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Abstract

Transportation performance is heavily influenced by the overall quality and the effec-
tiveness of road maintenance. However, this remains an expert-dependent activity, despite
recent efforts to digitalize road geometries and management processes. Road maintenance
knowledge accumulated through addressing relevant enquiries is inexplicitly learned by
experts and transferred into experience, which contributes very little to developing main-
tenance digitalization techniques and automated decision-making processes. In this case,
fully utilizing historical maintenance records and turning them into computer-readable
knowledge is a crucial task to be solved. This paper aims to extract key information
from road maintenance request texts and then implement step-by-step thinking to make
road maintenance decisions. This chain of thought is first proposed by reviewing the key
elements and logical flow of road maintenance decision-making. Then, a cross-attention
mechanism based on a transformer architecture is implemented on maintenance record
texts and target knowledge element sequences. The result of this experiment overperforms
on a pre-trained BERT model and demonstrates a valid performance on the text-knowledge
alignment in road maintenance domain. The method proposed in this paper provides a
solution for reliable and traceable decision-making and shows a promising application in
domain-specific knowledge management.
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1 Introduction

Roads are the main mode of transport for individuals and their maintenance has a great impact
on the service quality of roads across the life cycle. For example, over 92% of the distance
travelled by passengers in the UK is covered by roads, accounting for 595 billion passenger
kilometers[7]. Over 60% of motorways in the UK were built during the 1960s and 1970s [10].
These aging road networks are facing problems caused by terrible road conditions. In England,
about 39% of roads are marked with visible deterioration or in urgent need of maintenance [1].
Untimely maintenance will further increase costs and cause rapid deterioration of road assets.
Hence, effective and reliable decision-making can have an important role in road maintenance
management.

Road maintenance management processes can be divided into four types: planning, pro-
gramming, preparation and operation [16]. Table 1 shows the spatial coverage, time horizons
and staff involved in these processes. For the former two processes, long and medium-term
systematic planning over a year-long is conducted by professionals taking policy and budgets
into account. For the latter two processes, cyclical and reactive maintenance decisions are made
by engineers and technicians to respond to regular inspections and reports. High-quality road
maintenance decision-making is required to minimize traffic disruption, prevent safety issues,
and improve cost effectiveness. However, decision-making in road maintenance remains heavily
expert dependent. Despite the use of data management systems to record road maintenance
activities, there are no effective measurements that use these records to support or automate
decision-making processes. These decisions involve identifying road assets and defects, deter-
mining appropriate repair jobs, and prioritizing jobs based on asset importance, defect severity
and job urgency. Such decisions still primarily rely on the accumulated experience of engineers.

Management process Spatial coverage Time horizon Staff concerned
Planning Network-wide Long term Policy level professional
Programming Network to sub-network Medium term Middle level professional
Preparation Section or project Budget year Engineer/technician
Operation Sub-section or activity Actual duration Technician/worker

Table 1: Road maintenance management process type

Rule-based methods are commonly used to efficiently make use of human expertise in road
maintenance decision-making. One of the most straightforward techniques is a decision tree.
Since road defects are finite, engineers can manually construct decision trees to select appropri-
ate treatments. There are also studies that use decision trees to select maintenance activities
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and support complicated decision-making processes [2, 8]. Since the capacity of addressing
complex problems is limited by the simplicity of decision trees, expert systems are proposed
to resolve intricate decision-making problems. Tailored by experts, expert systems compile
and formalize expert knowledge into rules and use an inference engine to handle knowledge
[19]. Compared to expert decisions, expert systems provide competent solutions for material
selection[17] and task prioritization [13] in the road maintenance domain. However, since rule-
based methods are encoded from human knowledge and maintained by domain experts, they
lack the capability to learn from historical data and flexibility to deal with any unforeseen
changes.

Natural Language Processing (NLP) methods and Large Language Models (LLMs) are re-
garded as promising solutions to manage knowledge and support decision-making. [6] investi-
gated how machine learning methods are integrated in NLP and the automation the priority
assignment of building maintenance tasks. This work verified the effectiveness of NLP in con-
ducting a preliminary check of the most urgent requests. Similarly, NLP is used to rank the
severity of maintenance requests through text mining and to support maintenance decision-
making [5]. With the development of LLMs, pretrained models such as BERT [3] and GPTs [14]
outperform other NLP methods and are applied for multiple tasks, including decision-making.
[4] assessed ChatGPT responses on hazard analysis and suggested LLMs may be useful to assist
human experts in this field. [15] used a pre-trained BERT and fine-tuned it for medical disease
prediction. Such applications demonstrate the potential of LLMs for various decision-making
tasks across different fields. However, applying them in specific domains requires delicate fine-
tuning, as they were pre-trained on large common-sense corpora and consists of millions of
parameters and their performance can be hindered when domain-specific data is insufficient.
Additionally, responses from LLMs can be unreliable. Since their answers are generated by
black-box processes, changes in prompts can lead to different outputs. In practice, a human
expert is required to supervise the use of LLMs to ensure the correctness.

This paper proposes a transformer-based method which targets road maintenance decision-
making processes and provides traceable and reliable decisions with step-by-step thinking. The
decisions consist of four parts: the judgement of asset types, defect types, job types, and prior-
ity. The key difference between our approach and popular pre-trained LLMs such as BERT and
GPTs is the attention mechanism (a method that enables the model to focus on the most impor-
tant part of the input data). While BERT and GPTs primarily use self-attention mechanisms
to focus on single source inputs only, our approach relies on a cross-attention mechanism, which
enables connections between two different sources, to align road maintenance enquiry text (the
description of road conditions requiring a maintenance activity) and maintenance knowledge.
The contributions of this approach are summarized as follows:

1. Road maintenance knowledge is structured in logical chains, which imitate expert decision-
making think path and provide visible and traceable steps for decision-making processes.
The use of logical chains enables stepwise thinking within the model through the cross-
attention mechanism.

2. The model is trained with real-world road maintenance records and achieves automatic
maintenance priority rankings, together with asset, defect, and job information alignment.

3. This model, while using fewer parameters, outperforms pre-trained and fine-tuned BERT
models, demonstrating the capacity of decision-making in road maintenance domain.
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Figure 1: The architecture of RTransformer model.

2 Method

Figure 1 provides a high-level illustration of the architecture (named RTransformer standing
for the Road-Transformer), consisting of three stages: (1) the processing of inputs, including
texts and logical chains, before the attention mechanism, which involves formatting the logical
chains and mapping inputs into a continuous vector space as embeddings. Both the enquiry
descriptions and the logical chains are extracted from real-world road maintenance records.
The logical chain is then arranged in a specific order, with a special placeholder ¡SOS¿ (Start of
Sequence), inserted at the beginning. The discussion of the logical chain is covered in subsection
2.1; (2) the attention mechanism, including self-attention, where input information is integrated
and prepared for the next layer, and cross-attention, where the logical chains can focus on the
text information. A mask is added in logical chain processing to prevent data leakage. The
V stands for Value, K stands for Key and Q stands for Query. The attention mechanism is
discussed in detail in subsection 2.2; (3) the decoding and prediction of the next position in the
chain, which is achieved using a linear decoder and a softmax layer to obtain the probability
distribution of positions.

2.1 Road Maintenance Decision-Making Logical Chains

Road maintenance decision-making by human experts involves the intermediate judgement of
maintenance-related factors and the final decision made on top of these factors. With their
experience, experts can classify key factors before making maintenance decisions. Experts can
intuitively identify the asset for which the maintenance enquiry is reported on, the defect which
has occurred on the asset, and the job required to fix the defect. Given all this information, final
decisions are based on the priority of maintenance tasks, which reflects their level of urgency
and significance. Some examples of road maintenance decision-making key factors are listed in
Table 2.

NLP methods are available to extract key factors from natural language. It is common
practice to treat NLP-based decision-making problems as classification tasks, directly predict-
ing final decisions such as activity priority. Such methods typically involve locating key words
for decision-making, such as Named Entity Recognition (NER). However, road maintenance en-
quiries can be vague and written in layman’s language, as it describes road conditions based not
only on inspections but also on feedback from customers. The following example demonstrates
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Asset Type Defect Type Job Type Priority
Single 2-Lane Carriageway Pavement Pothole Incident Response 2 hours
Gully Drainage Defect Incident Repair 24 hours
Safety Barrier (Steel) Miscellaneous Accident damage Fences, Walls etc. Repair 2 months
Lightning Column Lighting Column Defect Lightning Repair 7 days
Post (Signs) Road Markings Wear Traffic Sign/Road Marks Repair 28 days
Catch pit Drainage Flooding Drainage, Service Ducts Repair Fix now
Dual 1-Lane Pavement Debris in traffic lane Sweeping, Cleaning 14 days
. . . . . . . . . . . . . . . . . . . . . . . .

Table 2: Examples of key factors of road maintenance.

Figure 2: The logical chain of road maintenance.

part of an enquiry raised by a customer:
“Same problem ....... Very loud clattering noise every time traffic goes over it. Sound like

something metal which is loose ...... The noise every time a vehicle goes over it, is immense. I
wouldn’t be surprised also now that it could possible cause a serious accident. . . . . . ”

This enquiry describes a rattling manhole issue; however, no terms related to drainage are
mentioned, and misleading words like “serious” and “accident” are used. In such cases, NLP
methods that make direct decisions may overlook the complexity inherent in assessing multiple
factors, leading to unexplainable and inaccurate outcomes.

To address this problem, we proposed a logical chain that manages knowledge in a structured
format and mirrors the intuitive decision-making process of experts. An illustration is shown
in Figure 2. The logical chain for road maintenance is designed in the order of Asset Type,
Defect Type, Job Type and Priority, aligning with real-world practices. From the enquiry,
the type of asset is first confirmed, and then the type of defect is reasoned based on both
enquiry content and asset information. By repeating this process, the logical chain enables
each subsequent prediction to benefit from the additional information provided by all previous
predictions until the final decision of priority is made. Taking the previous customer raised
enquiry as an example, “Manhole” is first matched as the asset type, then “Drainage Defect”
is reasoned as the defect type with additional asset information, followed by the job type as
“Drainage, Service Ducts” follows. Finally, the priority is decided as “7 days”, considering all
previously extracted information.

2.2 Attention Mechanism

The attention mechanism used in this work is Scaled Dot-Product Attention[21] as used in the
transformer model, which can be expressed as Equation 1. Q (for query), K (for key) and V
(for value) are vectors that represent inputs in continuous space. The dimension of vectors is
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denoted as d, and
√
d is used as a scaling factor.

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V (1)

The self-attention mechanism is wrapped in encoders to separately process inputs from the
enquiry text source and the knowledge source. In the self-attention mechanism, Q, K and V
are derived from the same source and contribute to the vector v that assembles all token features.
In the self-attention encoder on the text side, the output vtext is subsequently used as K and V
in the following cross-attention mechanism. On the knowledge side, additional masking is added
to prevent data leakage. As the positions of the logical chain are the targets to predict, the
current prediction depends on all known previous positions. The output vknowledge provides Q
for the cross-attention mechanism. Hence, for cross attention mechanism, the original attention
equation can be rewritten as Equation 2:

Attention(vknowledge, vtext) = softmax

(
vknowledgev

T
text√

d

)
vtext (2)

Equation 2 is used in cross-attention for text-knowledge alignment, where i is the index of
the position to predict and i ∈ 1, 2, 3, 4. The data flow from self-attention to cross-attention is
illustrated in Figure 3 using a real-world example. The enquiry description text “Road Traffic
Collision CAR HIT LAMP COL” is first tokenized into separate tokens, and the token em-
bedding layer generates embeddings for each token, represented as [x1, x2, ..., xd]. Through
self-attention mechanism, vtext is generated based on all token embeddings. On the other hand,
< SOS > is concatenated at the beginning of the logical chain as a placeholder for cross-
attention. Through the target embedding layer, positions and < SOS > are embedded as
[y1, y2, ..., yd]. Self-attention mechanism also processes the embeddings of positions less than
i (because of masking) and outputs viknowledge. Cross-attention mechanism, vtext attends to

viknowledge of each position for a step-by-step prediction. For example, to predict Job Type po-
sition, masked self-attention accumulates data from < SOS > embedding, “Lighting Column”
embedding at Asset Type position, and “Miscellaneous Accident damage” embedding at Defect
Type position, and outputs v3knowledge as the result of self-attention. Data from “Incident Re-
sponse” and “30 Minutes” embeddings at position 3 and 4 are not considered. Together with
vtext from self-attention for texts, the attention is computed by Equation 2 and then decoded
by the linear decoder to predict the exact content at Job Type position.

2.3 Training and Reasoning Processes

In this section, we introduce the training and reasoning processes employed by our RTrans-
former. Both processes follow the path of stepwise prediction, but the strategy of training and
reasoning is different. During training, a teacher forcing strategy is used to guide the model
learning process with ground truth data. In the reasoning process, ground truth is not available,
and the subsequent predictions depend on the previous predictions. These different strategies
allow the model to be efficiently trained and to make predictions independently.

2.3.1 Training Process

The teacher forcing strategy is shown in Figure 4. The attention mechanism is employed among
ground truth rather than predictions. During the training process, the Enquiry text, < SOS >
placeholder and ground truth are the inputs to RTransformer model. To implement teacher
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Figure 3: Data flow in the combined attention mechanism.

Figure 4: Teacher forcing in RTransformer training process.

forcing, each position of the logical chain is shifted by one. The last position is dropped, and
the beginning of the chain is held by < SOS >. The first prediction is made from Enquiry and
< SOS >. Instead of using the predicted position, the next prediction depends on the ground
truth of the previous position, e.g. Defect Type prediction is made from Enquiry, < SOS >
and ground truth Asset Type. In this way, the model always learns from the correct knowledge.

2.3.2 Reasoning Process

The reasoning process can be described in pseudocode as shown in Figure 5. The major differ-
ence is that the inputs to the RTransformer on the knowledge side are predictions rather than
ground truth. The RTransformer model and < SOS > are pre-trained and their parameters
are frozen during reasoning. The data flow on the Enquiry text side remains the same as in the
training process. On the knowledge side, the input is initialized from the placeholder < SOS >
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Figure 5: Pseudocode of Decision Reasoning Process.

and dynamically updated with the predictions in the reasoning loop. The reasoning loop stops
after four predictions, concluding the decision-making process. The predicted logical chain is
the final output of RTransformer.

3 Experiments

This section describes the RTransformer training process in detail, together with comparison to
BERT variants as baseline models. This model is trained on a virtual machine with 1 NVIDIA
Tesla V100 GPU.

3.1 Training data

The RTransformer and the baseline models are both trained on real-world road maintenance
records from National Highways England [9]. The original data was cleaned and balanced across
classes for a better quality. The total amount of records used for training is 19,297, and each
record contains enquiry description texts, the Asset Type, the Defect Type, the Job Type and
the Priority. A logical chain is generated for each record. For enquiry texts, the sequence length
is limited to 100 tokens, as over 99% sequences are shorter than this threshold. A special token
¡PAD¿ is used for padding. The shared vocabulary in the token embedding layer consists of
9,231 tokens. For the target positions to predict, there are 125 classes in total across all four
positions.

3.2 Baseline Model

We used BERT as our baseline model to compare the performance on the same training dataset.
As BERT uses the encoder only architecture and focuses on self-attention, we simplified the
decision-making problem as a last step classification task. In this way, the original step-by-
step decision-making of 125 classes is turned into one final priority classification of 30 classes.
With fewer classes, it is easier for pre-trained BERT to differentiate between classes. In our
experiments, BertForSequenceClassification model from Hugging Face library[22] is used, and
the pre-trained weights are from different versions of BERT-based models with different sizes.
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3.3 Optimizer and Hyperparameters

We used the AdamW optimizer [12] instead of the Adam optimizer [11] that is used in the
original transformer. The change was made to address the overfitting issue caused by insuffi-
cient training data. The hyperparameters are set as follows: β1 = 0.9, β2 = 0.999, ϵ = 10−8,
weight decay= 10−4,learning rate = 10−4. A dropout rate of 0.1 is also applied in the model.

In this work, we also employ Multi-Head Attention to jointly attend to information in
different aspects at different positions. A test of different head numbers and layers is also
conducted to find an optimal model structure.

4 Results

This section presents the results of experiments of testing RTransformer in different variations
and the performance of baseline models.

4.1 Model Variations

The experiments are conducted based on an early stop strategy. The whole dataset is divided
into two subsets, with 70% of the data allocated for training and 30% reserved for validation.
The patience parameter in the early stopping strategy is set to 5, allowing a wait of five epochs
for any improvement in validation loss.

Variations of RTransformer have been tested in different aspects, including the change of
layer numbers, batch sizes, number of heads and the dimension of models. We denote the at-
tention layer number in encoders and cross-attention block as layer, the dimension of vknowledge

and vtext before Multi-Head Attention application as dmodel, the dimension of the feed forward
layer in the linear decoder as dff. In Table 3, the params column records the amount of all
trainable parameters in RTransformer. The epoch corresponds to the last instance before the
validation loss begins to increase, indicating potential overfitting. And the accuracies of the
four positions are also listed in the table. All accuracy metrics are obtained in the validation
dataset at the epoch corresponding to the minimum validation loss.

layer batch dmodel dff head
params
×106 epoch

AssetType
accuracy

DefectType
accuracy

JobType
accuracy

Priority
accuracy

base 6 256 512 2048 8 51.4 10 0.453 0.674 0.803 0.610

(A)
3 29.4 10 0.465 0.697 0.810 0.626
2 22.0 11 0.483 0.701 0.809 0.632
1 14.6 11 0.473 0.673 0.790 0.610

(B)

2 1 22.0 12 0.459 0.672 0.785 0.610
2 4 22.0 12 0.482 0.697 0.806 0.631
2 16 22.0 12 0.511 0.727 0.827 0.650
2 32 22.0 12 0.484 0.701 0.810 0.626

(C)
2 256 9.6 20 0.499 0.718 0.817 0.643
2 768 16 37.5 8 0.476 0.699 0.805 0.627

(D)
2 64 16 22.0 7 0.478 0.683 0.805 0.616
2 128 16 22.0 8 0.482 0.705 0.807 0.625

Table 3: Variations on the RTransformer architecture and experiment results.

The base model architecture is configured to align with the original transformer base model
settings. Due to the significantly smaller size of the training dataset compared to the original
transformer, it is essential to adjust the number of layers and heads to identify the optimal

740



Leveraging Transformers for Improved Decision-Making in Road Maintenance Kang, Green and Brilakis

configuration. A balance is also required between accuracy performance and the number of
parameters, which directly impacts computational cost.

The result summary of model variations is listed in Table 3. Group (A) includes the test on
how different numbers of layers influence the result. The best result is gained when two layers
are used, with 22.0 million parameters. The model with more layers does not achieve better
performance, which may result from the misalignment between the training data volume and
the parameter volume. When the number of layers is reduced to one, the model does not fully
utilize its potential to learn from the data. Group (B) explores the influence of heads. As heads
allow the model to attend to different aspects of the data, the model with 16 heads achieves the
best result, while using 32 heads leads to earlier overfitting. The test in group (C) examines
the variations in the model dimensions. A dimension of 256 leads to the disqualification of the
model, while an increase in dimensions results in early overfitting. The test in group (D) focuses
on the batch size, which influences the stability of the training. A bigger batch size improves
the performance with fewer learning steps in each epoch. However, limited by the memory of
the GPU, the biggest available batch size is 256.

The results presented in Table 3 demonstrate a trend of overfitting. Although the vanilla
Transformer achieves the best performance with 213 million parameters [21] in their experi-
ments, the bigger the better does not apply to domain-specific applications. One of the primary
reasons is the deficiency of training data both in terms of quantity and diversity, which easily
triggers the early stop strategy to prevent overfitting.

4.2 Comparison to Baseline Models

BERT-based pretrained models are used as baseline models to compare performance on priority
prediction. As these models are pretrained on lots of various books and Wikipedia, fine-tuning
is required to adapt them for the road maintenance domain. This fine-tuning dataset is the
same dataset used in RTransformer training.

BERT variants of different sizes are tested on the same dataset. The results are listed
in Table 4. BERTbase is the original BERT model from [3], the DistilBERT model leverages
knowledge distillation and reduces the model size to 65.8 million [18]. To compare performance
across various model sizes, BERTmedium and BERTsmall [20] are also tested.

Due to the limitation of GPU memory, the training batch size is unified as 128.

layer batch dmodel dff head
params
×106

epoch
Priority
accuracy

ours 2 128 512 2048 16 22.0 8 0.625
BERTbase 12 128 768 3072 12 110 4 0.580
DistilBERT 6 128 768 3072 12 65.8 5 0.476
BERTmedium 8 128 512 2048 8 41.7 4 0.582
BERTsmall 4 128 512 2048 8 29.1 5 0.583

Table 4: Performance comparisons among BERT variants and KGTT

From Table 4, we can see that our model achieves the best performance with the smallest
model size. Additionally, the accuracy of our model is gained on the base of 125 classes of
all positions, while other BERT variants are tested with 30 classes from the priority position
only. Apart from DistilBERT, which utilizes a different mechanism, the size reduction of BERT
models has little impact on accuracy results. This may be attributed to the quality and quantity
of fine-tuning data.
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5 Conclusions

This paper leverages a transformer to conduct decision-making in road maintenance. The cross-
attention mechanism is applied to align text and domain-specific knowledge. By integrating
the cross-attention mechanism with the logical chain design, this approach achieves a step-
wise decision-making process. The results of experiments on real-world data demonstrate that
RTransformer outperforms BERT models that utilize self-attention alone.

In domain specific tasks such as road maintenance decision-making, the limited availability
of data restricts the performance of models, often leading to overfitting during training and
fine-tuning. In this context, a restrained model architecture is preferable. Although pretrained
LLMs are considered suitable solutions for knowledge management, they may not be optimal
choices in domain-specific tasks, especially when considering data availability and computational
costs.

The method proposed in this paper demonstrates the potential of utilizing the Transformer
architecture for decision-making tasks in specific domains. It provides a feasible solution to
guide the learning process of the model by designing logical chains to allow stepwise thinking.

Despite the promising results achieved in this study, several research limitations remain.
Although the stepwise thinking introduced by the logical chain improves the performance of
our model, it relies on semantic relations among elements and overlooks the structural features
of knowledge. Additionally, the format of logical chains lacks compatibility. Future work will
aim to organize knowledge in a more structured manner and incorporate structural features
into the decision-making process.
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