Open projections do not form a right residuated lattice

David Kruml*

Masaryk University, Brno, Czech Republic kruml@math.muni.cz

A lattice L with operations \odot, \multimap is called *right residuated* if

 $x \odot y \leq z \ \Leftrightarrow \ x \leq y \multimap z$

for all $x, y, z \in L$. (So we do not require the dual arrow nor the associativity of \odot .) In other words, the actions $-\odot y, y \multimap -: L \to L$, for any fixed $y \in L$, provide a Galois connection on L.

The Galois connection is also completely determined by the partial isomorphism between fixpoints of closure mapping $y \multimap (- \odot y)$ and coclosure mapping $(y \multimap -) \odot y$. Thus we can restrict \odot , \multimap to partial operations \cdot , \rightarrow where $x \cdot y$ is defined if $x = y \multimap (x \odot y)$ and $y \rightarrow z$ is defined if $z = (y \multimap z) \odot y$. The partial isomorphism provides an equivalence

$$x \cdot y = z \iff x = y \to z. \tag{(*)}$$

(We use a similar idea as in [6] but there the partial residuation law use standard inequalities. Cf. this also with [3].)

Conversely, whenever we have such a partial right residuated lattice, i.e. L satisfies (*), for each y the \cdot -compatible elements define a closure $x \mapsto \hat{x}$ and the \rightarrow -compatible elements define a coclosure $z \mapsto \check{z}$, then by putting $x \odot y = \hat{x} \cdot y$ and $y \multimap z = y \to \check{z}$ we get a total right residuated structure on L.

1 Example. (1) Every orthomodular lattice with Sasaki operations

$$x \odot y = (x \lor y^{\perp}) \land y, \qquad \qquad y \multimap z = y^{\perp} \lor (y \land z)$$

is right residuated. The partial product $x \cdot y$ is defined for $x \geq y^{\perp}$, and $y \to z$ is defined for $z \leq y$. Thus \cdot is a restriction of the meet operation on compatible elements.

(2) In the MV-chain [0, 1] with $x \odot y = \max\{0, x+y-1\}$ the partial product is defined also for $x \ge y^{\perp} = 1 - y$, i.e. whenever $x + y - 1 \ge 0$.

Note that in orthomodular lattices \odot can be recovered from the meet defined on all pairs of compatible elements and such a partial operation also provides the closure and coclosure mappings. In that sense \cdot is the minimal such generating partial operation.

The partial operations \cdot, \rightarrow may have better algebraical properties than the total operations $\odot, \neg \circ$, e.g. in orthomodular lattices \cdot is associative and commutative while \odot is not. Sometimes it can be useful to study right residuated (or even residuated) structures by the partial operations [2].

In [4] and [1] the authors considered the lattice of closed right ideals (or equivalently so called *open projections*) as a spectrum of non-commutative C*-algebra. The embedding of a C*-algebra to an enveloping W*-algebra provides a representation of the lattice to an orthomodular

^{*}Supported by the project "Algebraic Methods in Quantum Logic" by ESF, No. CZ.1.07/2.3.00/20.0051.

N. Galatos, A. Kurz, C. Tsinakis (eds.), TACL 2013 (EPiC Series, vol. 25), pp. 133-135

Open projections do not form a right residuated lattice

lattice. In commutative case, the lattice is a just frame (the topology given by Gelfand–Naimark duality) and so a residuated lattice (as a complete Heyting algebra).

The lattice of open projections itself is not sufficient to recover the C^{*}-algebra but it is sufficient when it is equipped with a partial meet operation on compatible elements [5]. It is a natural question whether such a partial operation extends to a total right residuated operation. Using the above ideas I will show an example of C*-algebra where there is no such extension and which disproves a conjecture in [5] that a product of open projections is open.

Recall from [4] that a projection $p \in A^{**}$ (here A^{**} is the enveloping W*-algebra of C*algebra A) is called *open* if it is a *support* of some $a \in A$, i.e. the smallest projection such that ap = a.

2 Example. Let A be a C*-algebra which elements are norm-convergent sequences of 2×2 matrices a_n together with their limits, denoted by a_{∞} , i.e. $((a_n)_{n \in \mathbb{N}}, a_{\infty}) \in A$ iff $a_n \to a_{\infty}$. The enveloping W*-algebra A^{**} simply contains all sequences and the element a_{∞} need not be a limit of a_n . The corresponding orthomodular lattice is a countable power of the orthomodular lattice of subspaces of \mathbb{C}^2 and the Sasaki operations are calculated componentwise.

Sequence $a_n = \begin{pmatrix} 1 & 0 \\ 0 & 1/n \end{pmatrix}, a_{\infty} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ belongs to A and since all matrices a_n are regular, its support is $p_n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, p_{\infty} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Constant sequence $q_n = q_{\infty} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ is already a projection in A.

Let us consider the projections $p = (p_n), q = (q_n)$ as elements of A^{**} . Complementary projection $\neg p$ is given by $\neg p_n = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \neg p_\infty = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ and clearly is not open. But we also have $(q \odot p)_n = ((\neg p \lor q) \land p)_n = (\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \lor \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) \land \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ while $(q \odot p)_\infty = (\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \lor \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}) \land \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, thus $(q \odot p)$ is not open too.

Finally, let r^m, s^m be collections of sequences for each $m \in \mathbb{N}$ given by $r_n^m = s_n^m = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

for n < m, $r_n^m = s_n^m = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ for $n \ge m$, and $r_\infty^m = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ while $s_\infty^m = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Each projection r^m or s^m is open. But the componentwise intersection of r^m is not open because the limit component is $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ while all other components are $\frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Thus $\bigwedge r^m$ (calculated in A, i.e. the interior of the discussed intersection) is given by $(\bigwedge r^m)_n = \frac{1}{2}\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, (\bigwedge r^m)_\infty =$ $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, hence $\bigwedge r^m = \bigwedge s^m$.

Since $r^m, s^m \leq p$ for each m, "compatible arrows" $p \to r^m, p \to s^m$ are defined and $(p \to r^m, s^m) \geq r^m$ are defined and $(p \to r^m) \geq r^m$. $r^{m})_{n} = (p \to s^{m})_{n} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ for } n < m, \ (p \to r^{m})_{n} = (p \to s^{m})_{n} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ for } n \ge m, \text{ and } (p \to r^{m})_{\infty} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ while } (p \to s^{m})_{\infty} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}. \text{ Notice that all } p \to r^{m}, p \to s^{m} \text{ are open and } (\bigwedge p \to r^{m})_{n} = (\bigwedge p \to s^{m})_{n} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \ (\bigwedge p \to r^{m})_{\infty} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \text{ while } (\bigwedge p \to s^{m})_{\infty} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$ Thus $\bigwedge p \to r^{m} \ne \bigwedge p \to s^{m}$ and hence $p \multimap \bigwedge r^{m}$ can not exist because $p \multimap -$ should preserve all infima.

3 Corollary. Product of open projections need not be open.

4 Corollary. The partial monoid structure on compatible open projections need not extend to a right residuated structure on all open projections.

References

- [1] AKEMANN, C. A. Left ideal structure of C*-algebras. Journal of Functional Analysis 6 (1970), 305 - 317.
- [2] CHAJDA, I., HALAŠ, R., AND KÜHR, J. Every effect algebra can be made into total algebra. Algebra Universalis 61(2) (2012), 139-150.
- [3] CHAJDA, I., AND KRŇÁVEK, J. Skew residuated lattices. Fuzzy sets and systems (2013). in press.
- [4] GILES, R., AND KUMMER, H. A non-commutative generalization of topology. Indiana University Mathematics Journal 21(1) (1971), 91–102.

Open projections do not form a right residuated lattice

- [5] KRUML, D. On definition of skew frames. International Journal of Theoretical Physics 49 (2010), 3153–3157.
- [6] ZHOU, X., AND LI, Q. Partial residuated structures and quantum structures. Soft Computing 12 (2008), 1219–1227.