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Abstract

The performance of deep learning algorithms is highly dependent on the quantity and
diversity of the available training data. However, obtaining sufficiently large datasets
represents a significant challenge, particularly in the field of medical imaging. This study
underscores the potential of self-supervised training strategies in the development of deep
learning models for medical imaging tasks. It is demonstrated that workflows can be
significantly optimized by incorporating the feature content of a large collection of medical
X-ray images from intraoperative C-arm scans into a so-called foundation model. This
approach facilitates the efficient adaptation to a variety of concrete applications by fine-
tuning a small task-specific head network on top of the pre-trained foundation model,
thereby reducing both computational demands and training time.

1 Introduction

In recent years, the application of deep learning to medical imaging has achieved remarkable
success, often surpassing the performance of traditional methods [1]. However, for these models
to transition from research to clinical practice, they must meet rigorous standards of reliability,
generalizability, and diagnostic accuracy [1]. A major obstacle to achieving robust performance
in clinical settings is the limited availability of sufficiently large training datasets, as the size
and diversity of the data are directly related to the effectiveness of a trained model [2].

Foundation models offer a promising solution to this limitation by encoding general domain
knowledge that can be easily adapted to a variety of downstream tasks with minimal additional
fine-tuning [3]. In particular, self-supervised learning techniques have emerged as powerful
tools in this context, providing capabilities to take advantage of the vast amount of unlabeled
clinical data available in many hospitals [4]. Given this background, it is demonstrated how
self-supervised pre-training of feature extraction backbones on a large set of unlabeled medical
X-ray images from intraoperative C-arm scans can effectively support the concurrent solution
of classification, segmentation, and detection problems.
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2 Materials and Methods

The general workflow followed in this study is illustrated in Figure 1. Initially, a comprehen-
sive dataset consisting of 632,385 X-ray images was curated from intraoperative C-arm scans
provided by multiple clinical collaboration partners. The images were recorded using various
acquisition devices and imaging protocols, including 3D projection and fluoroscopic imaging for
example. The raw data was converted to a uniform format and anonymized before being stored
in a secure data lake, ensuring that no identifiable patient information could be derived.

Given the absence of additional label annotations for the images, the self-supervised learning
framework DINO (i.e., knowledge-distillation with no labels), developed by Caron et al., was
employed [4]. The DINO method is based on a student-teacher network architecture and was
used to train different backbone architectures for feature extraction. Subsequently, the trained
backbone models were evaluated on specific downstream tasks to assess the quality of the learned
feature representations. Specifically, the performance of the models was tested on body region
classification, metal implant segmentation, and screw object detection. For each task, only a
small, task-specific head network was trained, while the backbone models remained frozen. This
approach exploits the domain knowledge already learned during the backbone pre-training, thus
requiring significantly less time and computational resources to adapt to the specific task.

Figure 1: Workflow overview for pre-training and fine-tuning a foundation model.

3 Results

Figure 2 illustrates the inference results for the previously mentioned downstream tasks on a
representative test sample showing a clinical spine scan with additional screw implants. On the
left, the three body region labels with the highest probability scores out of 11 possible categories
are shown. Additionally, the predicted segmentation mask highlighting metallic areas in the
image as well as the detected screw bounding boxes together with their respective confidence
scores are visualized.
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To complement this qualitative demonstration, a quantitative evaluation was also performed
to confirm the reliable adaptation of the backbone models. Body region classification was best
solved using a vision transformer (ViT) backbone with an accuracy of 96.9%, while precision
and recall reached 97.0% each. In contrast, backbones based on residual network (ResNet)
architectures delivered the best performance in the segmentation task with an average DICE
score of 94.1%. Moreover, screw objects were detected with an average deviation of 3.28 and 7.86
pixels for the head and tip coordinates, respectively, while the average angular error between
ground truth and prediction was 1.22 degrees.

Figure 2: Exemplary inference results for a classification, segmentation, and detection task.

4 Discussion and Conclusion

This study demonstrates the efficacy of self-supervised learning for pre-training foundation
models in medical imaging, aligning with prior research emphasizing the importance of self-
supervised strategies for domains with limited annotated data [5, 6]. Notably, the results reveal
substantial differences in the performance of the ViT and ResNet backbones. Specifically, the
ViT model demonstrated superior classification accuracy, while the ResNet-based backbone
exhibited better performance in the segmentation and detection tasks. These outcomes can be
attributed to the architectural strengths of each model. ViTs are advantageous in capturing
global contextual information due to their attention-based mechanisms, making them particu-
larly effective for classification tasks that require holistic image understanding [7, 8]. Conversely,
ResNet architectures, with their hierarchical feature extraction and strong spatial localization
capabilities, are better suited for tasks requiring precise pixel-level predictions [9, 10].
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Despite these achievements, several challenges persist. The evaluation of the pre-trained
feature extraction models was conducted on only three downstream tasks, which may not fully
cover the diverse range of clinical application scenarios. Additionally, while the frozen backbone
approach offers computational efficiency, it may limit the adaptability of the model for tasks
that require a deeper contextual understanding. In conclusion, this study contributes to the
advancement of foundation models in medical imaging, providing a scalable solution to the
challenge of missing label annotations. The potential of this approach lies in its ability to
streamline the development of novel, task-specific models, thereby accelerating the integration
of deep learning solutions into clinical workflows.
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