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1 Introduction

Let L be a lattice. We recall that L satisfies the join infinite distributive law (JID) if for each
a ∈ L and S ⊆ L, whenever

∨
S exists, then so does

∨
{a ∧ s : s ∈ S} and

a ∧
∨

S =
∨
{a ∧ s : s ∈ S}.

Similarly, L satisfies the meet infinite distributive law (MID) if whenever
∧

S exists, then so
does

∧
{a ∨ s : s ∈ S} and

a ∨
∧

S =
∧
{a ∨ s : s ∈ S}.

Obviously each lattice that satisfies either (JID) or (MID) is distributive. A classic result
in lattice theory is Funayama’s theorem [5] stating that there is an embedding e of L into a
complete Boolean algebra B that preserves all existing joins and meets in L iff L satisfies both
(JID) and (MID).

Funayama’s original proof was quite involved. For complete L, Grätzer [6, Sec. II.4] gave
a more accessible proof of Funayama’s theorem. The key ingredient of Grätzer’s proof is to
show that if L satisfies both (JID) and (MID), then the embedding of L into its free Boolean
extension B(L) is a complete lattice embedding. Then taking the MacNeille completion B(L)
of B(L) produces a complete Boolean algebra and the embedding B(L) ↪→ B(L) preserves all
existing joins and meets in B(L). Thus, the composition L ↪→ B(L) ↪→ B(L) is a complete
lattice embedding.

For complete L, Johnstone [8, Sec. II.2] gave a different proof of Funayama’s theorem. Let
L be a complete lattice satisfying (JID). Then L is a frame. Therefore, the poset N(L) of
all nuclei on L is also a frame, and the embedding L ↪→ N(L) is a frame homomorphism. Let
N(L)¬¬ be the Booleanization of N(L); that is, the Boolean frame of regular nuclei on L. Thus,
N(L)¬¬ is a complete Boolean algebra and the composition L ↪→ N(L) � N(L)¬¬ is a frame
embedding. If in addition L satisfies (MID), then the embedding L ↪→ N(L)¬¬ is a complete
lattice embedding.

Our aim is to show that Grätzer’s proof has an obvious generalization to the case when L is
not necessarily complete, thus providing an accessible proof of Funayama’s theorem in its full
generality. If L is complete, we show that the complete Boolean algebras B(L) and N(L)¬¬
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produced by Grätzer and Johnstone are isomorphic. This confirms a conjecture made by Leo
Esakia in the early 1990s. We characterize lattices satisfying (JID) and (MID) by means of their
Priestley spaces. Utilizing duality theory, we give alternative proofs of Funayama’s theorem
and of the isomorphism between B(L) and N(L)¬¬. We also show that unlike Grätzer’s proof,
there is no obvious way to generalize Johnstone’s proof to the non-complete case.

2 A generalization of Grätzer’s proof

It is well known that the category BA of Boolean algebras is a reflective subcategory of the
category DL of distributive lattices, and that the reflector sends each distributive lattice L to
its free Boolean extension B(L) which can be constructed as follows. Let XL be the prime
spectrum of L ordered by inclusion. For a ∈ L, let ϕ(a) = {x ∈ XL : a ∈ x}. Then ϕ is a lattice
embedding of L into the lattice of all up-sets of XL. Let B(ϕ[L]) be the Boolean subalgebra
of the powerset of XL generated by ϕ[L]. The Boolean algebra B(ϕ[L]) is (isomorphic to) the
free Boolean extension B(L) of L.

Lemma 2.1. Let L be a distributive lattice, let B(L) be the free Boolean extension of L, and
let e : L ↪→ B(L) be the canonical embedding.

1. If L satisfies (JID), then e preserves all existing joins in L.

2. If L satisfies (MID), then e preserves all existing meets in L.

Let B be a Boolean algebra. We recall that the MacNeille completion of B is a complete
Boolean algebra B such that there is a Boolean embedding e : B ↪→ B that is join-dense in
B (equivalently, e is meet-dense in B). It is well known that the embedding e preserves all
existing joins and meets in B.

Theorem 2.2 (Funayama’s Theorem). Let L be a lattice.

1. L satisfies (JID) iff there exists a lattice embedding e of L into a complete Boolean algebra
B that preserves all existing joins in L.

2. L satisfies (MID) iff there exists a lattice embedding e of L into a complete Boolean algebra
B that preserves all existing meets in L.

3. L satisfies (JID) and (MID) iff there exists an embedding e of L into a complete Boolean
algebra B that preserves all existing joins and meets in L.

When L is complete, Theorem 2.2 yields Grätzer’s proof of Funayama’s theorem. Theo-
rem 2.2 also has an obvious corollary for Heyting algebras.

Corollary 2.3. Let L be a lattice.

1. If L is a Heyting algebra, then there exists a lattice embedding e of L into a complete
Boolean algebra B that preserves all existing joins in L.

2. If L is a co-Heyting algebra, then there exists a lattice embedding e of L into a complete
Boolean algebra B that preserves all existing meets in L.

3. If L is a bi-Heyting algebra, then there exists an embedding e of L into a complete Boolean
algebra B that preserves all existing joins and meets in L.
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3 Nuclei, Booleanization, and Johnstone’s proof

We recall that a nucleus on a meet-semilattice M is a map j : M →M satisfying

a ≤ ja, jja = ja, j(a ∧ b) = ja ∧ jb,

for all a, b ∈ M . We will be mostly interested in nuclei on Heyting algebras and frames. If j
is a nucleus on a frame L, then the set Lj = {a ∈ L : ja = a} of its fixed points is a frame
and j : L → Lj is an onto frame homomorphism whose right adjoint is the inclusion Lj ↪→ L
[8, Sec. II.2].

For a frame L, let N(L) be the set of all nuclei on L. If we order N(L) pointwise, then
it is well known that N(L) is a frame and that a 7→ a ∨ (−) is a frame embedding of L into
N(L) [8, Sec. II.2]. We call j ∈ N(L) regular if ¬¬j = j, where ¬¬ is taken in N(L). It is well
known [8, Sec. II.2] that the set N(L)¬¬ of all regular nuclei on L is a Boolean frame (complete
Boolean algebra). Following the terminology of Banaschewski and Pultr [1], we call N(L)¬¬
the Booleanization of N(L).

Johnstone [8, Sec. II.2] proves that if L is a frame, then the composition L ↪→ N(L) �
N(L)¬¬ is a frame embedding. In addition, the embedding L ↪→ N(L) preserves arbitrary
meets iff L satisfies (MID). As N(L)¬¬ is closed under arbitrary meets in N(L), the composition
L ↪→ N(L) � N(L)¬¬ preserves all meets in L iff L satisfies (MID). Therefore, the composition
L ↪→ N(L) � N(L)¬¬ is a complete lattice embedding iff L satisfies both (JID) and (MID).
This yields another proof of Funayama’s theorem for complete lattices.

Theorem 3.1. For each frame L, the complete Boolean algebras B(L) and N(L)¬¬ are iso-
morphic.

Thus, the Grätzer and Johnstone proofs of Funayama’s theorem for complete L, although
different, produce the same complete Boolean algebra in which there is a frame embedding of
L. This confirms a conjecture made by Leo Esakia in the early 1990s.

4 Dual characterization of lattices satisfying (JID) and
(MID) and Funayama’s theorem

We assume the reader’s familiarity with Priestley duality for distributive lattices [9, 10], and
recall that the Priestley space of a distributive lattice L is the prime spectrum XL of L ordered
by inclusion. The topology on XL is generated by the basis {ϕ(a) − ϕ(b) : a, b ∈ L}, where
ϕ(a) = {x ∈ XL : a ∈ x} for each a ∈ L. Esakia duality for Heyting algebras [2] is a restricted
version of Priestley duality. We recall that an Esakia space is a Priestley space X in which the
down-set ↓U of each clopen U ⊆ X is clopen.

Dual spaces of co-Heyting algebras are Priestley spaces satisfying that U clopen implies ↑U
is clopen [3, 4]. We call such spaces co-Esakia spaces. Dual spaces of bi-Heyting algebras are
Priestley spaces that are both Esakia spaces and co-Esakia spaces [3, 4]. We call such spaces
bi-Esakia space.

Let X be a Priestley space and let S ⊆ X. As usual, S denotes the closure of S and intS
denotes the interior of S. Following [7], we let

JS = X − ↓(X − intS) and DS = ↑S.

It is easy to see that JS is the largest open up-set contained in S and DS is the smallest closed
up-set containing S. Using this notation, being an Esakia space means that if U is an open
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up-set, then DU = U ; and being a co-Esakia space means that if F is a closed up-set, then
JF = intF .

Definition 4.1. Let X be a Priestley space.

1. We call X a J-space if for each open up-set U , whenever DU is clopen, then DU = U .

2. We call X an M-space if for each closed up-set F , whenever JF is clopen, then JF = intF .

3. We call X a JM-space if X is both a J-space and an M-space.

The condition defining a J-space weakens the condition defining an Esakia space. Similarly,
the condition defining an M-space weakens the condition defining a co-Esakia space, and the
condition defining a JM-space weakens the condition defining a bi-Esakia space.

Theorem 4.2. Let L be a bounded distributive lattice and let XL be the Priestley space of L.

1. L satisfies (JID) iff XL is a J-space.

2. L satisfies (MID) iff XL is an M-space.

3. L satisfies (JID) and (MID) iff XL is a JM-space.

Theorem 4.2 can be used to give an alternative proof of the nontrivial implication in Fu-
nayama’s theorem by means of Priestley duality. Indeed, let L satisfy (JID) and let XL be the
Priestley space of L. By Theorem 4.2, XL is a J-space. Let S ⊆ L be such that

∨
L S exists.

We let U be the open up-set
⋃
{ϕ(s) : s ∈ S}. Then ϕ(

∨
L S) = DU , so DU is clopen, and as

XL is a J-space, DU = U . Therefore, U is clopen. Since B(L) is isomorphic to the Boolean
algebra of clopen subsets of XL, as U is clopen, the join of the image of S in B(L) exists and is
equal to U . Thus, the canonical embedding ϕ : L ↪→ B(L) preserves all existing joins in L. A
similar argument gives that if L satisfies (MID), then XL is an M-space, and so ϕ preserves all
existing meets in L. Thus, if L satisfies both (JID) and (MID), then XL is a JM-space, and so
ϕ preserves all existing joins and meets in L. Taking the MacNeille completion of B(L) then
completes the proof.

Theorem 4.2 can also be used to obtain an alternative proof of Theorem 3.1, as well as
to show that unlike Grätzer’s proof, Johnstone’s proof has no obvious generalization to the
non-complete case. The details as well as all the missing proofs will be published in the full
version of the paper, which will appear in Algebra Universalis.
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