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Abstract 
Efforts to synchronize mobile robotic devices into desired formation are a niche 

research area. Most tips for programming plausible swarm intelligence are discretely 
taken from mathematics, physics, biology, chemistry, or nature. However, integration of 
the different cues into useful swarm intelligence systems is challenging. The notion of 
swarm intelligence ontologies is compelling. It captures theories, rules, policies, and 
meta-information about the creation of practical swarm systems. Swarm intelligence 
ontologies can establish the relationships between different swarm modelling paradigms 
to bring about generality. Such generality requires us to review various forms of swarm 
intelligence systems seeking to understand simulated robotic device actions that give rise 
to emergent behaviour. Two arms of such robotic device actions are noted. One set of 
robotic device actions are non-interactive. These actions are mainly taken from 
mathematics, physics laws, or other elitist methods. On the other hand, there are robotic 
devices actions regarded as interactive. Commonly, interactive robotic devices are bio-
inspired. This article sequentially discusses these two categories of robotic device actions 
towards building a catalogue of actions to inspire the creation of swarm intelligence 
ontologies. Notably, most non-interactive robotic devices have abilities to recall the paths 
they previously followed. In other cases, robotic devices can use some form of language 
to share directional cues. However, the bulky of the literature points to robotic devices 
that can follow chemical tips towards the targets. A very small chunk of non-interactive 
robotic devices can rely on geometry, calculus, forces, beacons, or landmarks to orientate. 
Some interactive robotic devices can explicitly message pass. Some use environment 
mediated interactions. The type of data shared between such robotic devices is usually 
overtly connoted, including stacks, vectors, chemicals, forces, landmarks, or beacons. 
That way, the key robotic devices actions at individual level are apparently associated 
with reading stacks, interpreting language verbs, detecting chemicals, self-localizing, 
motion planning, or finding directions. This specificity in the characteristics of robotic 
device actions is the basis for the design of the swarm intelligence ontologies we envision. 
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1 Introduction 
Understanding the mechanisms in which simulated robotic devices in swarms converge on emergent 

behaviour is an epic task (Chibaya: PhD thesis, 2014). In this case, emergent behaviour is the degree to 
which we see features at swarm level that cannot be accounted for at individual robotic device level 
(Fisher & Lipson: article, 1999). It implicitly defines the synergy by the robotic devices (Sato & 
Matsuoka: article, 2009; Stepney et al.: article, 2007). Grasping the main concepts, rules, and processes 
through which simulated robotic devices are synchronized into forming emergent behaviour is the key 
ingredient for defining catalogues of actions that can inspire the design of useful swarm intelligence 
ontologies. Generally, an ontology captures the key aspects in a nominated knowledge domain, along 
with their relationships. In this article, we primarily identify the actions of simulated robotic devices 
which trigger emergent behaviour with the hope to suggest the building blocks of swarm intelligence 
ontologies. In our view, a concise swarm intelligence ontology should emanate from integrated views 
built on the actions of different categories of simulated robotic devices. That specificity in the 
understanding of robotic device actions at individual level is pivotal to fruitful conceptualization and 
appropriate recommendation of those actions for the design of desired swarm intelligence ontologies.  

Two categories of simulated robotic device actions are distinguished in this work. On one hand, 
there are robotic device actions regarded as non-interactive. Other robotic device actions are interactive. 
In this case, non-interactive actions are dominantly mathematics-based, physics-driven, or elitist. 
Contrary, interactive actions are bio-inspired (Chibaya: PhD thesis, 2014). In swotting each category, 
we emphasize an understanding of the procedures underpinning robotic device control, communication, 
and orientation.  

1.1 Problem statement 
We seek to understand the different forms of simulated robotic device actions which cause emergent 

behaviour under different circumstances and prescribe those actions as building blocks of useful swarm 
intelligence ontologies. An understanding and appropriate consideration of those actions in the design 
of swarm intelligence ontologies may, potentially, create baseline platforms upon which practical 
swarm intelligence inspired solutions to real-life problems may ensue.  

1.2 Overview 
The rest of the article proceeds as follows: section 2 presents a discussion on non-interactive robotic 

device actions, distinguishing between mathematics-based, physicomimetic, and elitist actions. Section 
3 presents a discussion on interactive actions, focusing on the actions that characterize one-on-one 
interactions, as well as those actions that portray indirectly mediated interactions. In section 4, we 
discuss how those actions fit into the swarm intelligence ontology design problem. The conclusion 
follows in section 5, highlighting the key observations, contributions, and the direction for future work.  

2 Non-Interactive Robotic Device Actions 
Non-interactive actions are mainly mathematical, physicomimetic, or elitist. The actions of robotic 

devices in this category, including movement, are built on geometric equations, vectors, forces, or 
matrices. Related robotic devices are characterized by large memories (Ngo et al.: article, 2005) in 
which to keep formulae (Monte De Oca et al.: article, 2005), positions of objects (Mullen et al.: article, 
2009), vectors (Wu et al.: article, 2005) or information about the landmarks in the environment (Wehner 
et al.: article, 2006). However, different forms of non-interactive actions are contemplated to have their 
own pertinency and peculiarities as separately discussed in the three subsequent subsections. 
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2.1 Mathematical Actions 
Robotic devices that rely on actions characterized as mathematical perform rigorous computations 

using prescribed formulae to define robotic device communication, orientation, and movement policies 
(Ngo et al.: article, 2005). The popular branch of mathematics involved is geometry and calculus.  

Geometry-inspired robotic devices do not require any direct interactions with one another. Rather, 
each robotic device's positional preferences are based on the Cartesian geometry of its location 
(Trofimova et al.: article, 1998). Also, these robotic devices self-localize relative to the positions of 
specific objects in the environment (Trofimova et al.: article, 1998). The independent calculations each 
robotic device performs define communication while instigating orientation and triggering mobility. 
Some calculations are about measuring distances to targets or estimating the angles of robotic device 
rotation relative to specific objects in the environment (Ngo et al.: article, 2005). Motion is also 
overseen using velocity profiles and collision avoidance schemes.  

On the other hand, calculus-based robotic devices calculate movement trajectories using globally 
perceived features of the environment (Sarfati: article, 2007). They self-localize using pure mathematics 
or, sometimes, Jacobian matrices (Harris: article, 2007). In both cases, emergent behaviour arises from 
robotic devices’ individual abilities to follow the mathematics laws thereof (Ngo et al.: article, 2005).  

However, the demand for robotic devices’ ability to solve equations and calibrate mathematical 
functions into directional information is heft, inflexible, and lacks the desired robotic device autonomy. 
That requirement for robotic devices’ ability to generate local coordinate systems in which to self-
localize is computationally savvy. Robotic devices with large memory are structurally sophisticated. 
The robotic device naivety envisioned in most swarm intelligence systems is compromised, especially 
when robotic devices can calculate velocities, distances, and orientation angles. With the desired 
simplicity in the design of robotic devices, some of the mathematical actions described here are 
detrimental to the flexibility we anticipate ontology-based swarms.  

2.2 Physicomimetic Actions 
Physicomimetic actions imitate physics laws. For example, a robotic device in this category would 

remain at rest unless some force acts on it. If in motion, it would remain in motion at a constant speed 
unless acted on by an unbalanced force. Acceleration or deceleration depends on the amount of the 
forces applied. When a robotic device exerts some force to another, that other robotic device would 
exert an equal opposite force. Three classes of physicomimetic actions are noticed, namely, forces-
based, mechanical, and hybrid actions.  

Forces-based actions rely on the sensitivity of robotic devices to other robotic devices in their 
proximity (Balch & Arkin: article, 1999). Robotic devices can attract and repel one another (Azzag et 
al.: article, 2007). Movement speed and orientation are regulated using the push and pull effects 
(Bayazit et al.: article, 2005), thus defining robotic device positional preferences (Lua: article, 2005). 
Typical examples of forces-based actions are seen in (Spears et al.: article, 2005). Often, the main causes 
of emergent behaviour are robotic devices’ sensory skills. Precisely, the potential field of energy that 
develops around each robotic device is the key ingredient to subsequent swarm actions.  

Mechanically inspired robotic devices are propelled using physically mounted electric motors. 
Orientation and subsequent movement trajectories are pre-defined in motion firmware installed in the 
robotic devices. These electric motors are often built with enough energy to run for the duration of the 
task (Paulson: article, 2008). However, pre-programmed outcomes often arise instead of emergent 
behaviour. Besides, robotic devices should be deployed in specific densities, where each robotic device 
has a well-defined schedule of tasks to accomplish (Paulson: article, 2008).  

Hybrid actions combine the features of forces-driven and mechanical robotic devices. Typical 
hybrid robotic devices are inferred in (Pelechano et al.: article, 2007) where, both virtual forces and 
geometric rules are put together to trigger swarm navigation. In their case, displacement equations are 
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used when the robotic device's sensory abilities detect obstacles. Nevertheless, integration of different 
robotic device skills does not take away the complexities associated with each skill considered. Rather, 
more special cases may be required in the motion schemes thereto (Pelechano et al.: article, 2007).  

Although physicomimetic actions are plausible, we anticipate robotic devices that are more nature 
inclined because of the robustness, fault tolerance, scalability, and the flexibility that ensue in natural 
swarms. Like the mathematical counterparts, physicomimetic actions take away robotic device 
autonomy. Individual robotic device behaviours are seemingly regulated by the density of attractive and 
repulsive counterparts in the swarm (Cao et al.: article, 1997). Worse still, the requirement to physically 
mount sensory devices on each robotic device is expensive. Thus, swarm intelligence ontologies built 
on physicomimetic views remain unrealistic.  

2.3 Elitist Actions 
Elitist actions give robotic devices super-intelligence. Related robotic devices are designed with 

sufficient memories to recall past experiences. They can use recall to infer future actions. In addition, 
elitist robotic devices can share information. Some robotic devices in this group can recall entire path 
maps (Mullen et al.: article, 2009), while others rely on landmarks and beacons in the environment to 
trigger future actions (Wehner et al.: article, 2006).  

Path recalling robotic devices can selectively choose the control mechanisms to employ at a time. 
Sometimes, they may recall the paths from the landmarks around (Sudd: article, 1960). In other cases, 
they may recall what to do next from the behaviour of their neighbours (Sudd: article, 1960). When 
isolated, these robotic devices can use the direction and angle of the sun to orientate (Koichi & Mari: 
article, 1996). There are cases where these robotic devices can recall other robotic devices' identities 
(Sheeham & Tibbetts: article, 2008), steering one-on-one cooperation. Desert ants, for example, are 
elitist since emergent behaviour emanates without neither direct nor indirect interactions. Orientate is 
achieved using other environment features, including sensory hints (Cavalcanti et al.: article, 2006) and 
random movements (Jackson et al.: article, 2004). Elitist robotic devices, therefore, frequently updated 
their knowledge until deterministic emergent behaviour arises (Dhariwal et al.: article, 2004). 

Nonetheless, robotic devices that can recall things require unlimited memory (Wehner et al.: article, 
2006). Although the landmarks provide direction vectors and orientation information to elitist robotic 
devices (Wu et al.: article, 2005), the implicit computational demands thereof are undesirable. Also, 
elitism eliminates robotic device autonomy. These features are not convincing in the design of swarm 
intelligence ontologies.  

3 Interactive Robotic Device Actions 
Interactive actions are predominantly nature inspired. They are mainly modelled on the behaviours 

of natural groups such as cells (Xi et al.: article, 2005), birds (Reynolds: article, 1987), DNA (Reif: 
article, 2002), bees (Reynolds: article, 1987), or ants (Chibaya & Bangay: article, 2007) or spiders. In 
this case, robotic devices depend on one another to complete individual-level tasks. Interactions are 
local. In one group, interactions are one-on-one. In another class, robotic device interactions are 
indirectly mediated via the environment.   

3.1 Actions of Robotic Devices that can Interact One-on-One  
In this category, robotic devices are commonly modelled with the ability to exchange information 

one-on-one. They often share memory blocks with directional data (Nasipuri & Li: article, 2002), path 
history (Nasipuri & Li: article, 2002), or data about the positions of some objects (Monte De Oca et al.: 
article, 2005). In some cases, robotic devices can explicitly share calls in specific languages 
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(Rajbhupinder et al.: article, 2010; Nagpal et al.: article, 2010). However, the key consideration in all 
cases pertains to the requirement to know the type of data shared, how and when it is shared (Haasdijk 
et al.: article, 2013). Consequently, three types of robotic devices are distinguished in this category.  

One group shares path history. In these, stack-like message blocks are hopped from one robotic 
device to another (Trianni & Dorigo: article, 2005). These stacks usually record coordinates of the paths 
previously used (Nasipuri & Li: article, 2002) or data relating to the best routes followed earlier (Hara 
et al.: article, 2005). Other stacks record entire paths maps (Monte De Oca et al.: article, 2005). Usually, 
a learning framework arises (Lien et al.: article, 2005) where the experiences of other robotic devices 
are learnt by referencing their stacks. The learning robotic devices can create their own paths maps from 
the learnt experiences (Bayazit et al.: article, 2005; Rodriguez et al.: article, 2007).  

Robotic devices that can share geometric vectors are more promising. They do not require excessive 
memory capacities since they would only keep specific vector components (Nasipuri & Li: article, 
2002). Sometimes, the vectors shared interpret pheromone levels. In other cases, these vectors interpret 
the geometries of specific objects (Nasipuri & Li: article, 2002).  

Robotic devices in which some form of a communication language ensues are also visible. Most 
robotic device communication languages are developed with verbs, vocabulary, syntax, and semantics 
(Rajbhupinder et al.: article, 2010). The growing point and origami shape theories (Nagpal et al.: article, 
2010) is a more popular language in this category. The work of (Butera: PhD thesis, 2002) is also 
fascinating, where a growing point language was used to implicitly enhance pheromone dissipation. 
Other robotic device languages rely on high-level description of functions and relationships among the 
robotic devices. Such languages coordinate the behaviour of robotic devices throughout (Stefano & 
Santoro: article, 2001). In most cases, pre-programmed coordination laws are incorporated upfront, 
together with the vocabulary thereof (Nagpal et al.: article, 2010). A few other languages support call 
protocols explicitly developed into verbs (Cao et al.: article, 1997; Beal: article, 2005). A robotic device 
communication language based on geometric primitives was also used as an amorphous medium 
language (Beal: article, 2005). In their works, the language described behaviour in terms of spatial 
regions of the amorphous media (Nagpal et al.: article, 2010), where neighbours only communicated 
utilizing a shared memory region. However, such calls are, often, broadcast to the entire swarm, 
compromising robotic device privacy and autonomy. 

Investigations aimed at identifying the primitive actions of ant-like agent with abilities to explicitly 
communicate using a language were also administered. However, the language remained very limited 
in vocabulary (Rajbhupinder et al.: article, 2010). Only a limited domain of emergent behaviour can be 
achieved using the language. Attempts to propose robotic devices that can use sentence messages have 
been in progress for a while (Dastani et al.: article, 2003). The results presented, so far, lack in that the 
roles of receiver robotic devices are made consequences of the desires of communicating robotic 
devices (Naeem et al.: article, 2007). In other words, the independence of the receiver robotic device is 
grossly compromised. Nonetheless, these debates are ongoing and bringing us closer to the design of 
the desired swarm intelligence ontologies. 

Although the notion of sharing information is nature-inspired (Nouyan & Dorigo: article, 2007), 
three disadvantages emanate in this category. First, robotic devices should possess good memory 
capacities to hold the shared message blocks. Also, their memory structures should be compatible with 
the message blocks shared. Thus, all robotic devices should be structurally similar (Caicedo et al.: 
article, 2007) so that they can share homogeneous content. More so, the information held in less 
successful robotic devices may be lost when the path histories of relatively successful robotic devices 
are preferred. That alone expediates data loss at swarm level. These needs are perturbing in the design 
of practical swarm intelligence ontologies. 
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3.2 Actions of Robotic Devices that rely on Mediated Interactions 
Swarm control models where robotic devices’ interactions are indirectly mediated are mostly 

chemistry or biologically inspired. For example, virtual chemicals can be placed on the environment to 
create shared memories for the swarm. These chemicals are either placed on the environment by objects 
or by the robotic devices themselves (Dorigo et al.: article, 1996). Models where objects deposit 
chemicals on the environment are referred to as optimized. Contrary, those models in which the robotic 
devices excrete chemicals are referred to as stigmergic.  

Optimized models use path markers such as plume gradients (Dhariwal et al.: article, 2004). Robotic 
devices can self-localize relative to the chemical sources (Colin: article, 2006). Local coordinate 
systems arise from robotic devices’ perception of the quality of chemicals around them (Ravary et al.: 
article, 2007). In most cases, these chemicals define unidirectional paths (Jackson et al.: article, 2004). 
Elitist mechanisms are needed when multi-directional paths are required (Koichi & Mari: article, 1996). 
A common form of elitism involves robotic devices that can conveniently switch between different 
interaction strategies (Monte De Oca et al.: article, 2005) such as using sensory cues together with 
chemical gradients (Wehner et al.: article, 2006). In other cases, robotic devices can have limited vision 
to augment chemical tracing (Healey & Pratt: article, 2008). However, the bulk of robotic devices 
supplement chemical tracing with recall (Di Caro et al.: article, 2008; Negulescu et al.: article, 2006). 
However, elitism is not desirable in swarm intelligence because it takes away agent autonomy (Yang 
& Zhuang: article, 2010) 

Stigmergic robotic devices excrete specific levels of pheromones (Dorigo et al.: article, 1996; 
Merkle et al.: article, 2006). Stigmergy is a non-symbolic form of communication mediated via the 
environment (Socha: article, 2008; Parunak: article, 2005). It captures the notion that robotic devices' 
activities mark signs on the environment which determine subsequent actions (Shell: article, 2003). 
Two types of stigmergic robotic devices are observed (Burgess: article, 2009). Sematectonic robotic 
devices (Shell: article, 2003) can change the physical characteristics of the environment. Examples of 
these are hole making robotic devices (Ghaiebi & Solimanpur: article, 2007), pit constructing robotic 
devices (Montgomery et al.: article, 2007), or nest building robotic devices (Aleksiev et al.: article, 
2007). On the other hand, sign-based robotic devices mark pheromone signs on the environment. These 
pheromones indirectly influence subsequent robotic device behaviour, including task related behaviour.  

In sign-based robotic devices, mobility is probabilistic (Chibaya & Bangay: article, 2007). Path 
selection is based on the levels of pheromones held around a robotic device. Three sub-classes of sign-
based robotic devices are noted, including single pheromone users, two pheromone users, and multiple 
pheromone users. Single pheromone users can excrete and perceive one and only one form of 
pheromone. The source of that single pheromone are the robotic devices (Dorigo et al.: article, 1996). 
However, there are cases where the targets or other objects have been used to also place single 
pheromone on the environment (Cavalcanti et al.: article, 2006). Those abilities, however, are seen as 
elitist. The most popular single pheromone model is the double bridge scenario (Dorigo et al.: article, 
1996; Solimanpur et al.: article, 2005). In this case, gradients emerged in which robotic devices 
favoured movements towards higher concentration of pheromone. However, again, elitist strategies are 
required when bi-directional paths are sought (Koichi & Mari: article, 1996).  

Scenarios where robotic devices use two forms of pheromone minimize elitism. These two levels of 
pheromones are excreted by the robotic devices and can co-exist (Alcala et al.: article, 2001). Often, 
one level of pheromone is excreted when robotic devices search for targets, and another level is dropped 
after they find the target (Chibaya & Bangay: article, 2007). Also, there are cases where one or both 
levels of pheromones originated from other objects in the environment (Engle & Whalen: article, 2003).  

Cases where multiple levels of pheromone are supported have also been noted. Multiple levels of 
pheromone remedy most flaws noted in optimized, single pheromone, and two pheromone models. 
Thus, relatively robust, fault-tolerant, flexible, scalable, and adaptive models arise (Cavalcanti et al.: 
article, 2006). Several examples of multiple pheromone systems are observed in medical scenarios 
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(Cavalcanti et al.: article, 2006). A major setback for most multiple pheromone models is that the 
sources of these levels of pheromones are, often, some objects in the environment, purporting elitism 
(Yang & Zhuang: article, 2010), where robotic devices can selectively distinguish between the 
meanings of different levels of pheromone (Engle & Whalen: article, 2003). In designing the envisioned 
swarm intelligence ontologies, we seek naivety, freedom, and autonomy of robotic devices. The key 
information should be held externally (in the environment) so that errors at robotic device level do not 
affect task completion at swarm levels.  

4 Discussions  
A distinction between non-interactive and interactive robotic devices action was presented. 

Emphasis was put on the characteristics, pros, and cons of the various actions, whether direct or indirect. 
Different classes of robotic devices actions were considered, including path recalling, geometric, 
language-based, optimized, stigmergic, calculus-based, forces driven, mechanical, hybrid, or beacon 
and landmarks-based actions. Similarly, different communication strategies prevalently inferred in the 
literature were noted, including direct message passing, environment mediated, sensor-based, vision, or 
hybrid mechanisms. We discussed the different forms of data shared between robotic devices, where 
possible, to include stacks, vectors, chemicals, forces, landmarks, or beacons. Swarm properties related 
to robotic device orientation strategies were also summarized into vector-based, language-based, 
probabilistic, calculated directions, forces based, or cues steered by landmarks. As a result, the key 
robotic device activities at individual levels were connoted and pinpointed as reading stacks, detecting 
chemicals, interpreting language verbs, self-localizing, motion planning, or calculating directions.  The 
key parameters of emergence that characterize each class of robotic devices were identified as robotic 
device memory, elitism, robotic device abilities, the environment, laws of motion, and communication 
mechanisms. In our views, the design of useful generic swarm intelligence ontologies should capture 
all these aspects holistically. Figure 1 summarizes a catalogue of robotic device actions for creating 
swarm intelligence ontologies. 

 

 
Figure 1: A catalogue of robotic device actions for creating swarm intelligence ontologies 

Swarm 
Intelligence 
Ontologies

Swarm level Parameters

robotic device memory, robotic device 
abilities, environment, laws of motion, 

communication mechanisms
Non-interactive Actions

path recalling, mathematical, 
physicomimetic,  landmarks based

sensor-based, vision

forces, landmarks, or beacons

optimized, hybrid, elitist 

Interactive Actions
language-based, stigmergic,

direct message passing, 
environment mediated,

stacks, vectors, chemicals, 

A Catalogue of Robotic Device Actions for Creating Swarm Intelligence Ontologies C. Chibaya

37



5 Conclusion 
The following four observations arise:  

• Generally, desired swarm intelligence ontologies should comprise the knowledge domain 
related to robotic device design, self-localization, orientation, and movement policies as 
the key ingredients for synchronized activities. In this case, orientation should be guided 
by some form of meta-information around the robotic devices such as sensory skills or 
memories. On the other hand, movement is triggered by specific displacement factors such 
as attraction and repulsion effects. Thus, robotic device self-localization, orientation, and 
movement abilities are apparent indispensable policies to consider. 

• Robotic devices mainly rely on locally perceived information, be they forces, equations, 
geometry, sensory factors, chemicals, or other robotic devices. This information is 
regularly updated. Swarm intelligence ontologies should consider appropriate system 
update rules. It should dictate how much levels of pheromones are dropped, how much 
pheromone levels evaporation or diffusion, the vector modulation policies, how targets are 
detected, and how vectors are normalized.  

• Robotic devices require some basic memory in which to store internal state information. 
Swarm intelligence ontologies should present policies for appropriate architectural design 
of robotic devices such that they are able to handle the data presented in the system.  

• Although robotic devices should remain naïve and autonomous throughout, interactivity 
brings about some desirable learning framework (Haasdijk et al.: article, 2013) - both at 
individual and swarm levels - in which robotic devices collectively engineer solutions 
based on some shared knowledge. Interactivity is fascinating, not because it brings about 
intelligent individuals, but because, collectively, robotic devices yield robust and fault 
tolerant emergent behaviour. Additionally, it brings stable solutions from very simple and 
naïve actions. Swarm intelligence ontologies should incorporate apt learning frameworks 
for these same benefits. 

The value of this work is emphasized by two contributions as follows:   

• The categorization of robotic device actions creates a basis for identifying the vocabulary, 
verbs, grammar (syntax), and semantics (meanings) of the desired swarm intelligence 
ontologies. In our views, flawless designs will likely capture swarm knowledge spaces 
that expands the scope of applications that can be developed through swarm intelligence 
perspectives.  

• Aspects related to quantification of emergent behaviour are invisible in the literature. It is 
a gap that needs to be pursued before we can create complete swarm intelligence 
ontologies. This observation creates a new research avenue.  

Three potential directions for future works are as follows:    

• Although robotic devices actions have been discussed, logical and physical designs of the 
much-awaited swarm intelligence ontologies are overdue.  

• An understanding of the metrics that can be used to quantify the emergent behaviour yield 
from using swarm intelligence ontologies is apparently required.  

• An explicit study of the pros and cons of each robotic device action, the contribution each 
action makes to emergent behaviour, and how this contribution can be measured under 
different circumstances will create new content in this body of knowledge.   

• Development of practical applications based on the envisioned swarm intelligence 
ontologies is also belated.  
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