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1 Introduction

Basic Propositional Calculus BPC, which was introduced by Albert Visser in [5], captures a
sublogic of Intuitionistic Propositional Calculus IPC which corresponds with modal logic K4 in
essentially the same way that IPC corresponds with modal logic S4. In [3] and [4] we introduce
Visser algebras (where we named them basic algebras), which correspond with BPC in the
same way that Heyting algebras correspond with IPC and that Boolean algebras correspond
with Classical Propositional Calculus CPC.

The double negation construction of Boolean algebras from Heyting algebras is well-known.
It is natural to consider how closely one can repeat this construction over Visser algebras.
Surprisingly the end result still works, although in details we use several new ideas.

Glivenko’s Theorem also goes through, but with an interesting reformulation. Given propo-
sitional formula ψ, define ξ(ψ) := ((⊤ → ψ) → ψ) → (⊤ → ψ). Formulas ξ(ψ) are of interest
in their own right, see [4, page 323]. Over IPC, formulas ψ and ξ(ψ) are equivalent. So, in par-
ticular, IPC proves ¬ξ(⊥). With Theorem 4.7 we show that for all (sequent) theories Γ ⊇ BPC
we have

Γ proves ϕ→ ξ(⊥) if and only if Γ + CPC proves ϕ→ ξ(⊥).

So if Γ ⊇ IPC, then Γ proves ¬ϕ if and only if Γ + CPC proves ¬ϕ (Glivenko’s Theorem).

2 Boolean Algebras

For the purposes of this paper we introduce notations ✷a for 1 → a, and xa for x → a. So
✷✷a = 1 → (1 → a), and xaaa = ((x → a) → a) → a. For all terms t(x) built from the
defining functions of A = (A,∧,∨,→, 0, 1) and the elements A, and for all x ∈ A, we have
x ∧ t(x) = x ∧ t(1) (simple substitution). Positive and negative occurrences in formulas and
terms are defined in the usual way. If x is only positive in t(x), then x ≤ y implies t(x) ≤ t(y).
If x is only negative in t(x), then x ≤ y implies t(y) ≤ t(x).

An element a is called Heyting if ✷a = a. A Visser algebra is a Heyting algebra exactly
when all its elements are Heyting.

Proposition 2.1. Let a be an element of Visser algebra A. Then we have equations (x∧y)a ≤
x→ ya ≤ (x ∧ y)✷a, and (x ∧ y)aa = xaa ∧ yaa.
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Let a ∈ A. An element x is called a-regular if xaa = x. Let Ra(A) be the set of a-regular
elements of A. Clearly we have {xa : x ∈ A} ⊇ {xaa : x ∈ A} ⊇ {xaaa : x ∈ A} ⊇
. . . ⊇ Ra(A). Since x is positive in xaa and 0aa = ✷a and 1aa = ✷a → a, we also have
Ra(A) ⊆ [✷a,✷a→ a]. The set Ra(A) inherits a partial order from A.

Proposition 2.2. Let a be an element of Visser algebra A. Then

1. x ∈ Ra(A) implies xa ∈ Ra(A)

2. ✷a ∈ Ra(A) (this is [4, Proposition 2.12])

3. ✷a→ a ∈ Ra(A)

4. x, y ∈ Ra(A) implies x ∧ y ∈ Ra(A)

Given a ∈ A, define x ∨a y = (x ∨ y)aa.

Proposition 2.3. Let a be an element of Visser algebra A. Then

1. x, y ∈ Ra(A) implies x ∨a y ∈ Ra(A)

2. x, y ∈ Ra(A) implies x ∨ y ≤ x ∨a y

3. z ∈ Ra(A) plus x ∨ y ≤ z imply x ∨a y ≤ z

4. x ∈ Ra(A) implies x ∧ (y ∨a z) = (x ∧ y) ∨a (x ∧ z)

Given a ∈ A, define x→a y = xa∨a y. Let R
a(A) be structure (Ra(A),∧,∨a,→a,✷a,✷a→

a). By Propositions 2.2 and 2.3.1, this structure is well-defined.

Theorem 2.4. Let a be an element of Visser algebra A. Then Ra(A) is a Boolean algebra.

3 Boolean Elements and Morphisms

We have a further characterization of the elements of Ra(A) which allows us to find an idem-
potent Visser algebra morphism from the ‘subalgebra’ of A on interval [a, 1], onto Ra(A).

Proposition 3.1. Let a be an element of Visser algebra A. Then we have equations x∧ xaa =
x ∧ (✷a→ a), and xaaa = xa ∧ (✷a→ a), and xaaaa = xaa. So Ra(A) = {xaa : x ∈ A}.

Let a, b ∈ A be with a ≤ b. We construct a Visser algebra I
[a,b](A) on interval [a, b] as

follows. Define x→I y = (x→ y)∧ b. Define I[a,b](A) = ([a, b],∧,∨,→I , a, b). Clearly I[a,b](A)
is well-defined. The map π[a,b] : x 7→ (x ∧ b) ∨ a = (x ∨ a) ∧ b is a well-defined map from A

onto [a, b]. If b = 1, then x →I y = x → y, so I[a,1](A) is clearly a Visser algebra, and is a
subalgebra of A except for the bottom element.

Proposition 3.2. Let a ≤ b be elements of Visser algebra A. Then I
[a,b](A) is a Visser algebra,

and π[a,b] is an idempotent bounded distributive lattice morphism from A onto I[a,b](A).

Finally the morphism of primary interest. Let a ∈ A. Define map γa : A → Ra(A) by
γa(x) = xaa. By Proposition 3.1, map γa is well-defined. We are primarily interested in γa
with restriction to subdomain [a, 1].

Proposition 3.3. Let a and b be elements of Visser algebra A. Then we have equations
(xaa ∨ yaa)aa = (x ∨ y)aa, and (x → (b ∨ y))a ≤ ((x → b) ∨ y)a, and (x → (a ∨ y))a = ((x →
a) ∨ y)a.

Theorem 3.4. Let a be an element of Visser algebra A. Then γa is an idempotent Visser
algebra morphism from I[a,1](A) onto Ra(A).
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4 Glivenko Theorems

Let A be a bounded distributive lattice with binary function x → y satisfying x → y = 1
for all x, y ∈ A. Then A is clearly a Visser algebra. All Visser algebras satisfying ✷0 = 1
can so be obtained from bounded distributive lattices. They belong to the collection of Visser
algebras that satisfy the principle of excluded middle x ∨ x0 = 1. So the principle of excluded
middle is not sufficient to yield just Boolean algebras. Therefore the following is not completely
self-evident.

Proposition 4.1. Let Visser algebra A satisfy the schema of double negation elimination x00 ≤
x. Then A is a Boolean algebra.

For Visser algebra elements a, define ξ(a) = (✷a→ a) → ✷a.

Proposition 4.2. Let a be an element of Visser algebra A. Then

1. ξ(a) ∧ (✷a→ a) = ✷a

2. ✷ξ(a) = ξ(a) (this is [4, Proposition 2.11])

3. x→ ξ(a) = 1 if and only if x ≤ ξ(a)

4. ξ(a) → a = ✷a→ a

Proposition 4.3. Let a be an element of Visser algebra A. Then

✷a→ a ≤ xa if and only if xaa = ✷a if and only if x ≤ ξ(a)

So the inverse image of ✷a under γa is the principal ideal [0, ξ(a)].

Theorem 4.4. Let a be an element of Visser algebra A, and γa(x) = xaa be the idempo-
tent bounded distributive lattice morphism from A onto Ra(A). Then γ−1

a (✷a) = {x ∈ A :
xξ(a) = 1} and γ−1

a (✷a → a) = {x ∈ A : xaξ(a) = 1}.

Fix a propositional language L. With its presentation in [3] (see also [4, Proposition 2.4]),
the Lindenbaum algebra of basic propositional logic BPC is isomorphic in the natural way
with the free Visser algebra on the set of propositional letters of L. Sequent theories Γ ⊇ BPC
correspond with adding equations between (equivalence classes of) formulas of L. Examples are
intuitionistic propositional logic Γ = IPC, which is axiomatizable by schema ⊤ → ϕ ⇒ ϕ, and
classical propositional logic Γ = CPC, which is axiomatizable by schema (ϕ → ⊥) → ⊥ ⇒ ϕ,
also written as ¬¬ϕ ⇒ ϕ. Write AΓ for the Lindenbaum Visser algebra of Γ, with elements
[ϕ]Γ = {ψ ∈ L : Γ ⊢ ψ ⇔ ϕ}. Given sequent theories Γ ⊆ ∆, the map πΓ

∆ : [ϕ]Γ 7→ [ϕ]∆
is a Visser algebra morphism from AΓ onto A∆. A Visser algebra morphism µ : A → B

induces a congruence on A in the usual way by x ∼ y exactly when µ(x) = µ(y). If A = AΓ

for some sequent theory Γ, then ∆(µ) = {ϕ⇒ ψ : [ϕ]Γ ∼ [ϕ ∧ ψ]Γ} is the unique sequent
theory containing Γ such that AΓ/(∼) ∼= A∆(µ) by the usual isomorphism [[ϕ]Γ]∼ 7→ [ϕ]∆(µ).
We call ∆(µ) the congruence theory implied by µ. Given sequent theories Γ ⊆ ∆ ⊆ ∆(µ),
map ν([ϕ]∆) = µ([ϕ]Γ) is the unique function (and Visser algebra morphism) that makes the
following diagram commute.

AΓ

πΓ
∆

��

µ
// B

A∆

∃! ν

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦
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where ν is an isomorphism exactly when ∆ = ∆(µ).
Given element a of Visser algebra A, we have Ra(A) ⊆ A. So each function µ from A

uniquely determines a restricted function µa from Ra(A). Let µ : A → B be a Visser algebra
morphism. Then the following diagram commutes, with µa(x

aa) = µ(x)µ(a)µ(a).

A

µ

��

γa
// Ra(A)

µa

��
B

γµ(a)
// Rµ(a)(B)

The following is not immediately self-evident since the idempotent onto maps γa and γµ(a) need
not be Visser algebra morphisms.

Proposition 4.5. Let a be element of Visser algebra A, and µ : A → B be a Visser algebra
morphism. Then µa is a Visser algebra morphism.

Proposition 4.6. Let Γ be a sequent theory. Then the congruence theory implied by γ0 : AΓ →
R0(AΓ) equals Γ + CPC.

We write Γ ⊢ ϕ as short for Γ ⊢ (⊤ ⇒ ϕ). This agrees with default practice over IPC,
where, with modus ponens, ϕ ⇒ ψ and ⊤ ⇒ ϕ → ψ are provably equivalent. So intuitionistic
theories can ignore sets of sequents in favor of sets of formulas, by simply dropping the ⊤ ⇒
part.

Define ξ(ϕ) as short for ((⊤ → ϕ) → ϕ) → (⊤ → ϕ). This is in agreement with the function
ξ over Visser algebras of the form AΓ, since ξ([ϕ]Γ) = [ξ(ϕ)]Γ.

Theorem 4.7. Let Γ be a sequent theory over BPC. Then for all formulas ϕ we have

1. Γ ⊢ ϕ→ ξ(⊥) if and only if Γ + CPC ⊢ ϕ→ ⊥

2. Γ ⊢ (ϕ→ ⊥) → ξ(⊥) if and only if Γ + CPC ⊢ ϕ

Over IPC, Theorem 4.7 reduces to the well-known:

Theorem 4.8 (Glivenko). Let Γ be a theory over IPC. Then for all formulas ϕ we have

1. Γ ⊢ ¬ϕ if and only if Γ + CPC ⊢ ¬ϕ

2. Γ ⊢ ¬¬ϕ if and only if Γ + CPC ⊢ ϕ
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