
EPiC Series in Computer Science
Volume 35, 2015, Pages 59–66

LPAR-20. 20th International Conferences
on Logic for Programming, Artificial Intelli-
gence and Reasoning - Short Presentations

Symbolic WS1S

Loris D’Antoni1 and Margus Veanes2

1 University of Wisconsin-Madison
loris@cs.wisc.edu

2 Microsoft Research
margus@microsoft.com

Abstract

We extend weak monadic second-order logic of one successor (WS1S) to symbolic alphabets by

allowing character predicates to range over decidable first order theories and not just finite alphabets.

We call this extension symbolic WS1S (s-WS1S). We then propose two decision procedures for such a

logic: 1) we use symbolic automata to extend the classic reduction from WS1S to finite automata to

our symbolic logic setting; 2) we show that every s-WS1S formula can be reduced to a WS1S formula

that preserves satisfiability, at the price of an exponential blow-up.

1 Introduction

Logics that can reason about sequences of events or strings are ubiquitous in many fields of
computer science including program verification, string processing, and program monitoring [5,
6]. These logics are typically described as temporal logics, as they can describe events appearing
in defined order. Examples of such logics include linear temporal logic (LTL) [3] and weak
monadic second-order logic of one successor (WS1S) [1], often just called MSO. Temporal
logics are equipped with operators that can describe the order between events appearing in
a given sequence. For example, an LTL formula can specify that in a particular string the
letter a should always be followed by a b. Despite the increase in expressiveness provided by
these operators both these logics have desirable decidable properties, the most important being
decidable satisfiability.

Although widely used in many practical contexts, classic temporal logics can only describe
sequences of events that are drawn from a finite domain. In particular, the predicates used to
test individual characters always have to be of finite cardinality and disjoint. For example, the
following property of a list of integers is not naturally describable in existing decidable tem-
poral logics without first performing some abstractions on the alphabet of the list being read:
P =every odd number is eventually followed by a number greater than 4. In this paper we pro-
pose symbolic WS1S (s-WS1S), an extension of WS1S that can describe such a property while
retaining decidable satisfiability checking. s-WS1S formulas are parametric in an underlying
alphabet theory (in the case of P linear integer arithmetic). The underlying theory tells us
what is the alphabet of our sequences (in the case of P the integers) and what base predicates
can appear in our formulas (in the case of P any unary formula in linear integer arithmetic).

A.Fehnker, A.McIver, G.Sutcliffe and A.Voronkov (eds.), LPAR-20 (EPiC Series in Computer Science, vol. 35),
pp. 59–66

Symbolic WS1S D’Antoni and Veanes

In order to retain decidability the underlying theory is required to form a decidable Boolean
algebra, i.e., checking satisfiability is decidable and predicates are closed under Boolean oper-
ations. Despite this requirement s-WS1S is strictly more expressive than WS1S. We propose
two decision procedures for s-WS1S.

Our first decision procedure is based on the following automata-based reduction for WS1S:
every WS1S formula ϕ can be compiled into a finite automaton that accepts the same set of
sequences accepted by ϕ [6]. The formula ϕ is then satisfiable if the equivalent automaton is
not empty. Similarly, we show that every s-WS1S formula can be compiled into an equivalent
Symbolic Finite Automaton (s-FA), an extension of finite automata that can capture strings
over arbitrary and potentially infinite alphabets [2]. Since checking emptiness of s-FAs is
decidable, the reduction also provides a decision procedure for s-WS1S.

Our second decision procedures is based on a reduction to the non-symbolic version of WS1S.
This reduction is based on the following idea: although the set of predicates and alphabet
symbols in a given theory can be infinite, the set of concrete predicates appearing in a concrete
formula is finite. Moreover, the set of Boolean combinations of such predicates is also finite
and each such combination describes an equivalence class for the set of symbols appearing
in our alphabet. Concretely, every s-WS1S ϕ formula can be compiled into a WS1S formula
that preserves satisfiability in which the alphabet symbols are the set of possible Boolean
combinations of all the alphabet predicates appearing in ϕ. Since there can be exponentially
many combinations, this reduction can cause an exponential blow-up.

Contributions. In summary our contributions are:

1. The logic s-WS1S, which extends WS1S to describe sequences over arbitrary and poten-
tially infinite alphabets.

2. A symbolic decision procedure for s-WS1S based on a reduction to symbolic finite au-
tomata.

3. A decision procedure for s-WS1S based on an exponential reduction to the non-symbolic
version of WS1S.

2 Symbolic Monadic Second Order Logic

We first formally define the notion of effective Boolean algebra. Next, we define symbolic
weak monadic second-order logic of one successor (s-WS1S) and its semantics. Last, we define
symbolic finite automata (s-FA), which will be used in our algorithms.

2.1 Effective Boolean Algebras

An effective Boolean algebra A has components (D ,Ψ , [[]],⊥,>,∨,∧,¬). D is a recursively
enumerable set of domain elements. Ψ is an recursively enumerable set of predicates closed
under the Boolean connectives and ⊥,> ∈ Ψ . The denotation function [[]] : Ψ → 2D is such
that, [[⊥]] = ∅, [[>]] = D , for all ϕ,ψ ∈ Ψ , [[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and
[[¬ϕ]] = D \ [[ϕ]]. For ϕ ∈ Ψ , we write IsSat(()ϕ) when [[ϕ]] 6= ∅ and say that ϕ is satisfiable. A
is decidable if IsSat() is decidable.

The intuition is that such an algebra is represented programmatically as an API with corre-
sponding methods implementing the Boolean operations and the denotation function. We are
primarily going to use the following two effective Boolean algebras in the examples, but the
techniques in the paper are fully generic.

60

Symbolic WS1S D’Antoni and Veanes

2bvk is the powerset algebra whose domain is the finite set bvk, for some k > 0, consisting of
all nonnegative integers smaller than 2k, or equivalently, all k-bit bit-vectors. A predicate
is represented by a BDD of depth k.1 The Boolean operations correspond directly to the
BDD operations, ⊥ is the BDD representing the empty set. The denotation [[β]] of a BDD
β is the set of all integers n such that a binary representation of n corresponds to a solution
of β.

SMTσ is the decision procedure for a theory over some sort σ, say integers, such as the theory
of integer linear arithmetic. This algebra can be implemented through an interface to an
SMT solver. Ψ contains in this case the set of all formulas ϕ(x) in that theory with one
fixed free integer variable x. For example, a formula (x mod k) = 0, say divk, denotes the
set of all numbers divisible by k. Then div2 ∧ div3 denotes the set of numbers divisible by
six.

2.2 s-WS1S

The symbolic weak monadic second-order logic of one successor (s-WS1S) operating on words
over an effective Boolean algebra A is defined by the following grammar:

ϕ := ¬ϕ | ϕ ∧ ϕ | ∃x.ϕ | ∃X.ϕ | S(x, y) | x = y | x < y | Pψ(y) | x ∈ X

where ψ ∈ ΨA is a predicate over the alphabet theory. First order variables (denoted by lower
case letters) range over positions of a string, while second order variables (denoted by upper case
letters) range over sets of positions in the string. For example, given the predicate ψ(r) = r > 0
over the theory of linear integer arithmetic, the formula

∃x1.∃x2.Pψ(x1) ∧ Pψ(x2) ∧ x1 < x2

is true for all the strings a1 . . . an ∈ N∗ for which there exists two positions i, j ∈ [1..n] such that
the symbols ai and aj are both numbers greater than 0 and position i appears before position
j (i.e. i < j).

The operator that differentiates s-WS1S from WS1S is the unary predicate Pψ(x). While
in WS1S predicates are drawn from a finite signature Σ in our case they can be any predicate
in a decidable Boolean algebra. Moreover, while in WS1S any position x in the string satisfies
exactly one predicate in Σ (i.e. each character is an element of Σ), in our case each position
can satisfy infinitely many predicate. For example the character r = 6 satisfies ψ(r) above but
also even(r). In particular, since ψ1, ψ2 ∈ ΨA then ψ1 ∧A ψ2 ∈ ΨA, it follows that if Pψ1

and
Pψ2

are valid predicates in s-WS1S then so is Pψ1∧Aψ2
.

We now formally define the semantics of s-WS1S. Given a word w = a1 . . . an ∈ D∗, positions
ı̄ = i1, . . . , ij ∈ [1..n], position sets Ī = I1, . . . , Ik ⊆ [1..n], and an s-WS1S formula ϕ(x̄, X̄) with
j free first-order variables x̄ = x1, . . . , xj and k free second-order variables X̄ = X1, . . . , Xk we
define the semantics using judgements of the form

w, ı̄, Ī � ϕ(x̄, X̄).

We define the judgements inductively2:

• w, ı̄, Ī � ¬ϕ1(x̄, X̄) iff w, ı̄, Ī 6� ϕ1(x̄, X̄);

1The variable order of the BDD is the reverse bit order of the binary representation of a number, in particular,
the most significant bit has the lowest ordinal.

2We assume without loss of generality that all quantified variables have distinct names.

61

Symbolic WS1S D’Antoni and Veanes

• w, ı̄, Ī � ϕ1(x̄, X̄) ∧ ϕ2(x̄, X̄) iff w, ı̄, Ī � ϕ1(x̄, X̄) and w, ı̄, Ī � ϕ2(x̄, X̄);

• w, ı̄, Ī � ∃x.ϕ1(x · x̄, X̄) iff there exists i ∈ [1..n] such that w, i · ı̄, Ī � ϕ(x · x̄, X̄);

• w, ı̄, Ī � ∃X.ϕ1(x̄, X · X̄) iff there exists I ⊆ [1..n] such that w, ı̄, I · Ī � ϕ(x̄, X · X̄);

• w, ı̄, Ī � S(xl, xm) iff im = il + 1;

• w, ı̄, Ī � xl = xm iff il = im;

• w, ı̄, Ī � xl < xm iff il < im;

• w, ı̄, Ī � Pψ(xl) iff ail ∈ [[ψ]]A;

• w, ı̄, Ī � xl ∈ Xm iff il ∈ Im.

Given a formula ϕ with no free variables, a word w ∈ D∗ is a model of ϕ iff w � ϕ. The
language of ϕ is the following subset of D∗, L(ϕ) = {w | w � ϕ}.

2.3 Symbolic Finite Automata

A symbolic finite automaton is a finite automaton over a symbolic alphabet, where edge labels
are replaced by predicates. In order to preserve the classical closure operations (intersection,
complement, etc.), the predicates must form an effective Boolean algebra.

Definition 1. A symbolic finite automaton (SFA) M is a tuple (A, Q, q0, F,∆) where A is an
effective Boolean algebra, called the alphabet, Q is a finite set of states, q0 ∈ Q is the initial
state, F ⊆ Q is the set of final states, and ∆ ⊆ Q×ΨA×Q is a finite set of moves or transitions.
�

Elements of DA are called characters and finite sequences of characters, elements of D∗A, are

called words; ε denotes the empty word. A move ρ = (p, ϕ, q) ∈ ∆ is also denoted by p
ϕ−→M q

(or p
ϕ−→ q when M is clear), where p is the source state, denoted Source(ρ), q is the target

state, denoted Target(ρ), and ϕ is the guard or predicate of the move, denoted Guard(ρ). A
move is feasible if its guard is satisfiable. Given a character a ∈ DA, an a-move of M is a move

p
ϕ−→ q such that a ∈ [[ϕ]], also denoted p

a−→M q (or p
a−→ q when M is clear). In the following

let M = (A, Q, q0, F,∆) be an SFA.

Definition 2. A word w = a1a2 · · · ak ∈ D∗A, is accepted at state p of M , denoted w ∈ Lp(M),

if there exist pi−1
ai−→M pi for 1 ≤ i ≤ k, such that p0 = p, and pk ∈ F . The language accepted

by M is L(M)
def
= Lq0(M). �

3 Deciding s-WS1S using the Cartesian Product Algebra

The classic decision procedure for WS1S relies on the fact that any formula ϕ(X1, . . . , Xk) with
k free second-order variables3 and over a finite alphabet Σ can be compiled into a deterministic
finite automaton A that accepts strings over the alphabet Σ × {0, 1}k, such that every string
w = a1 . . . an accepted by A has the following property: if for each variable Xi we define the
set Si = {j | the i-th bit of aj is 1}, we then have that

wΣ, S1, . . . , Sk � ϕ(X1, . . . , Xk)

where wΣ ∈ Σ∗ is the projection of w on its first component.

3We only consider second order variable for simplicity but without loss of generality.

62

Symbolic WS1S D’Antoni and Veanes

Our first decision procedure uses the same idea and transforms a symbolic WS1S formula
over the alphabet σ into a symbolic finite automaton over the alphabet σ × {0, 1}k. As this
reduction requires a change of alphabet, we define the concept of a Cartesian Product Algebra
of two effective Boolean algebras to combine position-predicates (over {0, 1}k) with character -
predicates (over σ). Given two effective Boolean algebras, Ai = (Di,Ψi, [[]]i,⊥i,>i,∨i,∧i,¬i)
for i ∈ {1, 2}, their Cartesian Product Algebra A1 ×A2 has the following components:

(D1 ×D2,Ψ , [[]],⊥,>,∨,∧,¬)

where, for each ψ ∈ Ψ there exists an effective sum of products decomposition {(ψi1, ψi2)}ki=1 ⊆
Ψ1 ×Ψ2, for some finite k ≥ 1, such that

[[ψ]] =

k⋃
i=1

[[ψi1]]1 × [[ψi2]]2

and, conversely, every such sum of products has an equivalent representation in Ψ . For example,
we can let ⊥ have the effecive decomposition {(>1,⊥2)} and we can let > have the effective
decomposition {(>1,>2)}. Observe that a sum of products decomposition of ¬ψ is obtained
from any sum of products decomposition of ψ using deMorgan’s laws.

For an efficient implementation of predicates in Ψ we use Binary Decision Trees or BDTs.
A BDT for A1 ×A2 is either

• a leaf node 〈ψ〉 with label ψ ∈ Ψ1, or

• a nonleaf node B = 〈ϕ,Bt, Bf 〉 with ϕ ∈ Ψ2 as its label and

– Bt is a BDT for A1 ×A2 called the true case of B, and

– Bf is a BDT for A1 ×A2 called the false case of B.

The path condition to the root of a BDT B is >2 and if the path condition to a node 〈ϕ,Bt, Bf 〉
in B is π then the path condition to node Bt in B is π ∧2 ϕ and the path condition to node Bf
in B is π ∧2 ¬2ϕ. In other words, a BDT for A1×A2 is a Shannon expansion whose leaf labels
or terminals are predicates of the algebra A1 and whose nonleaf node labels or nonterminals
are predicates of the algebra A2. The pair (ψ, π) where π is the path condition to a leaf node
〈ψ〉 of a BDT B is called a branch of B. The sum of products decomposition of a BDT is the
set of all of its branches.

As an implementation side note, subtrees of a BDT are maximally shared, thus the imple-
mentation of a BDT is in reality a Binary Decision Graph or a BDG and in its sum of products
decomposition, path conditions to shared nodes have been joined to summaries or disjunctions
of path conditions.

We say that a BDT B is well-formed if for all branches (ψ, π) of B:

• π is satisfiable, and

• either both ψ and ¬1ψ are satisfiable or else ψ ∈ {⊥1,>1}.
For example, the BDT 〈>2, 〈⊥1〉, 〈>1〉〉 is not well-formed because in the branch (>1,¬2>2) the
path condition ¬2>2 is unsatisfiable. Observe that both 〈>1〉 and 〈⊥1〉 are trivially well-formed.
If ⊥1 ∧1 ⊥1 is not identical to the the predicate ⊥1 in Ψ1 then 〈⊥1 ∧1 ⊥1〉 is not well-formed.

The two key operations over BDTs are negation and conjunction. Both operations are
similar to corresponding BDD operations. Negation is defined as follows.

¬〈ψ〉 = 〈¬1ψ〉, ¬〈ϕ,Bt, Bf 〉 = 〈ϕ,¬Bt,¬Bf 〉

63

Symbolic WS1S D’Antoni and Veanes

Trivially, negation preserves well-formdness, provided that ¬1⊥1 = >1 and ¬1>1 = ⊥1. Con-
junction is defined as follows where we assume implicit satisfiability checking and simplification,
so that if ψ∧i φ is unsatisfiable then ψ∧i φ = ⊥i, analogously that valid formulas are simplified
to >i in both algebras.

B ∧ C = B
>2∧ C

Where
π
∧ carries the path condition π and is defined as follows.

〈ϕ,Bt, Bf 〉
π
∧ C = 〈ϕ,Bt

π∧2ϕ
∧ C,Bf

π∧2¬2ϕ
∧ C〉

〈ψ〉
π
∧ 〈ϕ,Ct, Cf 〉 =


〈ψ〉

π
∧ Ct, if unsat(π ∧2 ¬2ϕ);

〈ψ〉
π
∧ Cf , else if unsat(π ∧2 ϕ);

〈ϕ, 〈ψ〉
π∧2ϕ
∧ Ct, 〈ψ〉

π∧2¬2ϕ
∧ Cf 〉, otherwise.

〈ψ〉
π
∧ 〈φ〉 = 〈ψ ∧1 φ〉

There are several optimizations as well as caching of prior results in the concrete implementation
that make the implementation feasible but have been omitted here for brevity. If both B and
C are well-formed then it follows from the construction that B ∧ C is also well-formed.

The above choice of representation is taylored for our concrete application here. It maintains
a semi-canonical form that allows simple checking of satisfiability and validity of predicates in
Ψ . In the BDT representation of predicates, we refer to the algebra A2 as the nonleaf (or
nonterminal) algebra and A1 as the leaf (or terminal) algebra.

In our current translation from s-WS1S formulas, position-predicates ψ are represented by
bitvector predicates in the terminal algebra that is implemented by a BDD solver. The number
of bits required in a position predicate corresponds to the maximum number of variables used
in the given WS1S formula. The character predicates are predicates over any given character
domain, such as Unicode characters, or integers, and are represented by predicates in the
nonterminal algebra. We have experimented with both Z3 and a BDD solver as the nonterminal
algebra.

An example of an s-WS1S formula involving both kinds of predicates is the following. To
be concrete assume that we use regex character classes for nonleaf predicates, such as digit,
say character-predicate \d, word character, say \w, or white space, say \s, and the character
domain is 16-bit bit-vectors (i.e., unsigned integers less than 216). A possible s-WS1S statement
is: there are at least two positions labeled by word characters and at least one position labeled
by a digit; formally:

∃x y (x < y ∧ P\w(x) ∧ P\w(y)) ∧ ∃x(P\d(x))

Observe that a digit is also a word letter, i.e., \d∧2\w is satisfiable in the nonterminal (character)
algebra. So for example, a shortest string that satisfies the formula is a string of two word letters
where at least one of which is also a digit.

4 Reducing to Monadic Second Order Logic

Our second decision procedures is based on a reduction to the non-symbolic version of WS1S.
This reduction is based on the following idea: although the set of predicates and alphabet
symbols in a given theory can be infinite, the set of concrete predicates appearing in a concrete
formula is finite. Moreover, the set of Boolean combinations (also called minterms) of such

64

Symbolic WS1S D’Antoni and Veanes

predicates is also finite and each such combination describes an equivalence class for the set of
symbols appearing in our alphabet.

More formally, a minterm is a minimal satisfiable Boolean combinations of all guards that
occur in the s-WS1S formula ψ. For example given two predicates Φ = {ϕ1, ϕ2}, the set of
minterms for Φ is the set

M = {ϕ1 ∧ ϕ2,¬ϕ1 ∧ ϕ2, ϕ1 ∧ ¬ϕ2,¬ϕ1 ∧ ¬ϕ2}

Unlike for the original set of predicates Φ, all the predicates in Φ are disjoint. Moreover,
symbols belonging to the same minterm are indistinguishable with respect to the original s-
WS1S formula. More formally, for any two symbols a, b ∈ D in the same minterm ϕ ∈M , and
two strings v, w ∈ D∗,

vaw ∈ L(ψ)⇔ vbw ∈ L(ψ).

Using this idea we reduce the s-WS1S formula ψ to an WS1S formula ψ′ over the alphabetM .
The reduction is very simple: every predicate ϕ(x) appearing in ψ is replaced by the predicate
ϕ1(x) ∨ . . . ϕm(x) where {ϕ1, . . . , ϕm} is the set of minterms in M in which the predicate ϕ
appears positively (i.e. it is not negated). This reduction can in general cause an exponential
blow-up. Notice that now our alphabet is M and the new WS1S formula accepts string in M∗

and not D∗.

We will now argue that the s−WS1S formula ψ is satisfiable if and only if the WS1S formula
ψ′ is satisfiable. If a string a1 . . . an is accepted by ψ, let ϕ1 . . . ϕn be the sequence of minterms
of the formulas in ψ such that ai ∈ [[ϕi]] for each i ≤ n. Since minterms are disjoint, such a
sequence is unique. We now need to show that the string ϕ1 . . . ϕn ∈ M∗ is accepted by ψ′.
Whenever w, x1, . . . , xn � p(x) we have to show that in WS1S w, x1, . . . , xn � ϕi1(x)∨. . .∨ϕij (x)
where m = {ϕi1 , . . . , ϕij} are the minterms in which p appears positively. From the definition
of minterm, it is easy to show that ϕi1 ∨ . . . ∨ ϕij is equivalent to p. Therefore we have if that
some symbol a ∈ D is a model of p(x) then its minterm appears in m. The other direction is
similar.

5 Future Work

This paper shows some preliminary results on s-WS1S, a symbolic extension WS1S. In par-
ticular we propose two decision procedures for the logic s-WS1S. We also have a preliminary
implementation of the two decision procedures for s-WS1S, but a comprehensive evaluation of
their performance is part of our future work. Moreover, many questions remain unanswered:

• Are there better ways to implement the Cartesian product algebra?

• What is the exact complexity of each operation in such an algebra?

• Can we leverage existing heuristics and techniques for solving WS1S in our symbolic de-
cision procedure [4]?

References

[1] J. Buchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik und Grundl. Math.,
6:66–92, 1960.

[2] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In POPL’14. ACM, 2014.

65

Symbolic WS1S D’Antoni and Veanes

[3] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic on finite traces.
In IJCAI 2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, 2013.

[4] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sandholm. Mona:
Monadic second-order logic in practice. In TACAS ’95, volume 1019 of LNCS. Springer, 1995.

[5] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over infinite alphabets.
ACM Trans. Comput. Logic, 5(3):403–435, 2004.

[6] W. Thomas. Languages, automata, and logic. In Handbook of Formal Languages, pages 389–455.
Springer, 1996.

66

	Introduction
	Symbolic Monadic Second Order Logic
	Effective Boolean Algebras
	s-WS1S
	Symbolic Finite Automata

	Deciding s-WS1S using the Cartesian Product Algebra
	Reducing to Monadic Second Order Logic
	Future Work

