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Abstract 
Public health is constantly under risk due to growing microorganisms. Infectious disease spread 

rapidly among the population in contact and so people take the different steps to reduce the 

transmission of disease. Compartmental model such as SIR model developed by W. Kermack and G 

Mckendrick are modeled for the progress of epidemic. Fixed point analysis has been applied to 
mathematical models of compartmental infectious disease models for understanding the long term 

outcome of disease. We have applied the analysis to the spread of infectious disease and obtained the 

threshold value and this threshold value helps us to predict when epidemic peaks. 
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1. Introduction 
 

In 1927 Kermack and McKendrick [1] developed an epidemic model which was considered a 

generalized model at that time. In SIR model given by Kermack Mckendrick, the total population is 

assumed to be constant and divided into three classes. Susceptible class contains individuals who have 

no immunity to the infectious agent; any member of the susceptible class could become infected. 

Infectious class contains individuals who are currently infected and can transmit the infection to 
susceptible individuals who they contact. Recovered class contains individuals who have returned to a 

normal state of health after being infected and those individuals have gained permanent immunity. 

This model is called the SIR model [2][3]. In this model we assume that: 

1. The way a person can leave the susceptible group, S, is to become infected. The way a person 

can leave the infected group, I, is to recover from the disease. 
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2. The recovery rate γ
 
and the  transmission rate β  are the same for all individuals and are 

supposed  positive                

3. There is homogeneous mixing, which means that individuals of the population make contact 

at random and do not mix mostly in a smaller subgroup 

4. The disease is novel, so no vaccination is  available 

5. The population size, N, is constant and large. 

6. Any recovered person in R has permanent immunity [5] 

Table 1 

Variables Description Units 

Β Transmission rate 
1/people×Days

 

γ  Recovery Days 
1/Days

 

T Time Days 

S Number of susceptible people People 

I Number of Infected people People 

R Number of Recovered people People 

N Total number of people People 

 

Given these assumptions, Kermack and McKendrick presented the following system: 

SI
dt

dS
β−=

                          (1) 

)( γβ −= SI
dt

dI

                                     (2) 

I
dt

dR
γ=

                                                 (3) 
With the initial condition 

0)0( 0 >= SS , 0)0( 0 >= II , 0)0( =R  

Using   (1),  (2) and (3) we have 

Idt
s

ds
β−=      

dt
dt

dR

s

ds

γ

β
−=  

CRS loglog +−=
γ

β
 

R
C

S

γ

β
−=log  

R

CeS γ

β
−

=  

Using initial condition when t = 0, S = S0 on integrating equation Idt
s

ds
β−=  on both sides we get 

Log S = CIt log+−β  
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0SC =∴  

R

eSS γ

β−

= 0                          (4) 

The epidemic modeling of Kermack and Mckendrick SIR Model is based on Ordinary Differential 

Equation. An ordinary differential equation is of the form 

),( txF
dt

dx
=                                                                  (5) 

Subject to the condition   x (0) = x0 

2. Fixed Point Analysis 

Let x* be the equilibrium point of (5) 

F( x*) = 0 ,   
*

x
dt

d
= F (x*) = 0 

For Such equilibrium points, it is meaningful to talk about stability. For Stability we should know 

about trajectory that starts near a equilibrium point, stays near the equilibrium point as time increases. 

There are many types of stability. We consider the most common type of linear stability. 

As we have an initial value 0
*

0 xxx δ+= where 0xδ is small in an approximate norm 

Let  )(0 txx → , )(
*

0
*

txxxx δδ +→+  

x
x

F
xxFtx

dt

d

xx

δδδ
*

)()( *

=










∂

∂
=+=∴ . The factor )(txδ is very small, so the stability depends on Eigen 

values of a matrix *)(*
xdx

dF
J = consider the Ordinary differential equation )(xF

dt

dx
=

 

 

Where x = (S, I, R)T  , TISISIxF )),(,()( γγββ −−=  

  

 

Since the population   is constant 0
)(

=
++

dt

RISd
 

tconsNRIS tan==++  

Therefore RSNI −−=            (6) 

Using

 

(4)
 
in (6) we have 

 
ReSNI

R

−−=
−

γ

β

0                         
(7) 

Substitute the value of (7) in (3)

 

we get  

(γ=
dt

dR
ReSN

R

−−
−

γ

β

0 )                                                              (8) 

In order to reduce the number of parameter and to make it more amenable to analysis, let us      

introduce a new variable 

Ru
γ

β
=
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Since β being an infection rate (constant) and γ  being an recovery rate(constant) and R has the 

dimension of

 

population so u has the dimension of a pure number. Multiply (8) on both sides by 
γ

β

 

ReSN
dt

du

ReSNR
dt

d

u

u

βββ

γ
γ

β

γ

β

−−=

−−=∴

−

−

0

0 ][)(

  
ue

SN

dt

du u −−= −

γ

β

γ

β

γ
01

         (9) 

 Let us divide the (9) on both sides by
γ

β 0S
we get u

S
e

S

N

dt

du

S

u

000

1

β

γ

β
−−= −  

Let us introduce new time variable 

dtSd 0βτ =  

\Hence (9) reduces to (10)  

u
equp

d

du −−−=
τ

 

say   )(uf
 

                                                                                  (10) 

Where 
0S

N
p =  and 

0S
q

β

γ
=

 

, using initial condition we have

 

As 1
0

00

0

≥
+

==
S

IS

S

N
p while 0

0

>=
S

q
β

γ
 

As uequpuf −−−=)(  0,0,1 ≥>≥ uqp  

 To Sketch the curve it is sufficient to know the Behavior of f(u) as 0→u and ∞→u  and to 

determine  whether the curve has maxima  and minima 

 

2.1   Behavior at 0 

We have 1)0( −= pf since 1≥p  

0)0( ≥∴ f  . 
Let us consider the case

 
1>p

 
then 1

0

00 >
+

S

IS 00 >⇒ I  

This shows that there are some sick people present initially. Then f (0) > 0 

 

2.2   Behavior for large u values 

As
 

∞→u  then exponential term dies away as ∞→u quuf −≈∴ )(

 

)(uf
 
becomes very large and negative and behaves like a straight line as

 
∞→u
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2.3   Maxima and Minima 

Let us evaluate 0)( 0
' =uf

 

qu

eq
u

log

0

0

0

−=⇒

=+−⇒ −

 

For q < 1 this point exist in the range  u > 0 and the second derivative is

 

0)('' 0
u

euf
−−=

 

This is always negative. Hence the point

  

qu log0 −=
 
if it exists is maximum 

Across the x –axis we have 

�
���
�� 0�	�
 > 0, �

���
�� ∞ �	�
 < 0 

 

f (u) has at most one local maximum on u > 0 thus it shows that this is a stable equilibrium point. 

Epidemic will be at peak if the number of infectious is maximum. 

0=
dt

dI ⇒The number of infectious is at maximum 

That is  

,

therefore 0
2

2

==
dt

dI

dt

Rd
γ

 

at peak the infection stops  accelerating. Since R u∝  

0
2

2

=
dt

ud
at peak therefore 

)('))(()(
2

2

ufuf
dt

d

dt

du

dt

d

dt

ud
===

 

' ( ) ( )
du

f u f u
dt

=  

Thus at peak 
'( )f u  = 0 ( since  ( )f u  ≠ 0) 

Therefore we realized that only if q < 1 then the epidemic peaks 

1) The number of infectious people increases if 0
2

2

>
dt

ud
 

2) If 
'( )f u  = 0  then at peak acceleration stops 

3) 0)()('
2

2

<= ufuf
dt

ud
is always, this means the number of infectious decreases from the start. 

Parameter q =
0Sβ

γ
is called the threshold value. if 1<q then the epidemic accelerates if  

q > 1 then epidemic decreases from start. 
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   Fig. 1   Graph when q < 1 

 

Figure 1 is the graph between the function uequpuf −−−=)( and the variable u. From the graph it
 
is 

clear that if
 
We take 03086.

)90(*)12(.*3

1

0

===
S

q
β

γ
<1 and 1111.1

90

100

0

===
S

N
p then )(uf  = 1.111 

– 0.03086u – e-u ,it shows that the number of infectious people increases at first and reaches at peak 

and then the number of infectious people start decreasing which is plotted using SCILAB. 

Similarly taking   p = 1.111 and q = 1.23 > 1 and using   the equation )(uf  =1.111 – 1.23 u – e-u  

Using  the SCILAB ,we have figure 2 which  is graph between )(uf and u if 1>q  

 

Fig:2 Graph when q >1 

Graph shows that if q >1 then the number of infectious people decreases from the he starting epidemic 

does not reach at the peak. This is only possible if the infectious rate β  decreases and the recovery 

rate increases. 

 

3. Conclusion 

Evolution of mathematical epidemiology into separate area of population dynamics is parallel to 

mathematical ecology. we have focused on the role of the threshold value (basic reproduction 

number) R0,which is defined as the average number of people infected when a typical infective enters 
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an entirely susceptible population. We have illustrated the significance of the threshold value R0=

γ

β 0S

.

The disease can invade the completely susceptible people if and only

 

if R0 > 1 and epidemic 

dies out if R0 < 1. 

 4.   Appendix 

 

SCILAB Code 

 

1) u = (0:1:10) 

y =1.111 - .03086*(u) - %e^-(u); 

plot(y)        (for Fig-1.) 

2) u = (0:1:10); 
y =1.1111-1.2*(u)-%e^-(u); 

plot(y)        (for Fig-2.) 
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