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Abstract 

Automatic generation of Building Information Models (BIMs) from point clouds 

(i.e., Scan-to-BIM) plays a critical role in bridge maintenance and the development of 

Digital Twinning (DT). However, the problem of incomplete point cloud (e.g., caused 

by occlusions in laser scanning) significantly hinders the Scan-to-BIM accuracy. To 

overcome this challenge, we propose addressing the occlusion problems in bridge point 

clouds by introducing an additional point cloud completion task in the Scan-to-BIM 

process. This new task aims to take incomplete bridge point clouds, following 

segmentation, as input, and generate complete point clouds as output. The learning-

based completion model, Point Completion Network (PCN), is adopted to validate the 

proposed strategy and show robust completion performance for bridge components with 

varying levels of occlusion. It can improve the average 11.94 Chamfer Distance (CD) 

and 11.05 F-score for coarse completion, 8.35 CD and 1.59 F-score for dense 

completion. This study contributes to Scan-to-BIM by refining the Scan-to-BIM 

framework in bridge engineering and defining a point cloud completion task to facilitate 

the development of bridge DT systems. 

1 Introduction 

Bridges are essential in the infrastructure system but often suffer serious health issues due to 

prolonged usage and environmental factors (American Society of Civil Engineers ASCE, 2021). 

However, traditional bridge inspection methods, such as human-labour-based data collection and 

paper-based data management, are always subjective and inefficient, which results in a pressing 

demand for efficient and smart bridge maintenance, management, and operation systems. In recent 

years, Building Information Modelling (BIM) has been introduced into bridge management. BIM 

provides a robust platform for improving traditional bridge management practices by offering a 

centralised digital environment for storing, visualising, and managing detailed bridge information. By 

integrating emerging photogrammetry techniques and Artificial Intelligence (AI), as-is condition data 

of bridges can be rapidly captured and analysed to enhance bridge monitoring and management 

Kalpa Publications in Computing

Volume 22, 2025, Pages 82–93

Proceedings of The Sixth International Confer-
ence on Civil and Building Engineering Informatics

I. Hkust, J. Cheng and Y. Yantao (eds.), ICCBEI 2025 (Kalpa Publications in Computing, vol. 22), pp. 82–93



(Khudhair et al., 2021). In this regard, the Digital Twin (DT) was further proposed to form a more 

comprehensive and systematic framework for the whole life cycle management of bridges (Honghong 

et al., 2023; Pregnolato et al., 2022). The DT can replicate physical bridges into their virtual twin 

models in the operation and maintenance phase (O&M), constructing and updating them based on 

multiple data sources and adding new functions to simulate different operation scenarios (Honghong 

et al., 2023). 

To build a bridge DT, it is critical to reconstruct a geometric and semantically rich BIM model, 

reflecting the as-is condition of bridges. The model can serve as the foundation for subsequent bridge 

DT applications, such as decision marking, real-time monitoring, and visualisation (Honghong et al., 

2023). Obtaining the geometric information is often the first step for reconstructing a semantically 

rich BIM model, known as Geometric Digital Twin (gDT) (Brilakis, 2024). Various emerging reality 

capture tools, such as laser scanning and photogrammetry techniques, have been introduced to capture 

geometric information primarily through 3D point cloud data. The point cloud data can be used for 

constructing geometric BIM for bridges when BIM models are not generated from the design stage 

(Scan-to-BIM) (Bosché, 2010; Bosché et al., 2014). However, the reconstruction process is highly 

human-dependent, low-efficiency, and error-prone (Lu et al., 2019). Automating these tasks still 

remains a global challenge. 

Due to the general absence of BIM models for most existing bridges, Scan-to-BIM research has 

attracted growing attention (Schönfelder et al., 2023). In recent years, extensive research has focused 

on the Scan-to-BIM of different bridge types, including RC girder bridges, steel girder bridges, 

masonry arch bridges, and truss bridges (Yang et al., 2024). However, most research focused on point 

cloud segmentation tasks, and the research on bridge geometric information reconstruction has not 

been fully investigated. Only a few studies focused on this topic (Justo et al., 2023; Lu & Brilakis, 

2019; Mafipour & Vilgertshofer, 2023; Mehranfar et al., 2021; Walsh et al., 2013; Yan & Hajjar, 

2022). The proposed methods are primarily for some sample slab-beam bridges, and the 

reconstruction quality is highly affected by point cloud quality problems, particularly occlusion (Zhao 

et al., 2023). Although some strategies were designed to address occlusion problems in their methods, 

the over-consideration of data quality problems in reconstruction workflow poses more limitations on 

the selection of reconstruction algorithm, resulting in poor generalizability. No prior research has 

specifically aimed to complete the missing regions in bridge point clouds. 

To address this challenge, this paper defines a new point cloud completion task in the existing 

Scan-to-BIM framework, enhancing geometric BIM reconstruction in bridge engineering, as shown in 

Figure 1. This task will take incomplete bridge point clouds following segmentation as input and aim 

to generate complete point clouds as output. To validate the proposed strategy, the learning-based 

completion model, Point Completion Network (PCN), is introduced to recover the complete point 

cloud from raw incomplete input with a coarse-to-fine strategy. 

 

 
Figure 1: Role of point cloud completion in Scan-to-BIM 
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2 RELATED WORK 

2.1 Geometric Digital Twinning of Bridges 

Reconstructing 3D bridge geometric information from point clouds can be considered as a model-

to-cloud fitting problem. To achieve this, the Constructive Solid Geometry (CSG) method was first 

adopted to generate the 3D model of bridge piers and pier caps (Walsh et al., 2013). A shape library 

containing generic objects (e.g., cuboid, cylinder) was established to fit the point cloud clusters. 

However, the CSG method relies highly on pre-defined geometrically simple solid primitives, which 

fail to capture complex bridge geometric information. After that, the Swept Solid Representation 

(SSR) based method was proposed to create a 3D shape by sweeping a 2D profile enclosed by a 

contour line along a specific path in 3D space. The bounding hulls, such as convex hulls (Preparata & 

Hong, 1977) and α-shape (Edelsbrunner & Mücke, 1994), are commonly adopted for 2D profile 

fitting. Lu and Brilakis (2019) proposed an object-fitting method to generate a gDT of existing RC 

bridges based on Industry Foundation Classes (IFC). The 2D ConcaveHull α-shape method was 

adopted for shape representation and parameter extraction, and four types of point clusters, including 

pier, pier cap, girder, and slab, are considered. Despite the satisfactory results, some point cloud 

quality problems, such as occlusion and uneven density, have been revealed to cause mismatch points 

and problems in concave hull generation.  

An early model generation for steel girder bridges is proposed by Yan and Hajja (2022). The 

linear skeleton model was designed to extract the specific parameter value for 3D modelling. The scan 

information in data collection was utilised to improve the RANSAC-based parameter fitting, 

addressing the occlusion in model reconstruction. However, a pre-defined dummy model is required 

in the initial stages, which limits its ability to reconstruct other elements with different geometric 

features. Moreover, the parameter extraction accuracy relies heavily on the quality of occlusion 

labelling, and the significant occlusion remains a challenge in model reconstruction. To address 

occlusion issues, Mafipour and Vilgertshofer (2023) proposed a Parametric Prototype Model (PPM) 

to extract the parameters from segmented point clouds. The definition of different PPMs in the initial 

stage can enable the reliable parameter identification of bridge components and show satisfactory 

performance in sustaining occlusion. However, this method relies heavily on the PPM library, and 

prior knowledge and statistical study are required for parameter range setting. More importantly, the 

occlusion may not show much influence on the parameter extraction but will significantly affect the 

accurate selection of a PPM. 

2.2 Learning-based Point Cloud Completion 

The learning-based completion method is a promising solution for dealing with point cloud 

occlusion, arousing growing interest (Zhuang et al., 2024). The model can learn local and global 

features of incomplete input and output complete object shape and semantics. Research on learning-

based completion methods can be classified into volumetric shape completion and point-wise 

completion according to different types of input data. However, translating the point cloud into 3D 

volume data would result in the loss of detailed geometric information, rendering it less generalisable 

for intricate shapes or 3D model construction with high LoD. Thus, many point-wise completion 

models have been proposed to generate complete shapes from given incomplete point clouds in recent 

years (Huang et al., 2020; Liu et al., 2020; Tchapmi et al., 2019; Wang et al., 2022; Wen et al., 2020; 

Yuan et al., 2018). The pioneer completion model, PCN, was proposed by Yuan et al. (2018), where 

an encoder-decoder architecture was adopted to complete the point cloud in a coarse-to-fine manner. 

After that, different improvements on the network were proposed to achieve better results, such as the 

feature-points-based completion network and multi-scale generating network in PF-Net (Huang et al., 

Enhancing Scan-to-BIM in Bridge Engineering Tao Yang et al.

83



2020), the skip-attention mechanism in SA-Net (Wen et al., 2020), and multi-stages strategy in (Liu et 

al., 2020; Wang et al., 2022). 

3 PROPOSED SOLUTION 

This paper adopts raw PCN for bridge point cloud completion, addressing the occlusion problems 

in bridge point clouds prior to geometric reconstruction. The model is selected in this study for the 

following three reasons: (1) PCN is the classical and pioneering model for point cloud completion, 

with the most popular encoder-decoder network; (2) Despite being published in 2018, the completion 

performance still outperforms some newly published model in some shape types in the public dataset, 

e.g., plane, cabinet and car in ShapeNet (Yi et al., 2016); (3) Many completion models are limited to 

generating a fixed number of points e.g., 2048 or 4096 points. PCN is superior to some models by 

outputting dense point clouds through a coarse-to-fine strategy, significantly preserving the geometric 

features for BIM reconstruction. 

 
Figure 2: The architecture of the PCN model 

As shown in Figure 2, PCN follows an encoder-decoder architecture. The encoder consists of two 

stacked PointNet (PN) layers. The input partial point cloud X is initially encoded into k-dimensional 

feature vector F through a multi-layer perceptron (MLP). A point-wise max-pooling operation is then 

applied to obtain k-dimensional global feature g. The second PN layer takes both g and F as inputs, 

outputting the augmented point feature 𝑭̃ through feature concatenation. Finally, another MLP is 

adopted to generate the final global vector V. 

The PCN adopts a multi-stage point generation process, starting from a coarse point cloud Ycoarse 

and progressing to dense point cloud Ydense. A fully-connected decoder is utilised for coarse point 

cloud (s×3) generation, where the point number of coarse output s is set as 4096 points in this study. 

The generated output is compared with coarse ground truth data for loss calculations. After that, a 

folding-based operation is used to generate dense point clouds. In this step, a patch of t points is 

generated in the local area centred at each point Pi from Ycoarse and then transformed into the global 

coordinates by adding Pi to the output. The final result Ydense consists of n=st points, where the t is set 

as 4 and finally output 16384 points as dense output. Then, the loss is calculated between Ydense and 

dense ground truth data. In this study, the symmetric version of Chamfer Distance (CD) is adopted to 

measure the difference between the output point cloud (Yout) and the ground truth point cloud (YGT), 

as defined by Equation (1). Accordingly, the total loss for model training is defined by Equation (2). 
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(1) 

Ltotal(Ycoarse,Ydense, YGT)=LCD(Ycoarse, ỸGT)+αLCD(Ydense,YGT) (2) 

where the  ỸGT  and YGT  are the ground truth of coarse point clouds and dense point clouds, 

respectively. 𝛼 is the weight hyperparameter. The first term indicates the loss of coarse completion, 

and the second term represents the loss of dense completion. More details about the PCN model can 

be found in (Yuan et al., 2018), and the author’s code can be accessed on GitHub 

(https://github.com/wentaoyuan/pcn). 

4 EXPERIMENT AND RESULTS 

This section details the results of the point cloud completion model for the validation of the 

proposed completion strategy. Three bridge components in the substructure are considered in this 

study, including piers, pier caps, and abutments, as shown in Figure 3. Commonly used types are 

selected for each component. The pier consists of circular piers, wall piers, and rectangular piers. 

Three types of pier caps are considered, as shown in Figure 3(d) to (f). Additionally, two typical 

abutment types are included, as shown in Figure 3(g) and (h). 

To generate paired partial and completed point clouds, a series of 3D modes for each component 

type are generated beforehand. Each component was modelled as a Revit family, constrained by 

several design parameters, and then, C#-based Revit API was used to generate parametric models 

with varying design parameters automatically. Afterwards, the point clouds were generated from 

mesh sampling with a pre-defined point number set as 100000 points in this study. Voxel-based 

down-sampling is then performed to obtain dense complete point clouds (16384 points). The partial 

coarse point cloud is created by occlusion generation and down-sampling. Two different partial point 

clouds were generated from each complete point cloud, including the partial point clouds with a small 

occlusion and a large occlusion. The occlusion is created in three steps: 

• Seed point selection: Random seed point selection from the point cloud.  

• Radius calculation. This process begins by determining the coordinate range for X, Y, and Z, 

from which the maximum range is denoted as L. Then, the radius for small occlusion is 

calculated as [0, 0.1L] and for large occlusion, as [0.1L, 0.3L].  

• Point removal. Once the seed point and radius are determined, points within the defined 

radius around the seed point are removed to generate the final partial point cloud.  

Finally, the partial point clouds were uniformly down-sampled to 4096 points, providing the raw 

input for model training.  
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Figure 3: Component types in the training dataset 

4.1 Implementation Details 

The Pytorch framework was adopted for implementation on Ubuntu 22.04 through Intel® Xeon(R) 

Gold 6242R CPU and a single NVIDIA Quadro RTX 5000 GPU with 16 G memory. We trained the 

completion model for each bridge component to achieve the best completion performance. The 

dataset finally consists of 22500 piers, 25000 pier caps and 29000 abutments. The dataset was 

randomly split, with 90% used for training, 5% for validation, and the remaining 5% reserved for 

testing. Finally, the test and validation datasets contain 1200 pier instances, 1300 pier cap instances, 

and 1500 abutment instances, respectively. All our models were trained using the Adam optimiser 

with an initial learning rate of 0.0001 for 150 epochs and a batch size of 16. The learning rate decayed 

by 0.7 for every 50,000 iterations to fine-tune model performance. 

4.2 Result and Evaluation 

Point-wise metrics were employed to evaluate the performance of point cloud completion. The 

Chamfer Distance (CD) and F1-score were adopted for quantitative evaluation (Zhuang et al., 2024). 

The CD calculates the average closest distance between the output point cloud Yout and the ground 

truth point cloud YGT, where the symmetric version of CD was used for comprehensive evaluation, as 

defined by Equation (1). The F-score, as shown in Equation (3), can assess the percentage of correctly 

reconstructed points according to pre-defined d, calculated by Precision (P) in Equation (4) and 

Recall (R) in Equation (5). 

F-Score(d)=
2P(d)R(d)

P(d)+R(d)
(3) 

P(d)=
1

|Xout|
∑ [

min

q∈XGT

‖q-p‖<d

 
]

p∈Xout

(4) 
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R(d)=
1

|XGT|
∑ [

min

q∈Xout

‖q-p‖<d

 
]

p∈XGT

(5) 

The completion results of point clouds with large occlusion for abutments, pier caps, and piers are 

shown in Figures 4, 5, and 6, respectively. It can be observed that the PCN can effectively complete 

the occlusion in the raw point cloud, even with a significant loss of geometric information, outputting 

coarse results (4096 points) and dense results (16384 points). The prediction model can recover the 

missing point cloud from partial input and output the coarse results with clear boundary details. 

However, for dense results, some loss of detailed boundary geometric information can be found in 

these figures from the observation components boundary. Thus, while the PCN model can accurately 

predict the missing regions of the partial input using its fully connected decoder, the folding-based 

decoder for dense point cloud generation tends to result in a loss of boundary detail. This is because 

the folding-based decoder aims to predict approximating smooth surfaces, which limits its ability to 

recover sharp features along the component boundaries. 

 

 
Figure 4: Completion results for piers 
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Figure 5: Completion results for abutments 

 
Figure 6: Completion results for pier caps 

Tables 1 and 2 provide the quantitative evaluation result for coarse and dense point cloud 

completion, respectively. Notably, the first row of each table compares the dense/coarse partial input 

with the corresponding dense/coarse ground truth, while the second row presents the calculation 

results for the dense/coarse ground truth and the recovered dense/coarse output from the partial input. 

The smaller CD values and large F-score values indicate better completion performance. For the F-

score, different thresholds were set for different bridge components to effectively evaluate completion 

performance, as different bridge components have different scale sizes, resulting in different point 

cloud densities under a certain number of points. Accordingly, we set the thresholds of 0.05 m and 0.1 

m for dense and coarse point cloud evaluation of piers and pier caps, while thresholds of 0.1 m and 

0.2 m were applied for abutment completion evaluation. 

These tables show that both results demonstrate a good performance in completing the bridge 

point cloud through PCN. The overall improvement of 11.94 CD and 11.05 F-score can be found for 

coarse completion, and 8.35 CD and 1.59 F-score can be found for dense results. Specifically, in the 

coarse output, improvements in CD of 16.97, 7.9, and 10.96 are achieved for abutment, pier, and pier 

cap, respectively, with corresponding F-score increases of 10.23, 7.94, and 14.97. For the dense 

output, CD reductions of 11.38, 4.47, and 9.22 are seen for abutment, pier, and pier cap, with F-score 

gains of 7.59, -8.09, and 5.29, respectively. The unsatisfactory result for pier completion may be 

attributed to the geometric loss in dense point cloud generation. 

The detailed quantitative evaluation for point clouds with different scale occlusions is shown in 

Tables 3 and 4. Similarly, the PCN effectively mitigates occlusions in the bridge point cloud, as 
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reflected by the improved evaluation metrics. However, only slight CD improvements or even 

unsatisfactory results are observed for point cloud completion with smaller occlusions, highlighted in 

red. This diminished performance may be due to accuracy loss during the encoder-decoder process. 

Given the small radius, ranging from 0 to 0.1L, for occlusion generation, the completion for minor 

occlusions does not yield noticeable improvements in evaluation metrics. At the same time, the 

accuracy loss in the encoder-decoder would be avoidable to deteriorate the evaluation results. From 

the observation in the F-score, despite the poor performance in CD, the point clouds become more 

complete according to the increased F-score. In contrast, the model significantly improves evaluation 

metrics for point clouds with larger occlusions despite the presence of accuracy loss. 

 

Dataset 
CD (×102) F-score (%) 

Abutment Pier Pier cap Avg.  Abutment Pier Pier cap Avg. 

Partial input 37.67 19.39 22.34 26.46  87.16 85.92 80.29 84.45 

After completion  20.70 11.49 11.38 14.52  97.39 93.86 95.26 95.50 

Table 1: Overall evaluation of coarse point cloud completion 

Dataset 
CD (×102) F-score (%) 

Abutment Pier Pier cap Avg.  Abutment Pier Pier cap Avg. 

Partial input 24.78 12.18 15.32 17.42  85.86 87.49 81.26 84.87 

After completion  13.40 7.71 6.10 9.07  93.45 79.40 86.55 86.46 

Table 2: Overall evaluation of dense point cloud completion 

Dataset 
CD (×102) F-score (%) 

Abutment Pier Pier cap Avg.  Abutment Pier Pier cap Avg. 

Small occlusion 21.26 9.64 12.17 14.35  91.83 94.46 83.81 90.03 

After completion  17.87 11.04 11.11 13.34  99.24 94.61 95.90 96.58 

Large occlusion 54.68 30.38 35.11 40.05  82.33 76.29 75.87 78.16 

After completion  23.63 12.00 11.72 15.78  95.46 93.02 94.44 94.30 

Table 3: Evaluation of coarse point cloud completion under different occlusion conditions 

Dataset 
CD (×102) F-score (%) 

Abutment Pier Pier cap Avg.  Abutment Pier Pier cap Avg. 

Small occlusion 7.41 2.21 4.67 4.76  90.39 96.31 84.97 90.55 

After completion  10.39 7.37 5.77 7.84  96.12 79.91 87.97 88.00 

Large occlusion 42.79 23.42 28.70 31.63  81.16 77.54 76.60 78.43 

After completion  16.5 8.10 6.52 10.37  90.69 78.83 84.76 84.76 

Table 4: Evaluation of dense point cloud completion under different occlusion conditions 

5 CONCLUSIONS 

Creating a geometric and semantically rich BIM model is critical in the Scan-to-BIM, serving as 

the foundation for further development of bridge DT. However, generating an accurate geometric 3D 

parametric model from a point cloud is still a challenging task, particularly when the point cloud 

suffers from serious occlusion problems. Previous bridge reconstruction methods have inevitably 

developed corresponding strategies to mitigate the effects of point cloud occlusion and enhance 

reconstruction quality. The consideration of the occlusion problem in reconstruction algorithms can 

impact the overall design of algorithms, resulting in poor generalizability and low robustness in the 
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reconstruction strategy. Addressing the point cloud occlusion can facilitate the overall reconstruction 

process, removing the limitation on the selection of reconstruction algorithms, enabling the successful 

application of algorithms and improving reconstruction accuracy. 

Thus, this paper aims to advance the bridge gDT by introducing a new point cloud completion task 

within the current Scan-to-BIM framework, addressing point cloud occlusion as a distinct challenge. 

The task involves taking incomplete bridge point clouds with class labels as input and generating 

complete point clouds as output. To validate the proposed concept, we adopted the classical point 

cloud completion model PCN and validated the point cloud completion for bridge substructures, 

including abutments, piers, and pier caps. Both quantitative and qualitative results demonstrated a 

robust completion performance for point clouds with different scale occlusions. 

The success of our study revealed the potential of addressing the point cloud occlusion problem 

after point cloud segmentation, relieving the pain in geometric reconstruction. Our study contributes 

to Scan-to-BIM by refining the Scan-to-BIM framework in bridge engineering. The new task point 

cloud completion can facilitate the bridge BIM reconstruction and the further development of DT 

systems. However, the occlusion in our study is generated through the spheres-based removal of point 

clouds, which cannot fully consider the different occlusion in real bridge data. Additionally, the 

application of point clouds for real-scanned bridge point clouds still needs further investigation. Thus, 

future work will explore the effects of different occlusion characteristics on bridge point cloud 

completion and the potential challenge when applying to real-scanned bridge point clouds. Training 

strategies for more complex bridge components, such as decks and girders, and completion 

performance for dense point clouds will be further explored in our future works. 
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