x(
x′1 = θ1, . . . , continuous evolution of xi along the differential equation system

x′n = θn&Q
)
x′i = θi restricted to remain in evolution domain Q at all times

?Q test if formula Q holds at current state, abort program otherwise
if(Q)α run α if Q is true at current state, do nothing otherwise
if(Q)α elseβ run α if Q is true at current state, run β otherwise

Table 2: Operators of differential dynamic logic (dL) formulas

dL Operator Meaning
θ1 ∼ θ2 comparison true iff θ1 ∼ θ2 with operator ∼ ∈ {>,≥,=, 6=,≤, <}
¬φ negation / not true if φ is false
φ ∧ ψ conjunction / and true if both φ and ψ are true
φ ∨ ψ disjunction / or true if φ is true or if ψ is true
φ→ ψ implication / implies true if φ is false or ψ is true
φ↔ ψ bi-implication / equivalent true if φ and ψ are both true or both false
∀xφ universal quantifier true if φ is true for all values of variable x in R
∃xφ existential quantifier true if φ is true for some values of variable x in R
[α]φ [·] modality / box true if φ is true after all runs of hybrid program α
〈α〉φ 〈·〉 modality / diamond true if φ is true after at least one run of α

Note that the operator precedence is such that unary operators bind stronger than binary
operators and, just like in regular expressions, ; binds stronger than ∪. In particular, the
controller in (3) is

(?(v ≤ 5); a :=A) ∪ a :=−b

ASCII syntax. The benchmark examples are specified in the dL ASCII syntax and grouped
into .kyx files, each containing several named archive entries. The ASCII syntax is a straight-
forward ASCII rendition of Tables 1 and 2, e.g., using A->B for A→ B and using A&B for A∧B.
The ASCII notation alpha++beta is used for alpha ∪ beta. For improved readability in longer
examples, braces {...} are used for grouping differential equation systems and other program
operators. Like in C programs, assignments etc. end with explicit semicolons.

Archive entries follow the general shape below, listing optional definitions, system variables,
a (safety) specification in dL, and optional tactic scripts. The example (3), specialized, just
for the sake of illustration, to the case where A = 5, is written in ASCII KeYmaera X input
as follows. Unlike the ProgramVariables and Problem block, the Definitions and Tactic
blocks are optional. The symbols defined in the Definitions can be used in the Problem block
or in other definitions.
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ArchiveEntry "Benchmark Example 1".

Definitions. /∗ definitions cannot change their value ∗/
R A() = (5). /∗ real−valued maximum acceleration defined to be 5 ∗/
R b(). /∗ real−valued braking, undefined so unknown value ∗/
B geq(R x, R y) <−> (x>=y). /∗ predicate geq defined to be the formula x>=y ∗/
HP drive ::= { /∗ program drive defined to choose either ∗/

?v<=5; a:=A(); /∗ maximum acceleration if slow enough ∗/
++ a:=−b(); /∗ or braking, nondeterministically ∗/

}.
End.

ProgramVariables. /∗ program variables may change their value over time ∗/
R x. /∗ real−valued position ∗/
R v. /∗ real−valued velocity ∗/
R a. /∗ current acceleration chosen by controller ∗/

End.

Problem. /∗ conjecture in differential dynamic logic ∗/
v>=0 & A()>0 & b()>0 /∗ initial condition ∗/
−> /∗ implies ∗/
[ /∗ all runs of this hybrid program ∗/
{ /∗ braces {} group programs ∗/
drive ; /∗ expand program drive here as defined above ∗/
{ x’=v, v’=a & v>=0 } /∗ differential equation system ∗/

}∗ @invariant(v>=0) /∗ loop repeats, with @invariant contract ∗/
] v>=0 /∗ safety/postcondition after hybrid program ∗/

End.

Tactic "Automated proof in KeYmaera X".
master

End.

Tactic "Scripted proof in Bellerophon tactic language".
implyR(1) ; loop({‘v>=0‘}, 1) ; <( /∗ < splits separate branches ∗/
closeId , /∗ initial case: shown with close by identity ∗/
QE, /∗ postcondition: prove by real arithmetic QE ∗/
/∗ induction step: decomposes hybrid program semi−explicitly ∗/
composeb(1) ; solve(1.1) ; choiceb(1) ; andR(1) ; <( /∗ controller branches ∗/
composeb(1) ; testb(1) ; master, /∗ decompose some steps then ask master ∗/
assignb(1) ; QE /∗ assignment, then real arithmetic ∗/

)
)

End.

End. /∗ end of ArchiveEntry ∗/
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Background. A short survey on differential dynamic logic and hybrid programs can be found
in a LICS’12 tutorial [Pla12a], a tutorial on its modeling principles in STTT [QML+16], a
research monograph [Pla10b], and a comprehensive introduction in a textbook [Pla18]. The
precise mathematical semantics of differential dynamic logic and its hybrid programs can be
found in the literature as well, for example the most recent details in [Pla17], and a brief version
in the LICS’12 tutorial [Pla12a].

3 Participating Tools
KeYmaera X. KeYmaera X [FMQ+15] is a theorem prover for the hybrid systems logic
differential dynamic logic (dL). It implements the uniform substitution calculus of dL [Pla17].1
KeYmaera X supports systems with nondeterministic discrete jumps, nonlinear differential
equations, nondeterministic input, and it provides invariant construction and proving techniques
for differential equations [SGJP16, PT18]. Unlike numerical hybrid systems reachability analysis
tools, KeYmaera X also supports unbounded initial sets and unbounded time analysis.

KeYmaera X comes with automated proof search procedures that can be steered in the fol-
lowing ways: annotations in the input models provide additional design insight and, if available,
are used to steer the invariant generation techniques in KeYmaera X; fine-grained control over
proofs is available with proof scripts [FMBP17].

Extension with and experimentation in proof search without reducing trust in the prover is
made possible on top of a small trusted kernel that checks all reasoning steps for soundness.
The prover kernel contains a list of sound dL axioms that are instantiated using a uniform
substitution proof rule [Pla17]. This approach isolates all soundness-critical reasoning in the
prover kernel and obviates the intractable task of ensuring that each new proof search algorithm
is implemented correctly. New proof search algorithms are always sound and can either be
programmed directly in Scala (or Java) or can simply be added as a tactic in the hybrid
systems tactic language Bellerophon [FMBP17].

The proof automation for differential equations makes use of insights on how to prove all
invariants of differential equations [PT18]. Tactical implementations allow KeYmaera X to
soundly reduce ODE invariance questions to a small number of core ODE axioms and real
arithmetic. The proof tactic is optimized for fast proofs of commonly used invariants, e.g.,
barrier certificates [PJP07]. All real arithmetic questions that arise in the proofs are rigorously
checked, including the ones that arise from the use of barrier certificates. This guarantees that
any barrier certificate that proves with KeYmaera X are true barrier certificates, rather than
the result of numerical or floating-point errors.

To prove properties of differential equations, KeYmaera X combines an axiomatic differential
equation solver [Pla17] and local fixedpoint computation for differential invariants [PC09a]
with tactics based on differential equation axiomatization [PT18] and Pegasus, a toolbox for
automatically generating continuous invariants for systems of ordinary differential equations.
Given a system of ODEs subject to an evolution domain constraint, a set of initial states, and
a set of unsafe states, Pegasus will attempt to automatically generate a continuous invariant
that is sufficient to prove that the ODE cannot continuously evolve into an unsafe state from
any of its initial states while respecting the evolution constraint. Pegasus is implemented in
Mathematica and at present relies on an array of techniques from qualitative analysis and
discrete abstraction [SGJP16] for constructing continuous invariants.

1 This dL uniform substitution calculus is also formally verified in Isabelle/HOL and Coq [BRV+17].

114



ARCH-COMP18 Hybrid Systems Theorem Proving Mitsch et al.

KeYmaera 3. KeYmaera 3 [PQ08] is the previous generation theorem prover for differential
dynamic logic dL. Unlike its successor KeYmaera X, the older KeYmaera 3 directly implements
a sequent calculus for differential dynamic logic [Pla08], instead of a uniform substitution cal-
culus. What KeYmaera X implements from a few simple modular axioms, KeYmaera 3 uses
several dedicated proof rules for [Pla08, Pla10a, Pla12b]. This leads to a more directly usable
but substantially bigger soundness-critical prover kernel of about 66000 lines of code written
in a mix of Java and Scala. In some cases, one single proof rule use, e.g., for solving differ-
ential equations in KeYmaera 3 corresponds to thousands of axiom uses in KeYmaera X. The
impact on soundness, however, is that the ODE solver of KeYmaera 3 is trusted while that of
KeYmaera X is not trusted, because each of its outputs is verified with a proof.

For proof automation, KeYmaera 3 implements a simple but fast fixpoint loop [PC09a]
for generating loop invariants of hybrid systems and differential invariants of differential equa-
tions. It provides an array of different SMT strategies for splitting real arithmetic subquestions
[Pla10b]. Changing proof search procedures in KeYmaera 3 (beyond choosing from the list of
predefined ones) is significantly more complicated and, notably, soundness-critical.

HHL Prover. HHL Prover [WZZ15] is an interactive theorem prover implemented in Is-
abelle/HOL [NPW02] to mechanize the Hybrid Hoare Logic (HHL) deductive calculus [LLQ+10]
for verifying hybrid systems modeled by the Hybrid CSP (HCSP) [He94, ZWR96].

HCSP [He94, ZWR96] is an extension of CSP by introducing differential equations for
representing continuous evolution and several forms of interruptions to continuous evolution.
For a sequential HCSP process P , the specification takes the form {Pre}P{Post; HF}, where
the pre-/post-condition Pre and Post, defined by first-order logic, specify properties of variables
that hold at the beginning and termination of the execution of P respectively, and the history
formula HF , defined by duration calculus [ZHR91, CH04], specifies properties of variables that
hold throughout the execution interval of P . The specification for a parallel process P1‖P2 is
then defined by assigning to each sequential component of it the respective pre-/post-conditions
and the history formula, shown as below:

{Pre1, P re2}P1‖P2{Post1, Post2; HF1,HF2}

HHL axiomatizes HCSP constructs by a set of axioms and inference rules, which constitutes a
basis for implementing the verification condition generator for verifying HCSP specifications in
HHL prover.

The implementation of HHL prover can be found at [WZZ15]. The proof in HHL prover is
performed according to the following process: first, by applying HHL rules, a HCSP specifica-
tion is transformed step by step to a set of high-order logic (HOL) formulas, i.e. verification
conditions; and then, by applying proof tactics and rules of HOL, the validity of verifica-
tion conditions, that is equivalent to the correctness of the original HCSP specification, is
proved. However, when the specification to be proved contains unknown differential invari-
ants [LZZ11, PC08], some verification conditions related to the invariants remain unproved in
HHL Prover. For such cases, the prover needs to call external invariant generators for solving
the invariants.

HHL Prover has been integrated into a tool chain called MARS [CHT+17] for Model-
ing, Analyzing and veRifying hybrid Systems. Using MARS, firstly, executable models of
hybrid systems are built with the industrial standard environment Simulink/Stateflow, and
then Simulink/Stateflow diagrams are translated into HCSP processes by an automatic trans-
lator Sim2HCSP [ZZWF15], and finally the HCSP processes can be verified preserving the
given properties using the HHL Prover. MARS is later extended with a code generator that
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translates the verified HCSP with continuous behavior to discrete SystemC code [YJL+16]. It
is guaranteed that the source HCSP model and the target SystemC code are approximately
bisimilar.

4 Benchmarks
One of the strengths of hybrid systems theorem proving as a verification technique is its support
for combined automated and interactive verification steps as well as its applicability to proof
search and proof checking. The benchmark examples were analyzed in three modes:

Automated The specification is the only input to the theorem prover. Proofs and counterex-
amples are obtained fully automated to highlight the capabilities of theorem provers in
terms of invariant generation, proof search, and proof checking.

Hints Known design properties of the system, such as loop invariants and invariants of dif-
ferential equations, are annotated in the model and allowed to be exploited during an
otherwise fully automated proof to highlight the capabilities of theorem provers in terms
of proof search and proof checking.

Scripted User guidance with proof scripts is allowed to highlight the capabilities of theorem
provers in terms of proof checking.

The benchmark examples are structured into 3 categories: hybrid systems design shape
examples to test for system design variations at a small scale, nonlinear continuous models to
test for continuous invariant construction and proving capabilities, and hybrid systems case
studies to test for prover scalability.

Experimental setup. The machines used to run the benchmark examples are listed in Ap-
pendixA: KeYmaera X (in automated (A), hints (H), and scripted (S) mode) and KeYmaera 3
(in automated (A) mode) participated on all benchmark sets and were executed on the same
machine Mk, and therefore their computation times are directly comparable. HHL Prover par-
ticipated with the Chinese Train Control System case study on its own machine Mhhl. The
execution time measurements were taken separately on a fresh prover instance for each exam-
ple in the benchmark set. Proof attempts were aborted after a category-specific timeout, well
above the longest successful solution in the category. The competition results are presented
with accumulated execution times after examples are ranked according to their execution time.

4.1 Hybrid Systems Design Shapes
Category overview. In this category, basic examples2 test for proof automation techniques
for a large variety of system designs: event-triggered systems, time-triggered systems, systems
with nested loops and differential equations, and systems with model-predictive control. Instead
of focusing on particularly complex systems, this set of examples strives at a certain degree of
coverage of qualitatively different kinds of systems and their different typical shapes. The
benchmark examples are grouped as follows:
Static semantics correctness 9 examples with various sequential orders and nested struc-

tures of assignments, differential equations, and loops.
Dynamics 30 examples with differential equations ranging from solvable to nonlinear.

2https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/basic.kyx
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Figure 1: Computation times: Basic benchmark examples. Ranked accumulated time budgets
[s], which are the number of examples solved within a total accumulated time budget

LICS Tutorial 9 dL tutorial examples [Pla12a] ranging from basic time-triggered motion con-
trol to model-predictive control.

STTT Tutorial 12 dL modeling tutorial examples [QML+16] ranging from basic discrete
event-triggered and time-triggered control for straight-line motion to speed control with
a trajectory generator and lane-keeping with two-dimensional curved motion.

Competition results. Proof attempts were aborted after a timeout of 300 s in the basic
category, with the longest successful solution after about 62 s. The results for the basic category
in terms of accumulated execution times are shown in Fig. 1. For example, the fastest 30 fully
automated examples can all be solved in cumulative time 13.3 s in KeYmaera 3 vs. 57.7 s in
KeYmaera X (note that the sets of fastest examples are not necessarily the same). The main
insight from Fig. 1 is that automated proof search with a fixpoint loop in KeYmaera 3 is faster
than the proof search in KeYmaera X for the solved examples, but KeYmaera X solves a larger
portion of the benchmark set with the additional time it takes. Hints and proof scripts in
KeYmaera X help speed up a little bit and solve additional examples. This indicates that the
primary impact of further proof automation for the basic category of benchmarks will not be
the resulting speed but the number of examples that can be proved fully automatically.

4.2 Nonlinear Continuous Models
Category overview. This set of 69 nonlinear continuous safety verification problems3 is
based on the problems proposed in [SGJ16]. The problems in this benchmark set were gath-

3https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/nonlinear.kyx
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ered from published papers in the area of continuous safety verification and invariant gen-
eration for nonlinear systems ([DGXZ17, LZZ11, DCKB17, SGS14, SGJP16]). The bulk of
the problems in the benchmark set feature planar (i.e., 2-dimensional) polynomial systems of
ODEs in which the safety property is known to hold for unbounded time. The ODEs are
furthermore autonomous (i.e., do not explicitly depend on the independent time variable t);
this fact presents no real restriction since non-autonomous ODEs can be brought into au-
tonomous form by augmenting the dynamics with t′ = 1. Certain non-polynomial systems
of ODEs can likewise be brought into polynomial form by introducing fresh variables in a
process called re-casting [SV87]. While we stress that the existing set of nonlinear poly-
nomial ODE safety benchmarks can in no way be said to be representative (owing to its
small size), the general class of problems which fits into this category is highly important.

x

y
Figure 2: Nonlinear con-
tinuous safety verification
problem. No initial state
(green rectangle) can evolve
into unsafe states (red half-
plane) along the trajectories.

Example 4.1. The nonlinear system from [DLA06, Ex. 5.2. ii]
that was shown in (2) has the following dynamics:

x′ = 2x− 2xy,
y′ = 2y − x2 + y2.

Taking the initial states to be − 4
5 < x < − 1

3 ∧ −1 ≤ y < 0
and (x = 0 ∧ y = 0) ∨ x + y > 1 to be the forbidden states, the
verification problem is illustrated in Fig. 2.

Competition results. Proof attempts in the nonlinear cate-
gory were aborted after a timeout of 300 s, well above the longest
successful solution of about 42 s in automated mode and 51 s in
scripted mode. Fig. 3 plots the accumulated execution times for
the nonlinear category after examples are ranked according to
their execution time. The main insight from Fig. 3 is that the
invariant construction [SGJP16] and proving techniques [PT18]
of KeYmaera X significantly outperform and improve upon KeYmaera 3 the extent to which
continuous dynamics can be analyzed fully automatically. Even proof hints have a negligible
impact compared to full automation.4 The results in scripted mode (S) emphasize the general-
ity of the implemented proving techniques for differential equations: proof scripts with barrier
certificates that were generated outside KeYmaera X solve almost all the remaining exam-
ples. This highlights a potential to improve automated invariant construction with methods to
construct barrier certificates, which are plagued by numerical robustness issues.

4.3 Hybrid Systems Case Study Benchmarks
Category overview. The benchmark examples in this category are selected to test theorem
provers for scalability and efficiency on examples of a significant size and interest in applications.
The benchmark examples5 are inspired from prior case studies on train control [PQ09, ZLW+14],
flight collision avoidance [PC09b], and robot collision avoidance [MGVP17].

4But this observation could be sensitive to the chosen benchmarks.
5https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/advanced.kyx
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Figure 3: Computation times: Nonlinear benchmark examples. Ranked accumulated time
budgets [s], which are the number of examples solved within a total accumulated time budget

European train control system (ETCS). This benchmark on automated train control
bases on the safety analysis [PQ09] of the cooperation protocol in the European Train Control
System [ERT02, DHO03], which specifies the interaction between an automated train protection
system and a radio-block controller. The radio-block controller (purely discrete dynamics) may
at any time issue speed limits that take effect at certain positions; the train must respect these
speed limits (hybrid dynamics of train controller and train motion).
E-1 (ETCS: Essentials) Describes the core safety theorem: a time-triggered train controller

never violates the posted speed limit.
E-2 (ETCS: Proposition 1 (Controllability)) Describes the motion of a train on brakes

and translates it into a stopping distance. Tests a prover’s ability to show equivalence
between a hybrid systems specification in dL and it’s core information in terms of stopping
distance in real arithmetic.

E-3 (ETCS: Proposition 4 (Reactivity)) Describes the motion of a train when accelerat-
ing for a bounded amount of time and the necessary distance to a full stop. Tests a
prover’s ability to work with universally quantified assumptions and/or analyze programs
in the context of universally quantified input.

The benchmark tests a prover’s ability to handle dL safety properties (modal formulas) in
various places of a specification, for example, as proof obligations and as assumptions.

Chinese train control systems (CTCS). This case study is about modeling and verifica-
tion of a combined operational scenario of Chinese Train Control System Level-3 (CTCS-3). It
originates from an under-specification error of the System Requirements Specification (SRS) of
CTCS-3, revealed during a spot testing of the system, which caused a train to stop unexpect-
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Figure 4: A combined scenario of CTCS-3.

edly. It has been studied in [ZLW+14, ZZW+13, ZZWF15] and the failure was reproduced by
simulation and also formally verified.

The combined scenario integrates the movement authority (MA) scenario, the level transi-
tion (from CTCS-2 to CTCS-3) scenario, as well as the mode transition (from Full Supervision
mode to Calling On mode, FS to CO for short) scenario of CTCS-3. The combined scenario is
shown in Fig. 4, which occurs under the following situation:
• The train has got enough MA to complete the combined scenario, and
• There are two adjacent segments in the MA, divided by location x2. At x2, the level
transition from CTCS-2 to CTCS-3, and the mode transition from FS to CO, will occur
simultaneously, and

• The train starts to move at location ST , and has an agreement from RBC (Radio Block
Center) to start level transition at x1 and complete the level transition at x2.

According to the SRS, the combined scenario is required to satisfy a liveness property: the
train can eventually move beyond the location x2 with a positive speed, with both the level
transition and mode transition completed successfully.

However, the under-specified SRS fails to guarantee the liveness property. Basically, for
safety reasons, to switch from FS mode to CO mode under CTCS-3, the driver’s confirmation
is required before the switching point x2 to upgrade the speed limit of the CO mode, which is
originally set to 0. However, in the old version of the SRS, such a confirmation request is not
explicitly specified to be issued to the driver during a region where the train is co-supervised by
both CTCS-2 and CTCS-3 (x1 to x2 in Fig. 4). As a result, the speed limit of the CO segment
cannot be upgraded and remains 0, which forces the train to stop at x2. Thus the verification
objective for this case study is to prove on the underspecified model the negation of the liveness
property, that is, the train must stop at x2.

Roundabout air traffic conflict resolution (ATC). Air traffic conflict resolution ma-
neuvers with curved flight dynamics exhibit nontrivial interactions of discrete and continuous
dynamics. The roundabout benchmark [PC09a] is based on [TPL+96, TPS98, HHMW00,
MF01, DPR05, PC09b, PKV09] to analyze collision freedom of planar roundabout maneuvers
in air traffic control that should guarantee safe spatial separation of aircraft throughout their
flight. The scale of this benchmark can be adjusted easily with the number of aircraft involved
in the conflict resolution maneuver: additional aircraft increase the number of variables in the
benchmark and introduce additional invariants that must be found, but analysis is separable
into pairwise collision freedom questions.
A-2 (ATC: 2 Aircraft Tangential Roundabout Maneuver) Describes the circular con-

flict resolution of two aircraft in a planar roundabout collision avoidance maneuver.
A-3 (ATC: 3 Aircraft Tangential Roundabout Maneuver) Circular conflict resolution

of three aircraft in planar roundabout collision avoidance maneuvers. Safety of the entire
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system is collision-freedom between all three aircraft pairs.
A-4 (ATC: 4 Aircraft Tangential Roundabout Maneuver) Circular conflict resolution

of four aircraft in planar roundabout collision avoidance maneuvers. Safety of the entire
system is collision-freedom between all six aircraft pairs.

The benchmark tests a prover’s ability to analyze nested loops and multiple nonlinear dif-
ferential equations. At larger numbers of aircraft it also tests the scale of reasoning about
nonlinear dynamics by identifying and splitting analysis into isolated sub-questions.

Robot collision avoidance (RX). This benchmark bases on [MGVP17] and analyzes obsta-
cle avoidance in ground robot navigation. The benchmark uses models and safety properties to
analyze collision avoidance safety in the presence of stationary obstacles and moving obstacles.

Static Passive Passive-friendlyOrientation

Passive-friendly

Pass parking Avoid/Follow Head-on Turn

Orientation

Static
Passive

Figure 5: Robot collision avoidance properties: benchmark tests static safety and passive safety.

The resulting real arithmetic formulas describing the Euclidian distance between robot and
obstacle after symbolic execution are challenging for current solvers and may require overap-
proximation and simplification in the theorem prover steering the backend decision procedures.

R-1 (Robot collision avoidance: static safety) ensures that no collisions can happen with
stationary obstacles. Tests a prover’s ability to handle mixed solvable (longitudinal robot
acceleration) and nonlinear (rotational robot motion) continuous dynamics, and its ability
to overapproximate norms (Euclidian distance overapproximated to infinity norm).

R-2 (Robot collision avoidance: passive safety) ensures that no collisions can happen
with stationary or moving obstacles while the robot moves. The size of the resulting
real arithmetic formulas are challenging for current solvers even after overapproximation
of Euclidian distances. Tests a prover’s ability to steer backend decision procedures by
selecting relevant assumptions, using monotonicity arguments to eliminate variables, and
simplify arithmetic.

This benchmark tests a prover’s ability to analyze mixed solvable and nonlinear differential
equations, overapproximation of norms, and arithmetic simplifications.

Competition results. Proof attempts in the hybrid systems case study category were aborted
after a timeout of 1500 s, with the longest successful proof after about 938 s. Table 3 lists the
individual computation times for each of the case study benchmark examples, Fig. 6 summarizes
the accumulated computation times. KeYmaera 3 and KeYmaera X participated on the full
benchmark set (CTCS attempted only in automated (A) mode, future verification with hints
and scripts is planned), whereas HHL Prover participated only on the CTCS case study. Again,
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Figure 6: Computation times: Case study benchmark examples. Ranked accumulated time
budgets [s], which are the number of examples solved within a total accumulated time budget

the fixpoint loop invariant generation technique in KeYmaera 3 solves examples fast, while hints
and proof scripts in KeYmaera X help scale. The results point out a potential to improve tac-
tic implementation efficiency, since on the hybrid systems case studies that KeYmaera 3 can
solve automatically it outperforms proof checking from hints in KeYmaera X. The ETCS bench-
mark examples feature solvable continuous dynamics, which unsurprisingly leads to a significant
computation time difference between the ODE solution sequent rule in KeYmaera 3 and the
proof-producing tactic in KeYmaera X. The ATC benchmark examples highlight a particularly
useful proof scalability technique in KeYmaera 3, which splits conjunctive safety properties into
separate proof obligations. This technique is mimicked in the KeYmaera X scripted mode to
reduce computation time, for example, in ATC A-4 from 937.8 s to 245.7 s, but requires further
tactic improvements to get to the computational efficiency of KeYmaera 3. The robot colli-

Table 3: Computation times [s]

ETCS ATC RX
Tool E-1 E-2 E-3 CTCS-3 A-2 A-3 A-4 R-1 R-2
KeYmaera X (A) 29.7 16.1 43.8 – 39.7 208.5 937.8 – –

(H) 23.6 16.0 43.7 – 17.8 95.6 366.3 278.2 –
(S) 17.6 14.4 32.1 – 8.8 60.8 245.7 175.0 488.0

KeYmaera 3 (A) 2.1 0.7 – – 8.1 24.3 83.4 – –
HHL Prover (S) – – – 59 – – – – –
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Figure 7: Result summary: KeYmaera 3 is faster but solves less examples, especially among
those with nonlinear dynamics. KeYmaera X scales better; hints and scripts increase the
number of solved examples and reduce computation time.

sion avoidance benchmark examples illustrate where current automation fails to find invariants
and identify the necessary arithmetic simplifications for backend procedures to complete in
reasonable time; proof checking from hints and scripts for arithmetic simplifications illustrate
potential ways forward to improve proof search automation.

Note HHL Prover. A Simulink/Stateflow model has been built for the combined scenario in
the CTCS-3 case study. Applying the tool Sim2HCSP to the Simulink/Stateflow model, seven
files were generated which describe the HCSP model as well as the goal to be verified. Then
using HHL Prover, the goal was proved successfully as a theorem, taking 59 seconds to finish
on the Mhhl platform with Intel Core i7-4790 CPU 3.60GHZ and 16GB memory. In particular,
during the interactive proof process, certain differential invariants were manually fed into the
HHL specification.

5 Conclusion and Outlook
The hybrid systems theorem proving friendly competition focuses on the characteristic features
of hybrid systems theorem proving: flexibility of programming language principles for hybrid
systems, unambiguous program semantics, and mathematically rigorous logical reasoning prin-
ciples.

The (almost 140) benchmark examples are chosen to reflect a large variety of hybrid systems
model shapes and scales to test hybrid systems theorem provers both for their flexibility to
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Figure 8: Result summary: Number of examples solvable fully automatically (A) with individual
time budgets. KeYmaera X solves more examples, especially among those with nonlinear
dynamics.

analyze typical modeling styles and for their scalability. More potential benchmark examples
are always welcome in future years of the competition! The hybrid systems theorem proving
category allows tools to choose their operating mode on the spectrum from fast proof checking
of scripted proofs, hint-supported proof search and checking, to full automation.

The results, summarized in Figures 7 and 8, show significant improvements over theorem
prover generations (KeYmaera X compared to its predecessor KeYmaera 3) in handling contin-
uous dynamics fully automatically, but also highlight that the tactics in KeYmaera X can still
learn in terms of performance from the proof search and checking procedures of KeYmaera 3.
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A Specification of Machines
A.1 Mk

• Processor: Intel Xeon E5-1650 v2 @ 3.5GHz x 6
• Memory: 32GB
• Average CPU Mark on www.cpubenchmark.net: 12695 (full), 1990 (single thread)

A.2 Mhhl

• Processor: Intel Core i7-4790 CPU @ 3.6GHz
• Memory: 16GB
• Average CPU Mark on www.cpubenchmark.net: 9995 (full), 2284 (single thread)
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