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Abstract

The impact of machine learning in medicine has arguably lagged behind its commercial
counterparts. This may be attributable to the generally slower pace and higher costs
associated with clinical applications, but also present are the conflicting constraints and
requirements of learning from data in a highly regulated industry that introduce levels of
complexity unique to the medical space. Because of this, the balance between innovation
and controlled development is challenging. Adding to this are the multiple modalities found
in most clinical applications where applying traditional machine learning preprocessing and
cross-validation techniques can be precarious. This work presents the novel use of creational
and structural design patterns in a generalized software framework intended to alleviate
some of those difficulties. Designed to be a configurable pipeline to not only support the
experimentation and development of diagnostic machine learning algorithms, but also to
support the transition of those algorithms into production level systems in a composed
manner. The resulting framework provides the foundation for developing unique tools by
both novice and expert data scientists.

1 Introduction

Design patterns are an important method for communicating and reusing architectural knowl-
edge in software systems. Although the implementations are not inherently reusable, the for-
malized definitions provide concepts that increase quality, comprehensibility, maintainability,
and testability [7]. However, amongst developers the use of patterns can be divisive – as some
patterns can result in an increase in complexity and a reduction in understandability [19]. This
is partly due to the cognition involved in appropriately conceptualizing a particular pattern [8],
as well as the contextual mismatch between software domain and pattern definitions that can
result in poor design choices and a further reduction in maintainability [2]. This is particularly
true when dealing with novice developers [3]. Regardless, patterns are an important aspect of
any large-scale software project.

Presented here is the application of several classic design patterns in a generic machine
learning framework – named Atlas. The codebase was created to assist data scientists developing
machine learning algorithms for medical diagnostics. This unique combination of complex
data analysis and varying levels of developer experience – data scientists do not always have
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extensive software engineering exposure – presents a difficult set of constraints when designing
a generalized framework. This paper outlines what makes Atlas unique and how some of these
classic patterns – creational and structural – were applied in novel ways.

Creational patterns are a basic form of dependency inversion. Rather than relying on
a concrete class definition, the instantiating class can defer the specific implementation to a
subclass at runtime. This creates a mechanism for decoupling code in an application – resulting
in a codebase that can be easier to extend and more importantly, easier to test. Similarly,
structural patterns rely on composition to alter the functionality of an object dynamically.
A particularly useful structural design element is the decorator pattern[5]. This provides a
mechanism for adding functionality to a class or instantiated object dynamically.

Atlas is the realization of several different patterns. Developed in Python [12], the frame-
work is constructed around a dynamic class import system – allowing the instantiation of data
processing blocks at runtime based on user defined configurations. The unique aspect of this
is that new building blocks can be added into the processing pipeline by changing the text
based configuration. This provides a dynamic development framework for data scientists and
facilitates experimentation without consequences to the overarching production level system
– the first motivating factor behind developing a proprietary platform, as opposed to using
off-the-shelf solutions.

Although Atlas is solving a unique problem, there are several libraries that share similarities.
For example, NiftyNet [6], Nuts-ML [9], and DeepNeuro [1] were all developed to handle the
preprocessing of diagnostic images exclusively for use in deep learning applications. Similarly,
the Deep Learning Toolkit [10] was developed specifically for prototyping deep learning models
and modules. Whereas libraries such as NifTK [4] focus on compatibility and interoperability
of transferring imaging data. Unfortunately, there were no general purpose machine learning
packages available for medical applications at the time Atlas development began.

The remainder of this paper presents the requirements that motivated the development of
Atlas along with the configuration system that is the core of the framework. This is followed
by an explanation of the creational and structural patterns that are employed. These are
accompanied by a motivating example of how an Atlas experiment is invoked. Finally, the
existing uses of Atlas and the concluding remarks close out the discussion.

2 Software Requirements

There are three model stages in the workflow Atlas supports – experimentation (selection), eval-
uation, and production (distribution). These have motivated a system that uniquely fulfills the
non-functional requirements of usability, extensibility, and flexibility. While many organizations
have departmental separation of these states – where data scientists develop prototype models
and software engineers create structured implementations of them – a finite resource pool drove
the need for a consistent interface between these stages. Unfortunately, these stages can often
introduce requirements in conflict with one another. Atlas was conceived as a way to mitigate
those competing requirements while allowing data scientists to write flexible experiments that
could be more readily refined for production.

The experiment stage of model development necessitates flexibility and extensibility. The
generalized flow of development, outlined in Figure 1, includes preprocessing, cross validation,
and evaluation. However, once experiments are fully developed they need to be transferred
to a publishable state. The evaluation phase is the initial model release state and provides a
framework for reevaluating them and their corresponding experiments as new data is collected.
This provides a way for data scientists to continually update models, as well as evaluate their
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Figure 1: General experiment flow.

Listing 1: Basic configuration syntax

module_list = module1, module2

[general]
general_bool = False
general_float = 0.65

[module1]
[[SpecificModule1Implementation]]
implementation_specific_int = 10

[module2]
module2_variable = String

[[SpecificModule2Implementation]]
implementation_specific_int = 125,
implementation_specific_float = 10.2

utility, but it requires a consistent shared interface with the experimental framework. The
evaluation framework however, requires tested, peer-reviewed, and documented code. Finally,
the production system introduces regulatory requirements. This increases the testing and doc-
umentation burden of any project. Here, the framework and included models have to be stable
and documented through a well-defined product development process. The design elements
described in this paper cover the shared core of these three states but the focus and examples
are on the initial evaluation stage. Each of these include a different compromise in the balance
between flexibility and determinism.

Although there are a myriad of machine learning frameworks available, the development
of Atlas began out of the necessity to meet the requirements of the specific three stage model
process. One of the major difficulties in providing a system for developing and validating ML
models, was in the preprocessing of the data. This is certainly not unique in data science – where
formatting and sanitizing data is a significant step in any machine learning application [20].
However, in the case of diagnostic algorithm development, a different set of obstacles emerges.
First, are the multiple modalities present in most of the clinical studies generating data. The
primary data source in our case is transcranial Doppler (TCD) ultrasound. But most studies
include other biological signals, such as end-tidal CO2 (the amount of carbon dioxide exhaled),
absolute blood pressure, EKG, or intracranial pressure. The difficulty in incorporating all of
these signals into a ML model is defining a unique uncorrelated feature set. The second source of
difficulty arises during cross-validation. In most cases multiple datasets may be generated from
a single subject. This is often the case for traumatic brain injuries (TBIs), where a subject
is tracked along their recovery. During cross-validation, a simple leave-one-out turns into a
leave-one-subject-out – making most off-the-shelf ML packages out of the question.
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Figure 2: Atlas factory pattern class diagram.

3 Software Design

3.1 Configuration System

The configuration system, AtlasConfig, is built around the ConfigObj Python library. Employ-
ing a singleton pattern, AtlasConfig stores the requested processing blocks and parameters that
can be accessed from within the namespace. The configuration files take the general form of
Listing 1. These are dependent on the experiment and the particular processing elements, but
as these are developed they become a significant part of the experiment documentation.

The configuration begins with a list of requested modules. These are core elements specific
to Atlas that delineate a functional separation or data encapsulation along the processing
pipeline. Not only can this list be used by the validation system for ensuring the config meets
the formatting specification, but it also provides a mechanism for breaking from the traditional
flow of Figure 1 without modifying the core code. The list corresponds to module definitions,
further down in the configuration file, that specify the requested implementation and any sub-
sections or variables required, as illustrated in Listing 1. These are fixed and have corresponding
factories associated with them, but the specific implementation can be from outside of the core
codebase – detailed further below.

3.2 Atlas BaseFactory

The factory method [5], is a creational pattern for abstracting away the instantiation of a con-
crete class to another class or subclass. The pattern defers the decision of which implementation
to invoke to the factory at run-time. Unique to this work, is the utilization of the Python import
framework to completely remove any prior awareness of the instantiable classes. Using this with
the configuration system, data scientists can replace specific blocks of the experiment pipeline
with their own implementations, without ever changing the Atlas core. This provides flexibil-
ity and encourages exploration, without risking untested or immature code diluting the shared
codebase. As components mature and evolve, they can be incorporated into the common frame-
work through the traditional development/test lifecycle. In Atlas, the factory class diagrams
take the form of Figure 2. The BaseFactory class is inherited by all ModuleFactories.
This contains the specific import mechanisms unique to Atlas.

An example of how this pattern is implemented is presented in Listing 2. This function
takes advantage of the @classmethod decorator provided by Python and allows it to modify
the instantiating class definition, rather than an instance. When a specific module instance is
requested, this method will search for the corresponding implementation factory. If a file path
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Listing 2: Example of a dynamic import function in Python.

@classmethod
def get_class_factory(cls):

# Get classname and path from params (AtlasConfig Object).
classname, module_path = FactoryBase.__params.get_module_type(cls.module_type)
# If the class has already been registered.
if classname in cls.factories:

return cls.factories[classname]
# Was a path to the implementation given?
if module_path is None:

if not cls.initialized:
# Search the sub-directories of the ModuleFactory for implementations.
cls._get_module_paths()
cls.initialized = True

modules = cls.modulePaths
else:

# Split path on extension.
filename, _ = os.path.splitext(module_path)
module_name = os.path.basename(filename)
modules = [(module_path, module_name)]

# Search through the list of possible modules.
for import_path, module_name in modules:

try:
# Try to import the module.
mod = imp.load_source(module_name, import_path)
if hasattr(mod, classname):

# Get the implementation factory.
module_class = getattr(mod, classname)
module_class_factory = module_class.Factory()
# Register the factory so future searches are not required.
cls.factories[classname] = module_class_factory
# Return the factory.
return module_class_factory

except ImportError:
print("Error importing {} from {}".format(module_name, import_path))

# All of modules were searched and none returned the requested class.
raise Exception("Module:{}, class:{}".format(module_path, classname))

is included in the configuration file, then that module will be imported and the corresponding
implementation will be returned. If a path is not specified, then the function will search
the associated directory structure of the ModuleFactory object. This pattern is utilized
throughout the Atlas pipeline.

3.3 Atlas Exam Decorators

The motivation for employing a decorator pattern in an already complex framework was driven
by the Exam classes. The different clinical studies result in a surprising number of analysis
configurations. This is best exemplified in the different beat processing methods used in the
creation of feature vectors. Physiologically, TCD beats correspond to the pulsatile blood flow
measured in the vasculature. In Atlas feature generation, this includes everything from raw
beats truncated to a common size, normalized beats, or beats averaged over each exam segment.
The decorator pattern provides a mechanism for adding components and functionality at run-
time – meaning that different beat processing mechanisms can be swapped into an exam by
changing the configuration.

The implementation in Atlas utilizes the built-in Python Metaclass abstraction. Addi-
tionally, the six package is incorporated to allow cross-functionality between Python 2 and 3.
The use of the somewhat controversial – at least in the Python community – Metaclass as

198



Creational and Strucutral Patterns in Diagnostic Machine Learning Thibeault

Listing 3: Metaclass used for decorating inheriting classes with defined functionalities.

from atlas.config import AtlasConfig

class MetaDecorator(type):
def __new__(mcs, name, bases, dct):

params = AtlasConfig()

functionalities = params.config["exam"]["MetaExam"].sections

for mod_name in functionalities:
mod_path = params.config["exam"]["MetaExam"][mod_name].get(

"module_path", None)
module = mcs.import_module(mod_name, mod_path)
explicit_decorations = getattr(module, "DECORATIONS", None)

if explicit_decorations is not None:
for func_name in explicit_decorations:

func = getattr(module, func_name)
dct[func.__name__] = func

else:
func = getattr(module, "get_{}".format(mod_name))
dct[func.__name__] = func

init_method = getattr(module, "init_{}".format(mod_name), None)

if init_method is not None:
dct["__"+init_method.__name__] = init_method
dct["registered_inits"].append("__"+init_method.__name__)

else:
print("init_method {} is None:".format(mod_name))

return super(MetaDecorator, mcs).__new__(mcs, name, bases, dct)

@staticmethod
def import_module(mod_name, mod_path):

if mod_path is None:
curr_dir = dirname(abspath(__file__))
mod_path = join(curr_dir, "functionalities", "{}.py"

.format(mod_name))

module = imp.load_source(mod_name, mod_path)
return module

Listing 4: Example implementation of a dynamic functionality.

from atlas.experiment_framework.preprocessing.beats import BeatsFactory

def init_beats(exam, dec_params):
beats = {}
segments = ["baseline"]
# loop through all of the segments and create the beats.
# Normally this would include a larger list of exam segments.
for segment in segments:

beats[segment] = BeatsFactory.create_instance(dec_params, segment)
# add the beats as an exam attribute
exam.beats = beats

def get_beats(exam, segment):
return exam.beats.get(segment)
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Listing 5: Example exam base class implementing the Metaclass.

import six
from atlas.config import AtlasConfig

class MetaExam(six.with_metaclass(MetaDecorator, object)):
""" This will be populated by the MetaDecorator. """
registered_inits = []

class Factory(object):
"""Used by the ExamFactory to generate MetaExam instances."""
def create(self, *args, **kwargs):

"""Return an instance of MetaExam"""
return MetaExam(*args, **kwargs)

def __init__(self, params, subid, examid_string, sensor, is_kit):
"""Initialize the object since this does not happen at instantiation."""

"""
[Raw data and other basic processing may occur here.]

"""

# Run initialization for decorated functionalities
for init_method in MetaExam.registered_inits:

dec_params = self.params.config["exam"]["MetaExam"].get(
init_method.split(’_’)[-1], {})

try:
dec_params.pop("module_path")

except KeyError:
pass

getattr(self, init_method)(dec_params)

opposed to the built-in @decorator keyword, came from the need for adding functionalities
dynamically at run-time. Because of this, similar to the factory methods, the use of the deco-
rator pattern in Atlas relies on the AtlasConfig class to define which functionalities will be
attached.

Listing 3 presents the super class implementation for decorating exam classes with function-
alities – comparable to the classic Component object. The requested functionalities are first
pulled from the AtlasConfig object and imported with the static method import_module.
The functionality definitions are added to the concrete exam class definition and the init func-
tions are added to the registered_inits list. None of the imported functions are called at
this point, only the class definition is modified. An example functionality is included in List-
ing 4. Only two functions are implemented here, init_beats, which is added to the registered
initializers, and get_beats, which is automatically added by the MetaDecorator class. All
of this is then employed in the inheriting class illustrated in Listing 5 – this is comparable to
the classical ConcreteComponent. In addition to loading the basic raw data, the MetaExam
class loops through all of the registered functionalities and initializes them at runtime. This
pattern allows for a component or abstract-oriented approach to the data containers. It has
encouraged reuse of the core functionalities and added the necessary flexibility to the machine
learning experiments.

3.4 Motivating Example

Running an Atlas experiment generally involves 2 steps. The first is constructing the configu-
ration file – as illustrated in Listing 6. The second step is the basic Python code to instantiate
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Listing 6: Motivating Example.

module_list =
experiment, exam_list,
beats, exam,
ml_framework, data_set_gen,
subspace_decomp, classifier

[general]
search_path = /data/
output_path = ˜/test
extract_peaks = True
[experiment]

[[SimpleExperiment]]
[exam_list]

[[ExamList]]
module_path = ˜/example_examlist.py

[exam]
[[MetaExam]]

extract_peaks=True
[[[beats]]]
[[[events]]]

[beats]
[[RawBeats]]

[ml_framework]
[[LeaveOneOutml]]

[data_set_gen]
[[AverageDataSetGen]]
train_segments = baseline,
test_segments = baseline,

[subspace_decomp]
[[SciKitPCADecomp]]
subspace_n_components = 5
random_subspace = False
random_subspace_samples = 10

[classifier]
[[SciKitSVMClassifier]]
theta0 = 1e-2
svm_C = 100

Listing 7: Running the Experiment.

params = AtlasConfig("./example.cfg")
FactoryBase.set_params(params)
exp = ExperimentFactory.create_instance(

params)
exp.initialize(params)
exp.run_experiment()

Figure 3: Motivating Example.

the Experiment object and run the ML experiment – given in Listing 7.

After the [general] section in the configuration file, the requested modules are defined.
Figure 3 illustrates the relationships between these modules. In the Preprocessing blocks the
instantiated modules have a compositional relationship, with exam containing multiple beats
and the exam_list organizing all of the exam objects. In the Machine Learning block however,
the diagram illustrates a behavioral or data dependency interaction – with the output from a
module feeding the subsequent module. These are contained within a single experiment
object that controls the instantiation and execution of the experiment.

In this example a SimpleExperiment is requested with a LeaveOneOutml cross val-
idation. The experiment first collects the requested exams – Preprocessing block. A single
subject is then removed from exam_list – using AverageDataSetGen. A subspace de-
composition is then constructed using the training data with a PCA from SciKit-learn [11] –
SciKitPCADecomp. A classifier is then constructed using an SVM model, also from SciK-
itLearn. The classifier is then used on the subject that was removed for testing. The exper-
iment continues until the cross-validation has completed. The ability to wrap other packages
– SciKitLearn in this example – is another benefit of the creational pattern. This provides an
important mechanism for encouraging the inclusion of external libraries in the pipeline.
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4 Discussion

The ultimate question of any generic framework is in how useful it actually is. Atlas has
supported a number of different studies, ranging from mild traumatic brain injuries [15, 14, 16],
to stroke [18, 13, 17]. However, what’s most interesting about those publications, is that most
are based more traditional analysis using pooled statistics or statistical models, rather than
machine learning. The functional decoupling designed into Atlas has supported use cases that
fall outside of the initial software requirements. This is probably the best illustration of the
true extensibility that the architecture provides.

The decision to incorporate the design patterns presented here was not made without hes-
itation. As discussed in the introduction, including this level of extensibility and flexibility
comes at a cost of reduced code readability and a level of architectural complexity that can be
unnecessary at times. This framework has been through several design iterations before arriving
at its current state and it could be argued that there is a reduction in the understanding of
the codebase. This is particularly true for the creational aspects of Atlas. The use of decorator
pattern has not generated as much confusion – this has been the case even when the developer
had no prior exposure to patterns. This observation is consistent with more rigorous studies
of design patterns – where the decorator in particular has also been shown to have generally
positive effects on extensibility and developer comprehension [19]. There is a learning curve to
fully utilizing Atlas for novice developers. However, this only seems to hold true when trying
to extend the framework, rather than during its general use. Regardless, the benefits it offers
more than outweigh the developer start-up costs.

The aspect-oriented approach to exam composition has allowed for efficient changes in fea-
ture vector extraction and the module design has supported use outside of its original design.
However, one important concept not discussed by these choices is performance. These design
considerations can in many cases result in a significant performance drop. In this instance, the
patterns are applied in places where either performance is not a concern, or other processing
dominates the total computational costs – for example, the actual machine learning training
and testing. If performance becomes a concern in the future, the modularized design of Atlas
will allow for precise profiling and identification of bottlenecks. Furthermore, these modules
can be more readily replaced with optimized implementations.

This work describes the use of creational and structural patterns in the Atlas framework
as a way to mitigate the conflicting requirements of machine learning in the medical space.
Outside the scope of this work are the model exploration and production systems that employ
the resulting models from the experimental framework. In addition, the report generation and
resulting experiment database deserve mention as well. All of these have resulted in a stable
and usable system for machine learning model development.
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