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Abstract

The growing neural gas (GNG) algorithm is an unsupervised learning method that is able to approx-
imate the structure of its input space with a network of prototypes. Each prototype represents a
local input space region and neighboring prototypes in the GNG network correspond to neighboring
regions in input space. Here we address two problems that can arise when using the GNG algorithm.
First, the GNG network structure becomes less and less meaningful with increasing dimensionality
of the input space as typical distance measures like the Euclidean distance loose their expressiveness
in higher dimensions. Second, the GNG itself does not provide a form of output that retains the
discovered neighborhood relations when compared with common distance measures. We show that a
GNG augmented with local input space histograms can mitigate both of these problems. We define a
sparse vector representation as output of the augmented GNG that preserves important neighborhood
relations while pruning erroneous relations that were introduced due to effects of high dimensionality.

1 Introduction

Large, high-dimensional datasets can be difficult to analyze and process if little to no knowl-
edge on potential structures or properties is available beforehand. In some cases unsupervised
learning algorithms can facilitate the analysis of such data as they are able to discover certain
structures like neighborhood relations without any apriori knowledge. One class of such algo-
rithms are topology representing networks [9]. These algorithms employ forms of unsupervised,
competitive Hebbian learning to approximate the structure of an input space with a network of
units where each unit is typically associated with a prototype or reference vector that represents
a local region of input space.

The growing neural gas (GNG) is one instance of this class of algorithms [2]. It uses a data-
driven growth process to incrementally build a prototype-based network model of its input space
where the resulting network structure forms an induced Delaunay triangulation of that space.
This contrasts the GNG algorithm from similar approaches like the self-organizing map [7],
which use a fixed network topology. On the one hand, this added flexibility allows the GNG to
reflect the input space structure in more detail. For example, the GNG network can develop
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disjoint sub-networks that indicate possible classes in the input data. On the other hand, if
the input data originates from a high-dimensional manifold, the expressiveness of the resulting
GNG network depends critically on the expressiveness of the used distance measure. In the
default case, i.e., when the Euclidean distance is used, the GNG network tends to become fully
connected losing most of its expressiveness. A second shortcoming of the GNG approach is
the lack of an output representation that preserves the discovered neighborhood relations such
that the output can be used in subsequent stages of processing that rely on common distance
measures.

To mitigate the first problem the concept of local input space histograms (LISH) was recently
introduced [5, 6]. Local input space histograms can augment prototype-based network models
like the GNG by collecting additional information about the input space structure that is
associated with the edges of such networks. Here we show that the additional information
provided by the LISHs can also be used to mitigate the second problem. Based on the additional
LISH information it is possible to form a sparse output representation of individual GNG
units that retains important neighborhood relations discovered by the GNG and makes this
information accessible to common distance measures. We explore the properties of this sparse
representation by a series of experiments in which we try to discover neighborhood relations in
the MNIST database of handwritten digits [8] in an unsupervised fashion.

The paper is organized as follows. The next section will briefly revisit the growing neural
gas algorithm and point out specific problems of the GNG with respect to high-dimensional
input spaces. Section 3 describes the concept of local input space histograms and introduces
the LISH average bin error as one measure to utilize the additional information provided by the
LISHs. Based on this measure a novel, sparse representation for the units in a prototype-based
network model is proposed and investigated in section 4. Finally, the paper concludes with
section 5.

2 Growing Neural Gas

The growing neural gas (GNG, [2]) is an unsupervised learning algorithm that can generate a
prototype-based model of an input dataset or its input space. Here we provide a short, formal
description of the GNG algorithm as presented by us in Kerdels and Peters, 2015 [6].

The growing neural gas is a network that consists of a set A of units and a set C' of edges.
Each unit a € A can be described by a tuple! (w,e) with the prototype w € R™, n being the
dimension of the input space, and the accumulated error variable e € R. Each edge ¢ € C' can
be described by a tuple (a,b,t) with the units a,b € A A a # b that are connected by the edge
and the variable ¢ € N which stores the current age of the edge. The direct neighborhood D, of
unit a is defined as D, := {b|3 (a,b,t) € C, b € A, t € N}. The network is initialized with two
units that have random prototypes and accumulated error variables set to zero.

A given input £ € R"™ is processed by the network in the following way:

e Find the two units s; and s whose prototypes are closest to the input &:
s1 = argmin {a.w —&la € A}, so:=argmin{a.w —&la € A\ {s1}}.

e Increment the age of all edges connected to si:
ct: =0, c€C ANca=8 N cb=bVbe Dy,.

e If no edge exists between s; and so, create one:

1The notation t.z is used to reference the element = within the tuple ¢.
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C:=CU{(s1,52,0)}.
e Reset the age of the edge between s; and so to zero:
at:=0, ce€C A caa=81 N cb= ss.
e Add the squared distance between the input ¢ and the prototype of unit s; to the accu-
mulated error of si:
Asyee = ||s1aw — €2

e Adapt the prototype of s; and all prototypes of its direct
neighbors b € Dy, :

Aspaw =€ (£ — s1aw), Abaw =€, (€ —baw), Vb € Dy, .

e Remove all edges with an age above a given threshold ¢,,,x and remove all units that no
longer have any edges connected to them.

e If an integer-multiple of A inputs was presented to the network insert a new unit . The
new unit is inserted between the unit ¢ € A with the maximum accumulated error and
the unit f € D, which has the largest accumulated error among the neighbors of ¢, i.e.,
the prototype of unit r is set to:

ra = (gw + fuw)/2.

Create edges between ¢ and r as well as f and r, and remove the edge between the units ¢
and f. Decrease the accumulated errors of ¢ and f by a factor « and set the accumulated
error of the new unit 7 to the decreased accumulated error of unit q.

e Finally, decrease the accumulated error of all units in A by a factor 3.

Typically, the inputs £ are randomly sampled from the input space and fed into the network until
a given halting criterion (e.g., a maximum network size) is met. Alternatively, the algorithm
can operate in an online fashion where the network is continuously updated with each further
input but does not grow beyond a maximum number of units. The latter approach was used
here. In all experiments described below the following parameter values were used:

e = 005 e = 00005  tmax = 300,
A 1000, a = 0.5, B 0.0005.

Once the GNG has processed a sufficient number of samples from the input space and has
reached a given maximum size the resulting GNG network forms an induced Delaunay trian-
gulation of the respective input space. Figure 1 shows two examples of such GNG networks
for two different input spaces. In figure la the network represents a uniformly distributed,
two-dimensional, circular input space. The position of each unit in the figure (blue squares)
corresponds directly to the input space position encoded in the particular prototype vector.
In this low-dimensional case each unit has a narrow local neighborhood that facilitates a clear
distinction between units being close together or far apart. In contrast, the GNG network in fig-
ure 1b represents a high-dimensional input space based on the MNIST database of handwritten
digits [8]. Each input is a 784-dimensional vector containing 28 x 28 pixel values. The position
of each unit in the figure is determined by a common force-based graph drawing algorithm [3]
and is visualized by a bitmap representation of the corresponding prototype vector. In this
high-dimensional case the discrimination of units based on their local neighborhoods becomes
more difficult as the local neighborhoods increase in size, which in turn decreases the average
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Figure 1: Examples of growing neural gas (GNG) networks with 50 units for two different
input spaces. (a) A GNG network that processed inputs from a uniformly distributed, two-
dimensional, circular input space. (b) A GNG network that has processed inputs from the
MNIST database of handwritten digits where each input is a 784-dimensional vector (28 x 28
pixels).

Figure 2: GNG network of an input space based on the MNIST database of handwritten digits
where each input was augmented with the corresponding class of the shown digit (white mark
above the digit represents the class).

path length between any two units. This increase in neighborhood size is caused by a loss of
expressiveness of the employed distance measure — the Euclidean distance — with increasing
dimensionality.

Common approaches to mitigate this problem include the use of non-standard distance
metrics [1, 4, 10] or switching to a supervised learning strategy where extrinsic information
augments the input samples and guides the algorithm to infer which samples are similar and
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which are not. The result of such a supervised strategy is shown in figure 2. Here, the inputs
based on the MNIST dataset were augmented by a mark that corresponds to the digit’s class.
Accordingly, the GNG was able to form 10 distinct groups that match these classes. However,
this approach requires a labeled training dataset which is not available in the general case, i.e.,
when unsupervised learning is required.

Recently, we introduced an alternative approach to mitigate the problem of discriminating
high-dimensional prototypes in prototype-based network models called local input space his-
tograms (LISH) [5, 6]. In essence, a LISH collects additional information on the distribution of
input samples that lie between two prototypes of a model and ties this information to the edge
that connects these prototypes. The idea of a LISH, which is described in detail in the next sec-
tion, can be applied to any unsupervised learning algorithm that uses a network of prototypes
to model an input space and can augment approaches that use more advanced, non-standard
distance metrics as well.

3 Local Input Space Histograms

Prototype-based network models approximate an input space piecewise by a set of prototypes
and their relation to one another. In case of a GNG an edge between two GNG units indicates
that the input space between the corresponding prototypes is not empty. However, the GNG
edges do not convey any further information about the possible structure of the underlying input
space. To gather more information in this regard the concept of local input space histograms
(LISH) was introduced [5, 6]. A LISH is a small histogram H = {hq,...,hx_1}, e.g., with
k = 16 bins, that is added to each edge ¢ € C, ¢ = (a,b,t, H) of a GNG network. With each
input £ the LISH on the edge between the best and second best matching units s; and ss is
updated based on a distance ratio r:

_ sl —lsw =gl |

Is1.w — saaw||
with s1.w and so.w the prototypes of the BMUs with respect to the input £&. The ratio r ranges
from 0 to 1 and describes the relative distance of the current input £ to the prototypes of the
best and second best matching units. If r is close to zero, the input £ lies close to the prototype
of unit s;. If 7 is close to one, the input £ has about the same distance to units s; and so,
i.e., the input lies either halfway between or very far away from the prototypes. Since every
LISH c.H is shared by the two units c.a and c.b that are connected by the edge ¢, the ratio r
is used to either update the upper or the lower half of the histogram c.H depending on which
of the units c.a or c.b is the BMU s7:

_ | k(r/2)] if ca = s, _
Ahu—l, U—{ Lk(l*T/Q)J i C.b:517 hMEC-H—{hQ,...,hkfl}.

As a result, the set of partial histograms associated with a single unit a that lie on all edges
connected to a collectively represent the distribution of inputs in the Voronoi cell surrounding
the prototype of unit a. Therefore, a single histogram c.H of a particular edge ¢ combines the
partial distributions of inputs from two neighboring Voronoi cells. It represents the distribution
of inputs that lie approximately between the units c.a and c.b.

This additional information on the input space structure can be used in various ways. For
example, it can be used to approximate the input space density between two connected units c.a
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(a) (b)

Figure 3: Example of using local input space histograms to improve the force-based graph
drawing of the GNG network shown in figure 1b. (a) Using the LISH average bin error passed
through a non-linearity to determine the strength of the network edges. The resulting drawing
reveals more details of the input space structure compared to the graph rendered with equal edge
weights (fig. 1b). (b) Same graph as in (a) but with all edges and local input space histograms
visible. GNG units represented by light blue squares. Light orange bars in histograms represent
counts, dark red bars in histograms represent square roots of counts.

and c.b by calculating the average bin error ey of the histogram c.H:

E

k—1 .
€y = Zei, e; = { I/E/hl lf hzio’ hiEH:{ho,...,hkfl}.
1=0

In case the density of the respective input space region is low, the value of €y will be near one.
If the density is high, the value of ég will be near zero.

It was previously shown that visualization and clustering of GNG-based representations
can be improved by using the LISH average bin error to estimate the density of input space
regions [6]. One example is shown in figure 3a where the strength of the network edges was de-
termined by passing the LISH average bin error of each edge through a non-linearity. Compared
to the force-based graph drawing of the same network shown in figure 1b the LISH-weighted
version reveals much more details of the underlying input space structure. Figure 3b shows the
same graph as in figure 3a but with all edges and local input space histograms visible. The
histograms display a wide variety of distributions including those that indicate a sparse input
space between the corresponding units.
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4 Sparse Representation

The previous section introduced the concept of local input space histograms and referred briefly
to their benefit for visualization and clustering of GNG-based input space representations [6].
Another use case of prototype-based models is vector quantization where the set of units is used
as a finite set of discrete entities to which the inputs are mapped. Typically, the output of this
quantization for a particular input £ is either the prototype of the respective BMU or a one-hot
encoded representation of the BMU itself. The former output format can be used for tasks like
reconstructing incomplete or noisy inputs, whereas the latter format is more suitable for, e.g.,
building histograms that describe the distribution of inputs. However, both output formats are
not particularly useful in cases where the output of the GNG is used as input to a subsequent
processing stage as neither output format preserves any neighborhood relations discovered by
the GNG. Though it may be possible to construct a ranking of nearest prototypes according to
a given distance measure when using the prototype-based output, such a ranking would be of
limited value in the high-dimensional case as the actual similarity of the different entries is not
described well by common distance measures like the Euclidean distance.

As a possible solution to this problem we propose a novel, relaxed one-hot encoding that
represents not only a single unit of the GNG but also its direct neighborhood. Given a GNG
with M units {ag,...,ar—1} we define the output vector y := (yo,...,ynm—1) of the GNG in
response to an input & as:

1 if a; = 81,
Y = l1—¢€.g if ceC AN ca=s N abée Dy,
0 otherwise,

with ¢ € {0,..., M — 1}, s; the BMU with respect to input &, and Dy, the direct neighborhood
of s1 as defined above. In this representation the additional information provided by the local
input space histograms is used to describe the direct neighborhood of a unit a in terms of the
average bin error ég, i.e., the estimated input space density. If the input space between unit a
and one of its neighbors b is dense, the corresponding entry in the output vector will be close
to one. If the input space is sparse, the entry will be close to zero. As a consequence, output
vectors of units that are direct neighbors or that share common neighbors will overlap in the
corresponding entries allowing regular distance measures to detect these relationships. Using
the LISH average bin error to quantify the strength of the neighborhood relations emphasizes
those relations that are backed up by a continuum of input samples spanning the input space
region between the particular units.

To investigate the proposed encoding we trained a GNG h with samples from the MNIST
database and fed the output of h into a second GNG r using the relaxed one-hot encoding
described above. Figure 4 shows the resulting structure of GNG r when both A and 7 have 50
GNG units. Subfigure 4a renders the prototypes of r as bitmaps with high values represented
by light colors and low values represented by dark colors. The shown prototypes reveal the
sparse patterns that result from the relaxed one-hot encoded input. As expected, neighboring
units clearly exhibit similar sparse patterns corresponding to neighboring local regions in the
original MNIST input space. To illustrate the latter relation figure 4b shows prototypes of
GNG h superimposed on the network of GNG r. Each prototype was chosen according to the
highest entry in the prototype vector of the respective unit in . The overlay substantiates that
neighboring units in the second GNG r do indeed refer to neighboring regions in the original
MNIST input space of the underlying GNG h.

Since both GNGs h and r have the same number of units, the second GNG r can allocate a
single unit for each possible input pattern originating from h. As a consequence, the edges in r
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Figure 4: Example of a GNG r that processed the relaxed one-hot encoded output of a
GNG h that processed samples from the MNIST database of handwritten digits. (a) Prototypes
of GNG r reveal the sparse patterns resulting from the relaxed one-hot encoded outputs of
GNG h. (b) Prototypes of GNG h superimposed on the network of GNG r. The shown
prototypes correspond to the entry with highest value in the respective prototypes of GNG r.

form mostly chains of units that refer pairwise to the most similar units in h with regard to the
LISH average bin error between these units. Thus, it remains to be shown if the relaxed one-hot
encoding can retain meaningful information on the relation of units in GNG A if the number
of units in GNG r decreases and the resulting prototypes in r have to represent more than one
unit of GNG h, i.e., a bigger local region of the underlying input space. Figures 5a-c show
the networks of three GNGs {rs3g, r20, 710} with decreasing numbers of units that processed the
relaxed one-hot encoded outputs of an underlying GNG h with 50 units trained on the MNIST
input space. As in figure 4b the shown prototypes originate from the underlying GNG h and
are chosen according to the highest entry in the respective prototype vector of GNG r;. The
resulting network structures indicate that meaningful neighborhood relations can indeed be
retained by the respective prototypes of the GNGs r;. Even in the case of GNG ryy with
only 10 units (fig. 5¢) the average degree of the units remains low and the shown prototypes
of neighboring units exhibit plausible similarities. In contrast, if the MNIST input space is
processed directly by a GNG with only 10 units, the average degree per unit is significantly
higher such that almost every unit has every other unit as direct neighbor (fig. 5d).

To provide a more detailed look at the composition of prototype vectors in GNG r;g figure 6
shows all vector entries with a value above 0.05 for two prototype vectors of r1g, which are
marked by a blue circle and a green square in figure 5c¢. In addition to their numerical value
the shown entries are supplemented with renderings of the corresponding prototypes from the
underlying GNG h. The entries are sorted left-to-right and top-to-bottom by value in descending
order. The degree of similarity between the prototype associated with the highest value (top-
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(c) 10 units (d) 10 units direct MNIST

Figure 5: (a-c) Three GNGs (a) rso, (b) 720, and (c¢) 119 with decreasing numbers of units that
processed the relaxed one-hot encoded outputs of an underlying GNG h with 50 units trained
on the MNIST input space. Shown prototypes originate from h and were chosen as in figure 4b.
Prototype entries of the units marked with a blue circle and a green square (c) are shown in
figure 6. (d) For comparison: GNG with 10 units that was trained on the MNIST input space
directly.
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Figure 6: Vector entries with a value above 0.05 of two prototype vectors from the GNG 79
shown in figure 5c. For each entry its value and the corresponding prototype of the underlying
GNG h are shown. (a) Prototype entries of the unit marked with a blue circle in figure 5c.
(b) Prototype entries of the unit marked with a green square in figure 5c.

left) and the remaining prototypes appears to correspond well to the numerical differences
between the respective values. Furthermore, the number of prototype entries of substantial size
is small compared to the overall number of entries (50), i.e., although the prototype vectors of
GNG rqg refer to larger local regions in the underlying MNIST input space they remain sparse.

The ability to learn a single, meaningful sparse representation that covers multiple, simi-
lar input regions may prove to be an important property. Common prototype-based models
represent their input space by a set of prototypes where each prototype represents a local re-
gion of input space. The shape of this local region depends on the used distance measure.
In case of the widely used Euclidean distance each local region is a convex polyhedron. As a
consequence, complex regions in the input space, e.g., a region that corresponds to a certain
class of inputs (“number 0”7, “flowers”, “faces”, etc.) have to be approximated piecewise by a
group of prototypes. Identifying which prototypes belong to which group in an unsupervised
fashion is a nontrivial task. The proposed relaxed one-hot encoding may facilitate this process
by enabling the identification of neighboring prototypes through common distance measures.
For example, the individual prototypes of the GNG r1¢ (fig. 5¢) seem to capture at least some
characteristics of the numerical classes, i.e., complex regions, that are present in the MNIST
input space. Assuming that the resulting sparse representations of such a secondary model
do represent classes or meaningful attributes, the sparseness of the representation may also be
utilized to form combined representations, i.e., feature vectors that represent multiple attributes
at once.
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5 Conclusion

We presented a sparse representation for units of prototype-based network models that is based
on the additional information provided by local input space histograms. The results of our ex-
periments indicate that this representation is able to retain important neighborhood relations
discovered by the prototype-based model while pruning erroneous relations that were intro-
duced to the model due to effects of high dimensionality. The proposed representation offers a
new method to encode the units of a prototype-based model in such a way that the relations
discovered by the model can be recognized by common distance measures in onward stages of
processing, e.g., in a cascade of prototype-based models where the prototypes of subsequent
models can learn to represent more complex regions of the original input space.

The presented ideas are not specific to the GNG algorithm. Essentially, they can be adapted
to any machine learning algorithm that forms a graph-based representation of its input space.
Thus, the proposed sparse output format can be seen as a rather general approach to preserve
learned neighborhood relations for any type of further processing that just operates on vector
inputs.

Open questions related to the presented methods involve the effects of non standard distance
measures on the ratio r and the resulting LISHs, the exploration of alternatives to the LISH
average bin error for characterizing associated regions of input space, or the investigation if and
how multiple vectors encoded with the proposed sparse representation could be combined to
form, e.g., feature vectors.
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