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Abstract 

In recent years, graph data analysis has become very important in modeling data 

distribution or structure in many applications, for example, social science, astronomy, 

computational biology or social networks with a massive number of nodes and edges. 

However, high-dimensionality of the graph data remains a difficult task, mainly 

because the analysis system is not used to dealing with large graph data. Therefore, 

graph-based dimensionality reduction approaches have been widely used in many 

machine learning and pattern recognition applications.  This paper offers a novel 

dimensionality reduction approach based on the recent graph data.  In particular, we 

focus on combining two linear methods: Neighborhood Preserving Embedding (NPE) 

method with the aim of preserving the local neighborhood information of a given 

dataset, and Principal Component Analysis (PCA) method with aims of maximizing the 

mutual information between the original high-dimensional data sets. The combination 

of NPE and PCA contributes to proposing a new Hybrid dimensionality reduction 

technique (HDR). We propose HDR to create a transformation matrix, based on 

formulating a generalized eigenvalue problem and solving it with Rayleigh Quotient 

solution. Consequently, therefore, a massive reduction is achieved compared to the use 

of PCA and NPE separately. We compared the results with the conventional PCA, NPE, 

and other linear dimension reduction methods. The proposed method HDR was found 

to perform better than other techniques. Experimental results have been based on two 

real datasets. 

1 Introduction 

With the rapid advances in the use of internet techniques, massive amounts of various types of 

data are generated every millisecond.  Such data include image data, video data, audio data, text data, 

the instrument measured data, daily transaction data, social network data, etc. [1-3]. In such 
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applications, these data are presented in high-dimensional format. For example, a 64 X 64 image can 

be represented mathematically as a vector in a 4,906-dimensional space, and the vector serves as input 

for other applications. On the other hand, because of the high-dimensionality, it is typically hard to 

process such data efficiently. In this case, dimensionality reduction is used to map a set of high-

dimensional data into a low-dimensional space and in the process preserve the intrinsic structure in 

the original data. In other words, dimensionality reduction aims to construct an alternative low-

dimensional representation of graph data to enhance readability and interpretability. The purpose of 

low-dimensional is to learn an optimal low-dimensional representation, which could find and capture 

the meaningful basic geometry and possible discrimination information of the high-dimensional data. 

This low-dimensional representation needs to be meaningful and faithful to the genuine data. In 

practical terms, dimensionality reduction is a pre-processing stage in several data reduction 

approaches. The graph is one of the applications widely employed for modeling complex data in 

various applications, for instance, recommender systems, web mining, social networks, 

bibliographical networks, telecommunications just to name a few [3, 4]. Large-scale graph analysis 

with plenty of nodes and edges is a challenging task [5]. In order to handle massive graph data 

efficiently, the first crucial issue is to reduce the dimensional space of the original data properly so 

that advanced analytic tasks, like pattern discovery, analysis, and prediction can be performed. For the 

purpose of reducing the dimensions in order to project   high-dimensional data to a new representation 

in low-dimensional space a significant number of algorithms have been introduced including linear 

and nonlinear methods, for example, PCA, factor analysis (FA), linear discriminant analysis 

(LDA)…etc.[1] are liner methods and local linear embedding (LLE), ISOMAP…etc. [2] are nonlinear 

methods. Linear dimensionality reduction techniques are mainly developed for non-graphical data 

structures. Thus, these classical linear techniques cannot sufficiently handle complex graph-structured 

data. 

Taking into account these weaknesses, this paper aims to create an efficient linear dimensionality 

reduction algorithm for undirected graphs. The new method is a hybrid dimensionality reduction 

approach (HDR) based on the combination of PCA and NPE, to locate one transition matrix for both 

approaches then multiplying the original data with the obtained transition matrix. This will give a 

lower-dimensional representation, where each dimensionality reduction technique, has to find a 

matrix transformation.  The accuracy of the suggested HDR approach was compared with other 

common linear dimension reduction methods, such as PCA, NPE, locality preserving projections 

(LPP), Multidimensional scaling (MDS), LDA, and FA.  We used DBLP and arXiv dataset for our 

simulation experiments in MATLAB 2015b.  Our simulation results indicate that the suggested 

technique can provide superior classification efficiency for link prediction in DBLP and arXiv 

datasets. 

The remainder of the paper is organized as follows:  In Section 2, related work is presented while 

in section 3, introduce dimensionality reduction, the Principal Component Analysis (PCA) and 

Neighborhood Preserving Projections (NPE) briefly. In Section 4, the proposed hybrid dimensionality 

reduction method is detailed. The Experiments and results are presented in Section 5.  This is 

followed by the conclusion in Section 6. 

2 Related work 

This section reviews several algorithms, which employ data representations for the construction of 

a graph and which have close relationships with the approach we propose.  The typically used PCA is 

a classical method for performing a linear mapping of the data so that the variation of the data in the 

low-dimensional representation is maximized. The basis of the PCA is the extraction of the axes on 

which data show the highest variability. Even though PCA “spreads out” data in the new basis, and 
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can be very helpful in unsupervised learning, there is no assurance that the new axes are in line with 

the discriminatory features in a classification issue [6]. An additional method is to consider class 

information when extracting the feature. One method is to apply class separability criterion from 

Fisher’s linear discriminant analysis (FLDA) in [7] which has its basis in a family of functions of 

scattering matrices: the within-class covariance, and the total covariance matrices. One of the 

problems here is to select the optimal subset of orthogonally converted features for consequent 

classification. Therefore, it is important to use PCA in order to search for the optimal subset of 

converted components, which enable the attainment of the optimal classification.  Mykola et al. 

combined PCA with Fisher’s linear discriminant analysis for PCA previous purposes. Precisely, in 

this approach, the essential point was to enhance the parametric class conditional of FLDA by the 

addition of a few principal components (PCs), of the PCA method. However, FLDA, although 

utilizing class information, also has a crucial weakness due to its parametric nature. Note here, some 

of the extracted components cannot exceed the number of classes minus one. Furthermore, as it can be 

understood from its name, FLDA works mainly and exclusively for linearly separable classes.    

On the other hand, the LDA method is considered a statistical dimensionality reduction algorithm. 

The LDA algorithm chooses the most favorable direction for classification, which is not necessarily 

the best.  Therefore, Liang Tang et al. in [8] proposed two dimensionality reduction methods called 

LDA-PLS and ex-LDA-PLS by combining LDA with the partial least squares (PLS) technique where 

the PLS aims to develop components that obtain most of the information that is useful in the original 

data. It reduces the dimensionality of the regression problem by employing less number of 

components than the number of data variables, where the proposed methods use PLS to adapt the 

LDA projection direction.  However, the proposed methods in the experiments have not achieved the 

best direction in the training set; this proves LDA-PLS and ex-LDA-PLS cannot obtain the best 

results in the small dataset. Authors in [9] merged two linear dimensionality reduction methods, LPP 

and PCA. In the merger method, they lessened the linear dimensionality reduction of microarray 

dataset by using LPP then extracted principal components by applying PCA. The results showed that 

clustering based on PCA-LPP performed better than n PCA. However, this strategy does not consider 

the practical method in reducing the dimensionality because their main focus was clustering. One of 

the aims of the PCA technique is to achieve the highest possible data reconstruction capability of the 

features, while the discriminant analysis (DA) method [10] aims to maximize the discriminatory 

power of the features. Although both methods involve the application of eigenvector decomposition 

on the covariance matrices to decorrelate features and therefore to extract the features, however, 

several researchers tend to DA for feature extraction because features discrimination is of utmost 

importance for classification. To improve the performance of PCA in extracting a compact feature set 

for classification, Jiang proposed a hybrid of the PCA and DA to reduce the discriminatory power of 

the extracted features. Even though this hybrid method shows greater effectiveness in extracting the 

discriminatory features, it still suffers from the common mean problems, which is one of the problems 

involving the LDA algorithm. On the other hand, Kwak and Pedrycz discussed in [11] the 

independent component analysis (ICA) method and applying it for face recognition. Usually, when 

applying ICA on face recognition, we obtain enhanced unsupervised learning and high-order 

statistics. Although the ICA technique has been shown to perform well, it may still be challenging to 

separate each class due to the large variance in lighting and facial expression.   

Therefore, authors developed a technique to recognize face images through the combination of the 

ICA method based on high-order statistics and the LDA based on a class specific linear projection. 

Although this method is suitable for the selection of the most discriminable features and performs a 

lightly better, it is not easy to achieve higher classification performance compared to transforming 

ICA into LDA subspace with high dimensional image space. Therefore, the method should access the 

dimensionality reduction stage to project face pattern from a high dimensional image space into lower 

dimensionality space by employing PCA, followed by the second step ICA algorithm to locate 

statistically independent basis images or factorial face code. The third stage by the LDA exploits the 
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class-specific information. Moon and Qi [12] presented the SVM-ICA algorithm. As dimensionality 

reduction methods divide into supervised and unsupervised methods, Support Vector Machine (SVM) 

method belongs to the supervised category, while the ICA is within the unsupervised learning 

methods. Authors merged both categories in a hybrid method which is SVM-ICA to preserve the high 

classification precision in lower dimensional space. However, studies later showed [13] that this 

method is statistically oriented and therefore, not too much can be expected in terms of reliability and 

computational simplicity.   

However, in our paper, we offer an effective hybrid linear dimensionality reduction approach 

specifically for graph based on obtaining the transformation matrix to both PCA and NPE at the same 

time, and this hybrid method provided high classification accuracy in lower dimensional space for a 

large graph. 

3 Dimensionality reduction 

Statistical and machine learning have a challenging issue when they deal with high‐dimensional 

data, and usually, the number of input variables is decreased prior to the successful application of a 

data mining algorithm.  Dimension reduction projects high dimensional data onto a low-dimensional 

space [14] and can be separated into feature selection and feature extraction [15]. The analytical 

procedures facilitating this reduction is called “dimensionality reduction techniques.” A significant 

number of algorithms have been introduced for dimensionality reduction divided into linear and 

nonlinear methods. Nonlinear dimensionality reduction methods are commonly used for nonlinear 

data that needs to be reduced before being processed, and examples of nonlinear methods are Locally 

Linear Embedding (LLE), ISOMAP…etc.  Linear dimensionality reduction methods deal with data 

sets which have a linear relationship; for example, linear methods are PCA, Factor Analysis (FA), 

Linear Discriminant Analysis (LDA)…etc. The linear dimensionality reduction problem can be 

explained as thus:  consider the original data 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑚} in high dimensional space 𝑅𝑝 . 

Then, find a matrix 𝐴 which is the number of components of data. The main idea is the extraction of 

eigenvectors and eigenvalues.  The eigenvectors with the highest eigenvalues are the principal 

components of the data set. Matrix 𝐴 converts the original data points into a new set of data points 

𝒀 = {𝒚1, 𝒚2, … , 𝒚𝑚} in a low-dimensional space 𝑅𝑞 (𝑞 ≪ 𝑝), such that 𝑦𝑖  “represents”𝑥𝑖,  

where:   𝒚𝑖 =  𝑨𝑇𝒙𝑖 ,                                 (1). 

In this paper, we focused on two common linear techniques namely, Principal Component 

Analysis (PCA) method which is a classical method of feature extraction that has been extensively 

utilized in the area of machine learning, and Neighborhood Preserving Projections (NPE) method, 

which is a recently suggested linear method to reduce dimensionality.  

3.1 PCA dimensionality reduction method 

PCA is the most popular linear dimensionality reduction technique [16]. It plays the main role in 

machine learning and pattern recognition. The main objective of PCA is representing all the data 

without losing any information in a low dimensional subspace where PCA preserves the global 

structure. PCA computes a mapping from data of high dimensional 𝑿 to low dimensional space 𝒀. 

When   𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑵 and 𝑿 ∈  𝑅𝐷, and 𝒀 = 𝒚1, 𝒚2, … . , 𝒚𝑁, 𝑅 is the space of the 𝑿 and 𝒀 dataset, 

𝐷 denotes  the dimensions of 𝑿. and 𝑑 is the dimensions data after dimensionality reduction 𝑑 ≪  𝐷. 

In the first step of PCA compute the mean �̅� of the original dataset 𝑿, then subtract the mean from 

each of the data points. The mean subtracted is the average across each dimension. 
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𝑺 = 𝑿𝒊 −  �̅�, 𝑖 = 1, . . 𝑛               (2) 

Then calculates the covariance matrix 𝑪.. Since the data are  𝐷 dimensional, the covariance matrix 

will be 𝐷 × 𝐷 

𝑪 = 𝐶𝑜𝑣(𝑿) =
1

𝑛
 ∑ 𝑺 𝑺𝑇𝑛

𝑖=1           (3) 

In this stage, calculate the eigenvectors corresponding to the highest eigenvalues of the covariance 

matrix is done by the equation below: 

𝑨 = 𝑒𝑖𝑔(𝑪)                                   (4) 

Hence, it can reduce the dimensions of 𝑿  by the final step of PCA. Since PCA is a linear 

technique, it forms a linear equation between the original dataset and new reduced data 𝒀 by using 

“(1)”. The algorithmic method for PCA is formally stated by the steps shown below: 

1- Given an original data 𝑿, 𝑿 = {𝒙1, 𝒙2, . . , 𝒙𝑛}.  

2- Calculate the mean �̅� of the set 𝑿, then subtract the mean from each of the data points. 

3- Compute the covariance matrix as the equation “(3)”. 

4- Calculate the eigenvalues and eigenvectors of the covariance matrix “(4)”. 

3.2 NPE dimensionality reduction method 

Neighborhood retaining embedding (NPE) [17] is an unsupervised manifold reduced dimension 

method introduced in recent years. NPE embeds the original data to low dimensional space, in which 

the local neighborhood structure on the data manifold is retained. NPE retains the local manifold 

structure, differing from PCA which retains the global structure. Local structure means that each data 

point can be represented as a linear combination of its neighbors. Let 𝑿 = { 𝒙𝒊  ∈ 𝑅𝐷 , 𝑖 = 1,2 … , 𝑁} 

denotes the input data in 𝑅𝐷 space. NPE aims to seek an optimal transformation matrix 𝑨 to map the 

D-dimensional data point 𝑥𝑖 onto d-dimensional data point 𝒚𝒊 , {𝒚𝒊 ∈  𝑅𝑑 , 𝑖 = 1,2, … , 𝑁}; (𝑑 ≪ 𝐷), 

namely , 𝒚𝒊 = 𝑨𝑇𝒙𝒊 (equation 1) in which the local neighborhood structure of the original data set 𝑿 

can be retained. NPE first locates the neighbors of each data point in space 𝑅𝐷 , then builds an 

adjacency graph on the input data set. Let the weights 𝑾𝑖𝑗 be the coefficients that best reconstruct 𝒙𝑖 

from its neighbors 𝑗 = 1,2, … , 𝐾 , and 𝑾 =  𝑾𝑖𝑗  be the reconstruct matrix. The matrix 𝑾  can be 

computed by reducing the objective function: 

𝑾 = ∑ ‖𝒙𝑖 − ∑ 𝑾𝑖𝑗𝒙𝑗‖
𝟐

𝑖                                               (5) 

with constraints 𝑾𝑖𝑗 = 1, (𝑗 = 1,2, … . , 𝑁) NPE believes that if the data points 𝒙𝑖 in space 𝑅𝐷 can 

be rebuilt by 𝑾𝑖𝑗, then the matching  point 𝒚𝑖 in low dimension space 𝑅𝐷 can also be rebuilt  by 𝑾𝑖𝑗. 

Thus, the best mapping transformation matrix 𝑨𝑜𝑝𝑡 can be derived from addressing the minimization 

problem: 

𝑨𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛 [∑ ‖𝒚𝑖 − ∑ 𝑾𝑖𝑗𝒚𝑖‖
2

𝑖 ]                            (6) 

With the algebraic transformation, the above minimization issue may be resolved as: 

𝑨𝑜𝑝𝑡 = 𝑎𝑟𝑔 min
𝑨𝑡𝑿𝑴𝑿𝑇𝑨=𝟏

𝑨𝑡𝑿𝑴𝑿𝑇𝑨                                  (7) 

And then the best mapping vectors are the solution of the generalized eigenvalue issue: 

𝑿𝑴𝑿𝑇𝒂 = 𝜆𝑿𝑿𝑇𝒂                                                           (8) 

The optimal mapping transformation matrix 𝑨𝑜𝑝𝑡  comprises the best mapping transformation 

vectors, which are arranged in the order of the matching eigenvalues from small to large. Where:  

            𝑿 = (𝒙1, 𝒙2, … . 𝒙𝑁), 

             𝑴 = (𝑰 − 𝑾)𝑇(𝑰 − 𝑾)                    (9) 
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and 𝑰 is an identity matrix. The new points 𝒚𝑖 in lower dimension 𝑑 are obtained by using equation 

“(1)”. It can be the summary of the algorithm structure, as shown below: 

1- Construct an adjacency graph using 𝐾-nearest neighbor method. The edge is set between 

vertices 𝑖 and 𝑗 where 𝑖 represents data points 𝑥𝑖 and 𝑥𝑗 represents the 𝐾-nearest neighbors of 

𝑥𝑖. We can construct an adjacency matrix in this way when the graph is a directed graph 𝑾, 

while in case the graph is an undirected graph using 𝜀 neighborhood, place an edge between 

nodes 𝑖 and 𝑗 if ‖𝒙𝑖 − 𝒙𝑗‖ ≪ 𝜀. 

2- Computing the weight matrix, as an equation “(5)”. 

3- Calculate the linear projections 

4 Proposed Hybrid Dimensionality Reduction (HDR) method 

The proposed algorithm is designed based on a combination of NPE and PCA algorithms. In 

general, for each dimensionality reduction technique, one should find the transformation matrix which 

contains a list of eigenvectors corresponding to the highest eigenvalues, as mentioned in Section 3. It 

can be noticed from previous work that NPE and PCA each constructs a transformation matrix 

separately based on covariance and weight matrices, respectively. For further enhancement of the 

dimensionality reduction of graph data set and increasing the precision of the data after reduction, the 

suggested approach deduced a new transformation matrix based on combining the weight matrix that 

is generated via PCA and covariance matrix that is generated via NPE where both are formulated as a 

generalized eigenvalue problem which is represented as:  

𝑪𝑒 = 𝝀𝑺𝑒.                                             (10) 

Then, HDR proposes a step to solve the generalized eigenvalues problem to calculate the 

eigenvectors of two matrices, C and S in one step. Suppose the matrix, the generalized eigenvalue 

problem is repeated:  

𝑪𝑒 = 𝝀𝑺𝑒.                                                (11) 

where: “𝑪" is the covariance matrix, and “𝑺” is the weight matrix, where both have a dimension of 

𝑅𝑛×𝑛. To solve the generalized eigenvalue problem, let us call Rayleigh Quotient formula [18] which 

is closely related to the problem in “(3)”. Now, we can apply the Rayleigh Quotient formula to get  

𝑟(𝒗) =  
𝒗𝑇𝑪𝒗

𝒗𝑇𝑺𝒗
                                              (12) 

To see this, let us now evaluate the stationary point of 𝑟(𝒗), i.e., the point 𝑣∗ satisfies ∇ 𝑟(𝒗∗) =
0. The gradient ∇ 𝑟(𝑾) is evaluated as 

∇𝑟(𝒗) =  
2𝑪𝑣(𝒗𝑻𝑺𝒗)−2(𝒗𝑇𝑪𝒗)𝑺𝒗

(𝒗𝑇𝑺𝒗)2                      (13) 

∇𝑟(𝒗) =  
2𝑪𝒗−2𝑟(𝒗)𝑺𝒗

𝒗𝑇𝑺𝒗
                                     (14) 

If we set ∇𝑟(𝒗) = 0, then 

𝑪𝒗 = 𝑟(𝒗)𝑺𝒗                                                 (15) 

It can be noticed that equation “(15)” is similar to the generalized eigenvectors problem equation 

in “(3)”. Therefore, the stationary point 𝑣∗  of the Rayleigh Quotient 𝑟(𝑣)  is acquired as the 

eigenvectors (𝑒) (eigenvalues 𝜆(𝑒)) of the corresponding generalized eigenvalue problem. Now, we 

have the new transformation matrix 𝑨𝑁𝑒𝑤, which has all the eigenvectors of 𝑪 and 𝑺 matrices via 

generalized eigenvalue solution. Therefore, the proposed HDR method is represented by the following 

mathematical formula: 

Calculate the covariance matrix of the original data as explained in PCA algorithm equation “(3)”, 

as the first step to applying HDR. Then, construct an adjacency graph 𝑾 by the equation “(5)” and 
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find the equation “(9)” as shown in the NPE algorithm section. The next step in our algorithm 

computes both of (𝑿𝑴𝑿𝑇)(𝑿𝑿𝑇)−1 and covariance matrix at the same equation as follows:  

𝑪 = 𝐶𝑜𝑣(𝑿) =
1

𝑛
 ∑ 𝑆 𝑆𝑇𝑛

𝑖=1 .             (3) 

𝑺 = (𝑿𝑴𝑿𝑇)(𝑿𝑿𝑇)−1.                     (16) 

Then, compute the transformation matrix 𝑨𝑁𝑒𝑤  which contains the list of eigenvectors based on 

the Rayleigh Quotient solution:  

𝑨𝑁𝑒𝑤 = 𝑒𝑖𝑔( 𝑪, 𝑺).                         (17) 

In the final stage, convert the original data which are in high dimensional space to data in low 

dimensional space, as follows: 

𝒙𝑖 →  𝒚𝑖 =  𝑨𝑁𝑒𝑤 . 𝒙𝑖                         (18) 

5 Experiments and Results 

In this section, the proposed HDR is employed to show the impact of its use on a high dimension 

graph data obtained from a series of simulation experiments using MATLAB Version R2015b. For a 

fair comparison, we select two datasets: i) DBLP, which contains data about co-authoring among 

authors who have published one common paper at least, ii) arXiv in this network between two authors 

of scientific papers from the astrophysics archive. In this comparison, nine features for each data point 

are selected in both datasets. Basically, these points are selected based on their usage and significance 

in several applications of link prediction [19], where the link prediction predicts the possibility of a 

relationship between two not interconnected vertices in a graph, for the prediction of future 

interactions (links) that could take place between the authors (vertices).  As in Figure 1 there are steps 

to implement this work. In the first step, we take a sample from the original dataset as a graph G and 

turn it into a dataset shaped by the pair of vertices. In the second step, the features of each selected 

pair of vertices are computed, where the features extracted are as follows:    

1- Shortest path length; this feature is the smallest number of links forming a path between a 

pair of vertices. 

2- Common neighbors: it is the number of neighbors mutual to both nodes.  

3- Sum of neighbors; it is the union of neighbors of each vertex from a pair. 

4-  Average neighbor degree. 

 
Figure 1:  A diagram that shows steps performed 

High-Dimensionality Graph Data Reduction Based on Proposing A New ... L. Al-Omairi et al.

7



5- Adamic/Adar similarity is the sum of the secondary common neighbors with a smaller 

weight than the primary neighbors. 

6- Preferential attachment product of the number of neighbors of both vertices. 

7- Leicht-Holme-Newman Index 

8- Katz measure, which is the sum of lengths of all paths existing between each pair of vertices. 

9- Jaccard’s Coefficient, which is the ratio between the number of common neighbors and the 

number of total neighbors of each vertex.  

In the third step, six different linear dimension reduction methods and the proposed method were 

implemented. One of the ways to tackle the link prediction issue is based on the classification, where 

this paper evaluates the impacts of dimensionality reduction as a preprocessing stage to the classifier 

construction in link prediction applications. Therefore, in the fourth step, the classification phase was 

carried, this step applies K-nearest neighbors’ algorithm (K-NN) and Support Vector Machine 

algorithm (SVM) as the classification algorithms to the reduced data set to obtain the link prediction. 

The latent variables of DBLP and arXiv dataset set to best values by cross-validation technique, 

divided the dataset to classify the task into various folds.  

The accuracy performance of each linear dimensionality reduction method is presented in Table 1, 

which is separated into three dataset fields, dimensionality reduction strategies and classification 

algorithms define a cell that has two numbers. The first one is the average precision (%) of the 

classification models that are applied to the corresponding dimensionality reduction approaches to the 

respective classification algorithms and dataset. The second one indicates the number of features that 

are used in this simulation. 

In the simulation experiments, the accuracy comparison is made of the suggested HDR approach 

with the PCA, NPE, LPP, MDS LDA, and FA methods. Figure 2 represents the results of DBLP 

dataset where firstly, the SVM classifier is utilized: it can be noticed that the classification outcome of 

the LPP algorithm is less robust than all of the existing algorithms with a smaller feature subset. As 

expected, the proposed HDR attained higher (89.22%) performance than any existing algorithms. The 

same experiment is repeated on DBLP dataset, where secondly, KNN is used as a classifier. It is 

observed that the NPE method was less accurate than others and achieved 84.77%, while the proposed 

HDR achieved higher accuracy, with 90.35%. With arXiv dataset where the SVM algorithm is 

applied, see Figure 3, the average precision was 93.69%, 89.17%, 96.5%, 94.45%, 93.72%, and 

96.27% for LPP, MDS, NPE, PCA, LDA, and FA, respectively. The proposed method's accuracy was 

higher than all methods, where it reached about 98.22%. As shown in Figure 3, the arXiv dataset is 
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Table 1: Summary of results obtained  
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repeated with K-NN algorithm, still, the HDR strategy outperformed all other methods, achieving 

98.14%, with the less accurate MDS it at 87.73%. 

6 Conclusion 

In this paper, we proposed a new linear dimensionality reduction HDR method for the graph 

through a combination of NPE method which aims to preserve locality information and PCA method 

which preserves global information, based on finding common transformation matrix for both 

methods. The common transformation matrix was created based on formulating the generalized 

eigenvalue problem for two matrices then applied Rayleigh Quotient solution. The proposed method 

was compared with traditional linear dimensionality reduction methods to reduce the dimensionality 

of graph data to be used by the K nearest neighbor classifier (K-NN) and SVM algorithm.  The latent 

variables of DBLP and arXiv dataset were set to best values by cross-validation approach and divided 

the dataset to classify the task into 10 dissimilar folds. The performances of all the methods were 

evaluated by using the performance accuracy metric. The results of our experiments on two graph 

 
Figure 3: Comparison of dimensionality reduction methods accuracy by two different 

classification algorithms for arXiv dataset. 

 

 
 

 
Figure 2: Comparison of dimensionality reduction methods accuracy by two different 

classifaction algorithms for DBLP dataset. 
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datasets showed that HDR outperforms other linear methods considered as popular in graph 

dimensionality reduction. This shows that the HDR algorithm based on combing PCA-and-NPE is an 

efficient approach for this area. 
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