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Abstract

Choices in the semantics and the signature of a theory are integral in determining how
the theory is used and how challenging it is to reason over it. Our interest in this paper
lies in the SMT theory of sequences. Various versions of it exist in the literature and
in state-of-the-art SMT solvers, but it has not yet been standardized in the SMT-LIB.
We reflect on its existing variants, and we define a set of theory design criteria to help
determine what makes one variant of a theory better than another. The criteria we define
can be used to appraise theory proposals for other theories as well. Based on these criteria,
we propose a series of changes to the SMT theory of sequences as a contribution to the
discussion regarding its standardization.

1 Introduction

The SMT theory of arrays, introduced by McCarthy [19], maps index terms of a given sort to
value terms of another sort. The theory provides two functions: the select(a, i) function, which
takes an array a and index i, and returns the value stored at i in a; and the store(a, i, v) function,
which takes an array a, an index i, and a value v, and returns a modified copy of a in which
the value v is at the index i. This theory is minimal and generic, and many efficient decision
procedures have been proposed for it [11, 8, 10]. However, the theory’s lack of expressiveness
hinders reasoning on more complex data structures, as it makes it necessary to define additional
functions and to use axiomatization, eventually with quantifiers, to express properties on such
data structures.

Thus, when it comes to verifying properties of a given data structure using SMT solvers, it
is more convenient to have a tailored theory that clearly and concisely describes the semantics
of the higher-level operations on that data structure. Not only does this make verification easier
for the user, but it can also pave the way for more dedicated and efficient decision procedures
for the theory. Examples of such theories are the theory of strings and the theory of sequences,
which have both sparked a lot of interest in recent years.

Sequences are a common data structure in programming languages, although they may be
known by different names and have various implementations. Sequences can have fixed sizes,
like arrays in C, C++, Rust, OCaml, and Java, or they can be dynamic, like vectors in C++
and Rust, ArrayLists in Java, arrays in JavaScript, and lists in Python. In addition to the
common array operations, such as storing and selecting values at an index, some languages
support higher-level operations such as concatenation, slicing, mapping, filtering, and folding.

N. Bjørner, M. Heule and A. Voronkov (eds.), LPAR 2024C (Kalpa Publications in Computing, vol. 18),
pp. 14–29
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Recent studies tend to confirm our hypothesis: it is more efficient to verify properties of such
data structures with an SMT solver by using the theory of sequences rather than the theory of
arrays with additional axiomatization [22].

The theory of sequences differs from the theory of arrays in that sequences are dynamic
and can change in size, while arrays have a fixed size determined by the sort of the indices and
the number of possible values it has. Sequences are always indexed by integers, whereas arrays
don’t have such restrictions on their index sort. Additionally, the signature of the theory of
sequences is richer than that of the theory of arrays; it includes functions for concatenation,
slicing, subsequence extraction, etc. The nth(s, i) function from the theory of sequences takes
a sequence s and an index i, returning the value stored at the ith index of the sequence, akin
to the select function in the array theory. However, the mathematical interpretation of this
function on sequences is partial to valid indices, which are those within the bounds of the
sequence. As the SMT-LIB is a total logic, such functions are totalized.

A function is considered partial when it is not defined for all possible inputs, thus being
applicable outside its domain. The returned value in such cases depends on how the function
is totalized. Partial function totalization can be achieved in three ways. Firstly, through
underspecification, which consists in returning an uninterpreted value. An uninterpreted value
has no associated interpretation, meaning it is unconstrained and can be any value of the right
sort. Secondly, overspecification, which entails returning a default constant value when a partial
function is applied outside its domain. Thirdly, the additional argument approach, where an
argument is added to the function. This argument will be returned when the function is applied
outside its domain, allowing the user to determine the return value by providing that value to
the function.

In this paper, we aim to discuss the design of the theory of sequences. We will define a set of
criteria that ought to be taken into consideration when designing an SMT theory. Additionally,
we will describe the various approaches used in the literature and in SMT solvers to totalize
partial functions. Then, we will apply the criteria we have defined to suggest some variations
to the theory of sequences. These variations aim to improve the theory for both those trying
to reason over it and the users of the theory.

The paper is organized as follows: We begin by stating the notation we use in Section 2.
Section 3 summarizes the known theories of sequences in the literature and in SMT solvers,
and discusses the differences between them. In Section 4, we define a set of SMT theory design
criteria that we consider as important to take into account when designing an SMT theory.
Section 5 explores how partial functions are dealt with in SMT literature and discusses which
approach is adequate when. In Section 6, we propose variations of the theory of sequences that
we have designed, taking into account the criteria described in Section 4, and discuss why we
believe they are better. Finally, we conclude in Section 7.

Related work Regarding theory design, some standardized theories in the SMT-LIB are
actually based on published work proposing signatures and semantics for these theories. t is
the case for the theory of Floating Point arithmetic [20, 7] and the theory of strings [3]. To
our knowledge, theory design is not discussed in other contributions as clearly as it is here, but
there are extensive discussions on the subject available on the SMT-LIB mailing list1.

On the subject of handling partial functions, it is a known problem in mathematical logic
in general. There are few works on it in Satisfiability Modulo Theories [2]. However, there is
more significant literature on the topic in related fields such as HOL (Higher Order Logic) and
proof assistant development [21, 17, 16].

1Available at: https://groups.google.com/g/smt-lib
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The theory of sequences was introduced relatively recently, it was first formalized by Bjørner
et al. [3]. Sheng et al. developed calculi to reason over their variant of the theory of sequences
[22]. Additionally, there are works on the theory of arrays that extend the theory with a length
function [5, 15], a concatenation function [23], and others [6, 12, 14], giving arrays similar
properties to those of sequences.

2 Notation

Array is the sort of arrays, Elem is the sort of values, Int is the sort of integers, Seq is the sort of
sequences, and Bool is the sort of boolean values. The symbols min and max denote the usual
mathematical functions. ite is the commonly used function in the SMT-LIB Standard. The
symbol α represents a sort variable and can be any sort. The sort of higher-order functions
(T1 → ... → Tn−1 → Tn) is used as a simplification for the sort ArrayT1(Array...(ArrayTn−1Tn)).
In let x = v, y, the let symbol binds a variable x to a term v in a term y.

3 The theory of sequences

Sequences are 0-indexed ordered collections of elements with dynamic lengths. The SMT theory
of sequences was proposed by Bjørner et al. [3] as a generalization of the theory of strings to
non-character values (Seq). State-of-the-art SMT solvers such as CVC52 [22] and Z33 support
theories of sequences, referred to as Seqcvc5 and Seqz3 respectively. Their signatures share many
symbols with Seq, along with some additions and deductions.

Extensions to the theory of arrays, such as Wang and Appel’s theory of arrays with con-
catenation [23], referred to as Arrayc, extend the theory of arrays with length, slice, and concat
operators. Since this provides arrays with properties similar to those of sequences, mainly
0-indexing and length, we will refer to Arrayc’s arrays as sequences.

3.1 Known theories

We present the signatures of Seqcvc5 and Seqz3, starting with the shared symbols of the two,
then the specificities of each one:

• Common symbols to Seqcvc5 and Seqz3:

– seq.empty: the empty sequence

– seq.unit(v): a sequence of length 1 containing only the value v

– seq.len(s): the length of the sequence s

– seq.nth(s, i): the value associated with the ith index of s if i is within the bounds of
s, an uninterpreted value otherwise

– seq.extract(s, i, l): the extracted maximal sub-sequence of s, starting at i of length l
if i is within the bounds of s and l is positive, the empty sequence otherwise

– seq.concat(s1, ..., sn): the concatenation of the sequences s1, ..., and sn

– seq.at(s, i): a unit sequence containing the ith value in s if i is within the bounds of
s, the empty sequence otherwise

2CVC5’s sequence theory: https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html
3Z3’s sequence theory: https://microsoft.github.io/z3guide/docs/theories/Sequences
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– seq.contains(s1, s2): true if s1 is a sub-sequence of s2, false otherwise

– seq.indexof(s, s′, i): the first position of s′ in s at or after i, −1 if there are no
occurrences

– seq.replace(s, s1, s2): the resulting sequence from replacing the first occurrence of s1
with s2 in s if s1 occurs in s, s otherwise

– seq.prefixof(s′, s): true if s′ is a prefix of s, false otherwise

– seq.suffixof(s′, s): true if s′ is a suffix of s, false otherwise

• Symbols belonging to Seqcvc5 only:

– seq.replace all(s, s1, s2): the resulting sequence from replacing all occurrences of s1
with s2 in s, s if s1 does not occur in s

– seq.rev(s): the resulting sequence from reversing s

– seq.update(s1, i, s2): New sequence of the same size as s1, in which, if i is within the
bounds of s1, then the values from i to i+ seq.len(s2)− 1 are the same values as in
s2 and the other values are the same as in s1, otherwise it equals s1

• Symbols belonging to Seqz3 only:

– seq.map(fn, s): the sequence of sort (Seq E’) resulting from applying fn, which is of
sort (Array E E’) with E as the sort of the values of s, to all the values of s

– seq.mapi(fn, o, s): the sequence of sort (Seq E’) resulting from applying fn, which is
of sort (Array Int (Array E E’)) with E as the sort of the values of s, to all the values
of s and their indices starting from the offset o

– seq.fold left(fn, b, s): The result of folding over s of sort Seq E, with an initial value
b of sort E’, using the function fn of sort (Array E’ (Array E E’))

– seq.fold lefti(fn, o, b, s): The result of folding over the values of s of sort Seq E
and their indices, with an initial value b of sort E’, using the function fn of sort
(Array Int (Array E’ (Array E E’))), starting from the offset o

The seq.update function is described differently in the paper that describes the reasoning
implemented in CVC5 [22] for the theory of sequences and in the documentation of CVC54. In
the paper, it is described as a function that sets only the value of one index, and takes that
value as a third argument, while in the documentation it takes a sequence as a third argument.

The signature of Arrayc is the following:

• lengthS(s): the length of s

• nthS(i, s): the ith value of s, if i is out of the bounds of s then the value is the default value
of the sort of values, the theory assumes that every value sort has a variable corresponding
to the default value of that sort

• repeatS(v, n): a sequence of size n if n is positive, in which all values are v, the empty
sequence if n is negative

• appS(s1, s2): concatenates s1 and s2

4CVC5’s sequence theory: https://cvc5.github.io/docs-ci/docs-main/theories/sequences.html
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• sliceS(i, j, s): a sub-sequence of s from max(i, 0) to min(j, l), with l as the length of s, the
empty sequence if such a sub-sequence does not exist

• mapf (s1, ..., sk): the sequence resulting from applying f element-wise to the n first ele-
ments of the sequences s1, ..., sk, where n is min(lengthS(s1), ..., lengthS(sk))

• update(i, s, x): returns an updated version of s in which i is mapped to x if i is within
the bounds of s. It is mentioned that the function update is reduced to a concatenation
of the sequences slice(0, i, s), repeat(v, 1) and slice(i+ 1, length(s), s) when i is within the
bounds of s.

The mapf symbol from Arrayc is similar to the map function over arrays described in a
paper by de Moura and Bjørner presenting the CAL (Combinatory Array Logic) array decision
procedure [11].

3.2 Discussion

The theory of sequences is seen as a generalization of the theory of strings to non-character
values. Its signature is largely based on that of the theory of strings. From the available
literature [22] and the properties of sequences in the theory, such as being 0-indexed and
having dynamic lengths, we understand that the theory of sequences serves the purpose of
more adequately representing arrays as found in programming languages than what the theory
of arrays can do. However, a seq.set function in Seq, which would correspond to the store
function in the theory of arrays and store one value at one index in a sequence, is missing. This
is problematic as that function is usually present in array-like data structures, such as the array
assignment operation in C.

Having a rich signature that allows all necessary functions and predicates on values of a
theory makes that theory expressive. This means that when users need to express properties in
that theory, they will not have to define or axiomatize them if they can rely on the theory’s built-
in symbols. However, a theory’s signature affects how to reason over it. For example, when
working with Seq, it is natural to adapt reasoning over strings to reasoning over sequences,
since the signatures of the theory of strings and that of Seq have many similarities. If only
a fragment of Seq is used, for example, one in which operations over sub-sequences such as
seq.extract, seq.concat, and seq.update are not supported, then reasoning over arrays can more
easily be adapted to that fragment of Seq than to Seq itself. Therefore, having simpler, minimal
fragments of a theory can allow for the development of tailored reasoning for that fragment,
which can be more efficient than the reasoning used for the whole theory. This is, for example,
the case for Integer (resp. Real) Difference Logic, which is a fragment of Integer (resp. Real)
Linear Arithmetic and has its own reasoning techniques.

Looking at the Seqz3 and Arrayc theories, the map symbol is present, albeit with different
semantics. Seqz3 has a seq.map function and a seq.fold left function similar to those commonly
encountered in ML and more generally in functional programming languages. The seq.map
function applies a function to all the elements of a sequence and produces a new sequence,
while seq.fold left iterates over all the elements of a sequence and applies a function to them
and to an accumulator that can be of any other sort, returning that accumulator to pass it to
the function in the next iterations. Since the SMT-LIB standard version 2.6 does not support
higher-order functions, the functions are represented using arrays, and to express complex
functions using arrays, it is usually necessary to use quantifiers, which SMT solvers often
struggle with. However, such functions would be useful for modeling array-like or list-like data
structures from functional programming languages. The mapf function is similar to the one
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present in the CAL extension of the theory of arrays [11], and it applies a function f element-
wise to the k elements of n arrays, where k is the length of the smallest of the n arrays, so
applying it to one array makes it similar to the seq.map function from Seqz3.

4 Design Criteria

In this section, we will define a set of criteria that we consider important when designing an
SMT theory and choosing its signature and semantics.

4.1 Expressiveness

Having clear semantics and a rich signature with both the necessary functions to perform
commonly encountered operations and the predicates to express the properties that need to
be verified is necessary in a theory. It simplifies the work of the users of that theory as they
don’t have to define or axiomatize additional symbols in the signature of the theory to use it.
For example, in the theory of fixed-size bit-vectors, there are bitwise operations like bvand and
bvor, as well as bit-vector arithmetic operations like bvadd and bvsub, which are commonly used
when working with machine integers.

Written SMT formulae in files, whether by a user or automatically generated by tools like
Why3 [13], Dafny [18], etc., can easily become large and complex. Therefore, expressiveness
in theories plays an important role in clarity, understanding, and efficiency. Frequently, when
a theory is missing needed features that can be built-in, adding them requires axiomatization
with quantifiers, and quantifiers are known to be hard for solvers to work with and can be
harder for users to understand.

4.2 Implementability and efficiency

The goal of this criterion is to ensure that reasoning over the theory in question is reasonably
implementable in an SMT theory combination framework, with the constraints that come with
it. Although the implementability and efficiency of a reasoning over a theory depend more on the
reasoning itself rather than on the theory, they are significantly affected by the design choices of
a theory, as that determines how complex the reasoning would need to be. Having a theory with
a concise set of symbols and clear semantics will make it easier to formalize reasoning over it and
to implement it. Additionally, theory functions should have well-formalized behavior, with not
many special cases in which the behavior significantly changes or becomes more complicated.

This criterion is hard to measure, but when it comes to theory design, it is something that
should be taken into account when deciding what signature and semantics to give a theory.
It also involves a compromise with expressiveness since making a theory too expressive can
complicate the task for those who try to reason over it and implement the reasoning.

4.3 Avoiding surprises and user-friendliness

A theory’s semantics need to be as clear as possible. The symbols defined in the theory should
have straightforward semantics and not many special cases in which they behave differently.
Such complexity would make it harder to understand and solve any issues that may be encoun-
tered while using the theory. The symbols should also be consistent with one another in the
theory, for example regarding associativity (when it is possible to choose) or the order of the
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arguments. This consistency is evident in the theory of arrays, where both the select and store
functions take an array term and an index term as the first and second arguments, respectively.

5 Handling of partial functions

Partial functions are functions that can be applied outside their domain of definition. To address
partial functions, there are three known approaches: underspecification, overspecification, or
by adding an argument to be returned when the function is applied outside its domain. In this
section, we will clarify these three techniques.

5.1 Underspecification

This approach consists of treating values returned by functions when they are applied to ar-
guments for which they are not defined as uninterpreted values. An uninterpreted value is
unconstrained and can be any value of the correct sort. Therefore, when checking the satisfia-
bility of an assertion containing such a value, the assertion is either satisfiable, or if it isn’t, then
it needs to be unsatisfiable for any possible value for that uninterpreted value. This approach
was taken for integer and real division. When an integer (resp. real) value is divided by zero in
the (Non-)Linear Integer (resp. Real) Arithmetic theory, the resulting value is uninterpreted.

When a user models a program’s behavior, the underspecified approach is a safe choice
because when a goal is proven to be unsatisfiable, it is proven for any value of the same sort.
However, this approach can affect the decidability of a theory. For example, the theory of
Real Difference Logic is decidable but becomes undecidable when combined with uninterpreted
unary predicates [4].

Implementing this approach is not difficult if the framework in which it is implemented has
a solver for the theory of uninterpreted functions. Otherwise, dependency on another theory
can be problematic for developers of solvers that do not support the theory of uninterpreted
functions. Moreover, in the satisfiable case, checking the validity of a model may require the
value chosen by the solvers for the uninterpreted value that led to the satisfiable result. Yet,
there is no syntax for specifying such values in the SMT-LIB standard version 2.6 [9].

5.2 Overspecification

Another way to handle partially defined functions is by selecting a constant value to be returned
when the function is applied outside its domain. For instance, in the theory of Fixed Size Bit-
Vectors, the function bvudiv takes two bit-vectors of the same size as arguments and returns
a bit-vector of the same size, representing the result of the unsigned division between the two
bit-vectors. When the second argument is a bit-vector of zeros, bvudiv returns a bit-vector
representing the value −1, which contains only ones. The rationale behind this choice is that
bit-vectors are commonly used in circuit calculations, and when a circuit receives a zero, it
returns all ones5. While such justifications apply to some choices of values, it is often unclear
which value should be chosen, especially when the chosen value can be obtained by applying
the function within its domain.

In the case of the Floating-Point Arithmetic theory, which follows the IEEE standard 754-
2008 [1], the NaN value is used to represent undefined values. It serves as a catch-all case for
the undefined behavior of the theory’s functions. However, equivalent values do not exist in
other theories. A clear advantage of this approach is that it facilitates the detection of undefined

5According to: https://cs.nyu.edu/pipermail/smt-lib/2015/000966.html
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behavior since such cases are not silently treated. Encountering a NaN typically indicates that a
partial function was applied outside its domain, although it’s important to note that comparing
a value to NaN always results in false, so the approach is not entirely foolproof and requires
additional checks that values are not NaN.

The primary advantage of this approach is to have a predetermined value as a result when-
ever the function is applied outside its domain. This provides solvers with less flexibility in
how to handle such values, establishing a sort of uniformity in their behavior in such cases.
Additionally, it simplifies implementations, as solvers do not need to support the theory of
uninterpreted functions or depend on it to handle such cases, they simply need to return the
predetermined constant value.

Another example of this approach is seen in the Arrayc theory with the nthS function, which
returns a default value when the index is out of bounds of the sequence. The theory assumes
that every theory of values has such a default value. However, relying on a default value to
be returned can lead to unexpected results. For instance, if applied on integer division, while
1
0 = 2 would not be provable, 1

0 = 2
0 would be provable since 1

0 and 2
0 have the same integer

default value.

5.3 Returned value as an argument

The idea behind this approach is to let the user decide. Instead of choosing a default value to
return or returning an uninterpreted value, the user can choose which value to return by adding
an argument to the function, the value of which will be returned when the function is applied
outside its domain.

With this approach, if a user needs a partial function to return a specific constant value,
they simply need to provide that constant value to the function. If they need an unconstrained
value, they can also provide an uninterpreted constant. Implementation-wise, it is straight-
forward since it involves returning a value provided as an argument whenever the function is
applied outside its domain. Moreover, it enhances user-friendliness by giving users control over
the returned value when undefined behavior occurs, enabling easy detection and appropriate
handling of such cases.

Although not common in the SMT-LIB standard, this approach has been suggested in
past discussions on SMT theory design as a preferable solution compared to the previous two
approaches, as it represents a compromise between them.

Considering a modified version of the seq.nth function from Seq, called seq.nth′, of sort
Seq → Int → Elem → Elem where this approach is utilized, with the third argument representing
the default value. If seq.nth′ is used in a quantification, and underspecification behavior is
desired, one way to achieve it is by defining a function nth defval of sort Seq → Int → Elem
such that seq.nth(s, i) = seq.nth′(s, i, nth defval(s, i)). However, defining nth defval is currently
not possible in SMT-LIB version 2.6 due to the lack of polymorphism. Therefore, the usage
of such an approach may be limited until SMT-LIB version 3 is released, which would allow
polymorphism, already supported by some SMT solvers such as Alt-Ergo.

6 Designing theories of sequences

In this section, we propose changes to the theory of sequences by considering the criteria outlined
in the previous sections. Our version of the theory is based on Seqcvc5, Seqz3, and Arrayc.
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no overflow left overflow right overflow left-right overflow

Seqcvc5

Proposal

Figure 1: Comparison of the semantics of update in Seqcvc5 and our proposal: the gray sequence
is updated using the white sequence at different offsets.

6.1 Proposed changes to symbols of the theory of sequences

Below, we list and explain our modification choices for some sequence functions:

• seq.get(s, i): It is similar to the select function of the Array theory and the seq.nth (resp.
nthS) function from the Seqcvc5 and Seqz3 theories (resp. Arrayc theory). It returns the
value associated with the index i in the sequence s when i is within the bounds of s.
The function is partial as it is not defined when the index i is out of the bounds of the
sequence s. In the Seqcvc5 and Seqz3 theories, seq.nth is totalized by underspecification.
While in Arrayc, the default value approach is chosen, by assuming that all value theories
have a variable that corresponds to that default value.

Due to the issues mentioned in the previous section related to the usage of the default
argument as a return value for undefined behavior without polymorphism, we chose to
follow the underspecification approach by returning an uninterpreted value when i isn’t
in the bounds of s.

The name of the symbol is seq.get and not seq.nth to make it consistent with the seq.set
symbol that will be described next.

• seq.set(s, i, v): It is similar to the store Array theory function and not present in the theories
of sequences, but it can be represented in Seqcvc5 with seq.update(s, i, seq.unit(v)). It is
also similar to the update function of Arrayc. It returns a new sequence in which the value
v is stored at the ith index if i is within the bounds of s, and it is undefined otherwise.

In programming languages, accessing an array-like data structure out of its bounds usually
results in an error. It can be argued that the function should show that it failed when it is
applied outside its domain. One possible way to represent that failure is by returning the
empty sequence. However, the semantics of the theory do not necessarily need to exactly
follow the semantics of the programming languages they are used to prove the soundness
of. Additionally, to use axioms from the Array theory decision procedures to reason over
sequences, such as the select-over-store [10, 11] which dictates:

select-over-store
a = store(b, i, v) w = select(a, j) a, b : Array, i, j : Int, v, w : Elem

(i = j ∧ v = w) ∨ (i ̸= j ∧ select(a, j) = select(b, j))

A similar axiom in the theory of sequences would state that setting the value of an index
only changes the value associated with that index if it is within the bounds of the sequence
and does not affect the other indices. Therefore, to support such axioms, returning s when

22



On SMT Theory Design: The Case of Sequences Ait El Hara et al.

i is out of the bounds of i seems like a better choice, and it is the chosen approach for
this function. seq.set is then defined by the following axiom:

s2 = seq.set(s1, i, v) ≡
seq.len(s2) = seq.len(s1)∧

∀j : Int, 0 ≤ j < seq.len(s1) =⇒ seq.get(s2, j) = ite(j = i, v, seq.get(s1, j))

• seq.const(l, v): equivalent to repeat in Arrayc, it is defined by the following axiom:

s = seq.const(l, v) ≡
ite(l ≤ 0, s = seq.empty,

seq.len(s) = l ∧ ∀i : Int, 0 ≤ i < l =⇒ seq.get(s, i) = v)

• seq.slice(s, i, j): Similarly to the seq.extract function from the Seq, Seqcvc5, and Seqz3
theories and the sliceS function in the Arrayc theory. The purpose of this function is to
make it possible to extract a subsequence from a sequence. It takes the target sequence
argument s and two Integer arguments i and j. In the Seqcvc5 and Seqz3 theories, the
choice was made for i to be the first index of the subsequence and j to be the length of
the subsequence, likely to stay consistent with the substring extraction str.substr in the
string theory. While the sliceS returns the subsequence from index i to index j − 1.

Each one of the two versions, first index and length, and first index and last index, can
be expressed by the other one. It is unclear if one is better than the other. An advantage
of having the length as an argument is that it is not needed to compute it to set the
length constraint. On the other hand, if the reasoning can more easily get the slice of the
sequence using the first and last index, then it might be better to have them as arguments
instead of having to compute the last index.

In our case, we prefer a variation of the second version, one that is similar to the extract
function from the Fixed-Size Bitvector theory and extracts the subsequence from the
index i to the index j, because it seems more natural to reason over a slice of a sequence
from its first index to its last index than with its first index and its length, but that is
pretty arbitrary and as said before, they both can express one another.

Given the first and last indices i and j, the seq.slice function is partial since it is defined
only when 0 ≤ i ≤ j < seq.len(s). That gives it four special cases to deal with:

– The negative length slice case, when j < i

– The left overflow case, when i < 0

– The right overflow case, when seq.len(s) ≤ j

– The left-right overflow case, when both i < 0 and seq.len(s) ≤ j are true

In the case of the negative length slice, the natural solution would be to return an empty
sequence since we are effectively trying to get a slice of non-strictly positive length. For
the overflow cases, the suggested solution in the Arrayc theory seems best as it introduces
consistency in how they are handled. It consists in taking the maximal subsequence of
s that can be obtained between i and j, by selecting as the first index of the resulting
slice max(i, 0) and as the last index min(j, seq.len(s) − 1). By following that choice, the
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resulting axiom of the function is:

s2 = seq.slice(s1, i, j) ≡
ite(i ≤ j, let i′ = max(i, 0), let j′ = min(j, seq.len(s1)− 1),

seq.len(s2) = j′ − i′ + 1 ∧ ∀k : Int, i′ ≤ k ≤ j′ → seq.get(s2, k − i′) = seq.get(s1, k),

s2 = seq.empty)

• seq.update(s1, i, s2): Like the seq.update function from Seqcvc5, which we will refer to as
seq.updatecvc5. It updates a sequence s1 starting from the index i with the sequence s2.
It is only defined when 0 ≤ i < i+ seq.len(s2) ≤ seq.len(s1) and has similar special cases
to the seq.slice function:

– The empty sequence case when seq.len(s2) = 0

– The left overflow case when i < 0 ≤ i+ seq.len(s2)

– The right overflow case when seq.len(s1) ≤ i+ seq.len(s2)

– The left-right overflow case when both overflow conditions are true

The choice of the Seqcvc5 theory is to have seq.updatecvc5 behave as an iteration of seq.set
on s1 that goes from i to i + seq.len(s2) − 1, writing the values of s2, and the iteration
stops when i is not in the bounds of s1. So in the case of left overflow, the returned
value is s1, in the case of right overflow, an intersection is done between s1 and s2 if
i < seq.len(s1); otherwise, s1 is returned. s1 is also returned when s2 is empty. The
seq.updatecvc5 function’s axiom is:

s = updatecvc5(s1, i, s2) ≡
seq.len(s) = seq.len(s1)∧
ite(0 ≤ i < seq.len(s1),

∀j : Int, 0 ≤ j < seq.len(s1) =⇒
seq.get(s, j) = ite(i ≤ j < i+ seq.len(s2), seq.get(s2, j − i), seq.get(s1, j)),

s = s1)

In our case, we see seq.update more like a bag of seq.set operations, and we think that it
would be simpler for it to respect the following axiom, which removes the condition that
i needs to be in the bounds of s1:

s = seq.update(s1, i, s2) ≡
seq.len(s) = seq.len(s1)∧

∀j : Int, 0 ≤ j < seq.len(s1) =⇒
seq.get(s, j) = ite(i ≤ j < i+ seq.len(s2), seq.get(s2, j − i), seq.get(s1, j))

In addition, to follow the least surprise criteria, this also makes it behave consistently
with seq.slice on how the left, right, and left-right overflow cases are treated, which is by
taking the intersection between s1 and s2 offset to the ith index. Figure 1 illustrates the
difference.
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• seq.map(f, s1, ..., sn): The semantics for seq.map are the same as the semantics of the
mapf in Arrayc, as it is an n-ary version of the seq.map function in Seqz3:

s = seq.map(f, s1, ..., sn) ≡
seq.len(s) = k∧

seq.get(s, 0) = f(seq.get(s1, 0), ..., seq.get(sn, 0)) ∧ . . .∧
seq.get(s, k − 1) = f(seq.get(s1, k − 1), ..., seq.get(sn, k − 1))

Where k is the length of the shortest of the sequences s1 to sn.

• seq.mapi(f, o, s1, ..., sn): A version of seq.map in which the mapped function is applied
starting from an offset o:

s = seq.mapi(f, o, s1, ..., sn) ≡
ite(o ≥ k, s = seq.empty,

seq.len(s) = k − o∧
seq.get(s, 0) = f(o, seq.get(s1, o), ..., seq.get(sn, o)) ∧ . . .∧

seq.get(s, k − o) = f(k − 1, seq.get(s1, k − 1), ..., seq.get(sn, k − 1)))

Where k is the length of the shortest of the sequences s1 to sn. In fact, it can be reduced
to seq.map(f, so, s1, ..., sn) where so is a sequence of integers of size k − o, containing
values going from o to k − 1, when k is greater than o and o is positive.

6.2 Theory of sequences proposal

As to not stray too far from what already exists, our proposal consists in combining the afore-
mentioned theories: Seqcvc5, Seqz3 and Arrayc, and applying our proposed changes. We outline
our proposal in Figure 2.

6.3 Fragmenting the theory of sequences

As demonstrated in Wang and Appel’s decision procedure [23], which was used to reason over
arrays in C programs, and in the calculus developed by Sheng et al. [22], which was used
to reason over vectors from smart contract verification. In some cases, a smaller fragment of
the theory of sequences is sufficient to reason over arrays from many programming languages.
Defining such a fragment is crucial, especially for solver developers, as it allows them to focus
on developing reasoning capabilities for only the subset of the theory they require.

Given the considerable variation in operations supported by array-like data structures in
programming languages, determining the precise set of symbols necessary and sufficient to
represent such structures is challenging.

Building upon Arrayc’s extension of the theory of arrays, which has been proven decidable
when the verification condition has no index shifting6 [23], we can define a fragment of the
theory of sequences based on our proposal, which can be reducible to the symbols of Arrayc.
The fragment is presented in Figure 3.

6Terms of the form: ∀i : Int, 0 ≤ i < lengthS(s) − n =⇒ nthS(i, s) = nthS(i + n, s), where s is a sequence
and n an integer literal
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Symbol Sort Remark
seq.empty Seq
seq.const∗ Int → Elem → Seq replaces repeatsS(Arrayc)
seq.unit Elem → Seq seq.unit(v) = seq.const(1, v)

seq.len Seq → Int
seq.get∗ Seq → Int → Elem replaces seq.nth (Seqcvc5 and Seqz3)

and nthS (Arrayc)
seq.set∗ Seq → Int → Elem → Seq
seq.slice Seq → Int → Int → Seq replaces seq.extract (Seqcvc5 and Seqz3)

and sliceS (Arrayc)
seq.concat Seq → Seq → Seq replaces seq.concat (Seqcvc5 and Seqz3)

and appS (Arrayc)
seq.at Seq → Int → Seq
seq.contains Seq → Seq → Bool
seq.replace Seq → Seq → Seq
seq.indexof Seq → Seq → Int
seq.prefixof Seq → Seq → Bool
seq.suffixof Seq → Seq → Bool
seq.replace all Seq → Seq → Seq Only present in Seqcvc5
seq.rev Seq → Seq Only present in Seqcvc5
seq.update∗ Seq → Int → Seq → Seq replaces seq.update (Seqcvc5)
seq.map∗ (Elem1 → ... → Elemn → Elem′) →

Seq1 → ... → Seqn → Seq′
replaces mapf (Arrayc), and seq.map
(Seqz3)

seq.mapi∗ (Int → Elem1 → ... → Elemn →
Elem′) → Int → Seq1 → ... →
Seqn → Seq′

replaces seq.mapi (Seqz3)

seq.fold left (α → Elem → α) → α → Seq → α Only present (Seqz3)
seq.fold lefti (Int → α → Elem → α) → Int →

α → Seq → α
Only present (Seqz3)

Figure 2: Signature of the proposed Sequence theory. The ∗ after a symbol means that the
symbol’s semantics are as described in the previous subsection. The sequence sorts Seq1...Seqn
and Seq′ have elements of the sorts Elem1...Elemn and Elem′ respectively.

Other symbols can also be added, such as seq.mapi, which, as mentioned previously, can be
reduced to map. Additionally, symbols like seq.fold left, seq.fold left, and seq.rev are common
in array-like data structures, especially in functional programming languages. While such func-
tions can always be defined as recursive functions, the potential impact of adding them to this
fragment on decidability and reasoning efficiency needs to be further explored.

A proof of the soundness of the reductions of the symbols in the fragment is necessary, but
we consider this to be beyond the scope of our paper. Nevertheless, this example can serve as
a step towards defining a fragment of the theory of sequences tailored to represent array-like
data structures.
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Symbol Reduction
seq.empty repeat( , 0)
seq.const(l, v) repeat(v, l)
seq.unit(v) repeat(v, 1)
seq.len(s) length(s)
seq.at(s, i) ite(nth(s, i) = δ, repeat( , 0), repeat(nth(s, i), 1))
seq.get(s, i) nth(s, i)
seq.set(s, i, v) update(i, s, v)
seq.slice(s, i, j) slice(s, i, j)
seq.concat(s1, s2) app(s1, s2)
seq.update(s1, i, s2) app(slice(s1, 0, i−1),

app(s2, slice(s1, i+ seq.len(s2), seq.len(s1)− 1)))
seq.map(f, s1, ..., s2) mapf (s1, ..., s2)

Figure 3: Fragment of the proposed theory of sequences and how its symbols can be reduced to
those of Arrayc. δ represents a default value of the same sort as the return value of nth, which
is returned when nth is applied outside its domain. any value of the right sort.

7 Conclusion

In this paper, we have explored SMT theory design through the lens of the theory of sequences.
We defined a set of criteria to consider when designing a theory and examined how partial
functions are handled. Additionally, we proposed a variant of the theory of sequences based on
these criteria, which we believe should be considered in the event of the theory’s standardization.

While the criteria we outlined should aid in theory design, they are not precise enough and
are open to interpretation, particularly regarding notions such as user-friendliness. Ultimately,
choices in theory design can be quite subjective.
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