
Default Reasoning in Action Domains with

Conditional, Non-Local Effect Actions

Hannes Strass1 and Michael Thielscher2

School of Computer Science and Engineering
The University of New South Wales

mit@cse.unsw.edu.au

Abstract

In a recent paper [2], Baumann et al. provided a comprehensive framework for default
reasoning in action theories. Yet, the approach was only defined for a very basic class of
domains where all actions have only unconditional, local effects. In this paper, we show
that the framework can be substantially extended to domains with action effects that are
conditional (i.e. are context-sensitive to the state in which they are applied) and non-
local (i.e. the range of effects is not pre-determined by the action arguments). Notably,
these features can be carefully added without sacrificing important nice properties of the
basic framework, such as modularity of domain specifications or the existence of default
extensions. In the last part of the paper, we demonstrate how (a subclass of) the framework
can be straightforwardly implemented using the answer set programming paradigm.

1 Introduction

Reasoning about actions and non-monotonic reasoning are two important fields of logic in arti-
ficial intelligence. Both areas have received considerable attention and have reached remarkable
maturity by now. However, a unifying approach that combines the full expressiveness of both
fields was still lacking, until a recent paper by Baumann et al. [2] took an important first step
into the direction of uniting these two lines of research.

In this paper, we develop a substantial extension of the work of [2], along various dimensions:
First, we significantly generalise the theoretical framework to be able to deal with a broad class
of action domains. This is important since the expressiveness of established action theories (e.g.
the Situation Calculus [8]) is one of their strong points. Second, we make a first proposal on
how the framework can actually be implemented. This is no less important, since it yields a
conceptually clean way of putting an expressive theoretical reasoning method to practical use.

The paper proceeds as follows. In the next section, we recall the work of Baumann et al.
upon which the present paper builds. However, this will be very brief due to a lack of space; for a
complete formal background, the reader should consult the original work [2]. Section 3 extends
this basic approach by conditional and non-local effects. In the section thereafter, we show
how the theoretical framework considered here gives rise to a straightforward implementation
in ASP; Section 5 concludes.

2 Default Reasoning about Unconditional, Local Effect
Actions

The approach of [2] combines default logic [7] with the unifying action calculus [9]. Domain
axiomatisations are viewed as incomplete knowledge bases that are completed by default state-
ments. It takes as input a description of a particular action domain with defaults. Such a

58 A. Voronkov, G. Sutcliffe, M. Baaz, C. Fermüller (eds.), LPAR-17-short (EPiC Series, vol. 13), pp. 58–63

Default Reasoning in Action Domains with Conditional, Non-Local Effect Actions Strass, Thielscher

description comprises (1) a domain signature, that defines the vocabulary of the domain; (2)
a description of the direct effects of actions; (3) a set of state defaults Φ ψ, constructs
that specify conditions Φ under which a fluent literal ψ normally holds in the domain.1 For
example, consider the very simple action domain that uses the fluents SOP(x) (object x is
a sheet of paper) and PA(x) (object x is a paper aeroplane) along with the action Fold(x)
that turns a sheet of paper x into the paper aeroplane x. This action effect is expressed by
ΓFold(x) = {PA(x),¬SOP(x)}. The single state default δ = PA(z) Flies(z) of the domain sim-
ply says that paper aeroplanes usually fly.

Baumann et al. provide a compilation scheme that transforms such a domain description
into a default theory. First, the direct effect descriptions are compiled into effect axioms that
provide a solution to the notorious frame problem [5] of reasoning about actions. This effect
axiom is of the general form

Poss(A(~x), s, t) ⊃ (∀f)(Holds(f, t) ≡ CausedT (f,A(~x), s, t)) ∧ (1)

(∀f)(¬Holds(f, t) ≡ CausedF (f,A(~x), s, t))

where CausedT and CausedF are macros that enumerate possible causes that determine a
fluent’s truth value. As of now, these causes are either persistence (staying true resp. false
from s to t) or being a direct action effect, that is, CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨
DirT (f,A(~x), s, t), where FrameT (f, s, t) def= Holds(f, s)∧Holds(f, t) and DirT (f,A(~x), s, t) def=∨
F (~x′)∈ΓA,~x′⊆~x f = F (~x′) is a disjunctive enumeration of A’s positive effects as specified in ΓA.

The definitions of CausedF , FrameF and DirF are symmetric. In the example domain, the
effect axiom for Fold(x) thus constructed is

Poss(Fold(~x), s, t) ⊃ (∀f)(Holds(f, t) ≡ (Holds(f, s) ∧Holds(f, t)) ∨ f = PA(x) ∧ (2)

(∀f)(¬Holds(f, t) ≡ (¬Holds(f, s) ∧ ¬Holds(f, t)) ∨ f = SOP(x)

Next, the state defaults from the domain description are translated into Reiter defaults, where
the special predicate symbols DefT (f, s, t) and DefF (f, s, t) are used to express that a fluent
f is normally true (false) at a time point t. For each state default δ, two Reiter defaults are
created: δInit , that is used for default conclusions about the initial time point; and δPoss , that
is used for default conclusions about time points that can be reached via action application.
The Reiter translations of our example state default are

Init(t) ∧Holds(PA(z), t) : Holds(Flies(z), t)

Holds(Flies(z), t)

and
Holds(PA(z), t) ∧ ¬Violδ(s) : DefT (Flies(z), s, t)

DefT (Flies(z), s, t)

where Violδ(s) = Holds(PA(z), s) ∧ ¬Holds(Flies(z), s). δInit on the left hand side lets us
conclude that any z which is known to be a paper aeroplane initially does also fly unless there
is information to the contrary. The default δPoss on the right hand side applies whenever an
action starting at time point s and ending at time point t occurred, the object z is a paper
aeroplane at t and the default was not violated at the starting time point s. (A default is
violated whenever the prerequisite Φ is true at s and yet the consequent ψ is false, which is
captured by the macro Violδ(s).) It lets us conclude that z flies unless we know otherwise.

1Here, Φ, the prerequisite, is a fluent formula; ψ, the consequent, being a fluent literal also allows to express
that a fluent normally does not hold in the domain.

59

Default Reasoning in Action Domains with Conditional, Non-Local Effect Actions Strass, Thielscher

For a fluent to be true (or false) by default is then built into the effect axiom by accepting it
as another possible “cause” to determine a fluent’s truth value, that is, the CausedT macro is
updated to CausedT (f,A(~x), s, t) def= FrameT (f, s, t) ∨ DirT (f,A(~x), s, t) ∨ DefT (f, s, t) with
FrameT and DirT as before; symmetrically for CausedF .

In order to restore the solution to the frame problem in the presence of defaults, one needs
to take care of inapplicable default conclusions. This is done by so-called default closure axioms.
In our example, the default closure axiom for the fluent literal Flies(z) is (¬Holds(PA(z), t) ∨
Violδ(s)) ⊃ ¬DefT (Flies(z), s, t) and says that the only way Flies(z) can be true by default is
if the respective default prerequisite is true.

The fundamental notion of the solution to the state default problem by [2] is now a de-
fault theory where the incompletely specified world consists of a UAC domain axiomatisation
augmented by default closure axioms. The default rules are the automatic translations of
user-specified state defaults.

Our example domain is axiomatised by the formula set Σ = Π ∪Υ ∪ Σ0, where Π contains
the action precondition axiom Poss(Fold(x), s, t) ≡ Holds(SOP(x), s) ∧ s < t, Υ contains the
above-mentioned effect axiom (1) and in the initial state the object P is a sheet of paper and not
(yet) a paper aeroplane: Σ0 = {Init(s) ⊃ (Holds(SOP(P), s) ∧ ¬Holds(PA(P), s))}. Enhancing
this with the Reiter defaults seen earlier, we get the domain axiomatisation with state defaults
(Σ ∪ Σ∆,∆Init ∪∆Poss). Using default knowledge and sceptical reasoning now gives us the
desired conclusion that a sheet of paper initially folded into a paper aeroplane indeed flies:2

Σ ∪ Σ∆ |≈scept∆Init∪∆Poss
(Init(t0) ∧ Poss(Fold(P), t0, t1)) ⊃ Holds(Flies(P), t1).

3 Default Reasoning about Conditional, Non-Local Effect
Actions

We first investigate how the framework of [2] can be extended to conditional effect actions. As we
will show, there is subtle interdependence between conditional effects and default conclusions,
which require a revision of the Reiter defaults constructed there. We begin by formalising
how to represent conditional effects in the domain specification language. Recall that in the
unconditional case, action effects were just literals denoting the positive and negative effects. In
the case of conditional effects, theses literals are augmented with a fluent formula that specifies
the conditions under which the effect materialises.

Definition 1. Let Φ be a fluent formula that may contain equality atoms and ψ be a fluent
literal. The pair Φ/ψ is called a conditional effect expression. Φ/ψ is called normalised, if ψ is
of the form F (~xF) or ¬F (~xF) for some function symbol F : fluent and matching sequence of
variables ~xF .

Let A be a function into sort action, ~xA a sequence of variables matching A’s arity, ~y
be a sequence of variables disjoint from ~xA and ΓA be a set of normalised conditional effect
expressions with free variables from ~xA, ~y.

DirT (f,A(~x), s, t) def=
∨

Φ+
F /F (~x′,~y′)∈ΓA

(∃~y′)(f = F (~x′, ~y′) ∧ Φ+
F [s]) (3)

While this extended definition of action effects is straightforward, it severely affects the
correctness of default reasoning in the action theory: one cannot näıvely take this updated

2The notation Σ |≈scept
∆ ϕ means that formula ϕ is contained in every extension of default theory (Σ,∆).

60

Default Reasoning in Action Domains with Conditional, Non-Local Effect Actions Strass, Thielscher

version of the DirT ,DirF macros and use the effect axioms and Reiter defaults as before.
In general, whenever there exists a default ΦD ψ with conclusion ψ whose negation ¬ψ
might be brought about by a conditional effect ΦC/¬ψ, one might make the faulty inference
ΦD[t] ⊃ Def (ψ, s, t) ⊃ ψ[t] ⊃ ¬Dir(¬ψ, s, t) ⊃ ¬ΦC [s] – that is, from the truth of the default
prerequisite at the ending time point t we derive the default conclusion, from which we con-
clude falsity of the conditional effect, which implies falsity of the effect’s precondition in the
starting state s. To interrupt this undesired inference chain, we will have to prevent the default
conclusion ψ for cases in which we don’t know whether the conditional effect ¬ψ will occur.

Definition 2. Let ϕ,ψ be fluent literals. We say that ϕ conflicts with ψ and write ϕ ψ if and
only if sign(ϕ) 6= sign(ψ) and |ϕ| and |ψ| are unifiable – in this case we set θϕψ

def= mgu(|ϕ| , |ψ|).3
Let δ = ΦD ψD be a state default with free variables ~y and ε = ΦE/ψE be a conditional

effect expression. We say that δ conflicts with ε and write δ ε if and only if ψD ψE . In this
case, θψDψE

is abbreviated by θδε. For a function A into sort action, we accordingly say that δ
conflicts with A and write δ A if there is a conditional effect expression ε ∈ ΓA such that δ ε.

For each state default that has potential conflicts with action effects, we create several
Reiter defaults that incorporate prevention of conflicts: one for each conflicting action, and
one for the case where a non-conflicting action happens. All of these default rules extend the
previous default prerequisite Preδ(s, t)

def= ΦD[t] ∧ ¬Violδ(s) by additional constraints. The
Reiter default δAPoss is the variant of δ that is safely applicable whenever the conflicting action
A(~x) is executed. The first additional prerequisite Poss(A(~x), s, t) restricts the default rule to
cases where a specific instance A(~x) of the conflicting action happens. The last prerequisite
ensures that whenever the rule instance at hand might conflict with an action effect, then the
respective instance of the effect’s precondition is known to be false (and hence the conflict for
this particular instance cannot arise).

δAPoss
def=

(
Preδ(s, t) ∧ Poss(A(~x), s, t) ∧ (∀)¬ΦE [s] : Def (ψD, s, t)

Def (ψD, s, t)

)
θδε

The Reiter default δPoss is the variant of δ that is safely applicable whenever no conflicting
action is executable. In particular, if no conflicting action exists, this definition of δPoss is
equivalent to the one of Baumann et al. without incorporation of conflict prevention.

δPoss
def=

Preδ(s, t) ∧ Impossibleδ(~y, s, t) : Def (ψD, s, t)

Def (ψD, s, t)

Impossibleδ(~y, s, t)
def=

∧
A:action,

ε∈ΓA,δ ε

(∀~z)(|ψD| = |ψE | θδε ⊃ ¬Poss(A(~x), s, t)θδε)

The macro Impossibleδ(~y, s, t) guarantees that all action instances that are conflicting with the
actual default instance δ(~y) at hand are indeed inapplicable.

In our example domain, the action Fold(x) had only local effects, that is, the set of objects
that is affected by the action was somewhat fixed. In general, this is a restriction because it can
make the specification of certain actions at least cumbersome or utterly impossible, e.g. actions
that affect a vast number of (or all of the) domain elements at once. Our current definitions of
effect axioms and default rules can however also cope with the more general case of non-local
effects.

3The operator |·| extracts the affirmative component of a fluent literal, that is, |¬f | = |f | = f .

61

Default Reasoning in Action Domains with Conditional, Non-Local Effect Actions Strass, Thielscher

The solution to the state default problem for the more general class of action domains con-
sidered in this paper is now essentially the solution of [2], updated with our new versions of
effect axioms and Reiter defaults. This extension is particularly well-behaved: the increase in
expressiveness comes at practically no cost, since the existence of extensions for domain ax-
iomatisations with state defaults can still be guaranteed. Additionally, it is easy to see that the
domain specifications provided by the user are still modular: different parts of the specifica-
tions, such as conditional effect expressions and state defaults, are completely independent of
each other from a user’s point of view. Yet, the intricate semantic interactions between them
are correctly dealt with.

4 Implementation

Focusing on the formal foundations of integrating default reasoning with reasoning about ac-
tions, our work thus far has stayed entirely on the theoretical level. In this section, we describe a
first implementation of our theory on the basis of an old result on default logic and stable mod-
els, combined with modern implementations of the latter by means of Answer Set Programming
(ASP) [3].

In [4], Marek and Truszczyński consider the following translation from normal logic programs
into default logic: every pure Horn clause p ← q1, . . . , qm in the program is mapped to the
implication q1 ∧ . . . ∧ qm ⊃ p, and every other clause p← q1, . . . , qm,¬r1, . . . ,¬rn is mapped to
the default q1 ∧ . . . ∧ qm : ¬r1, . . . ,¬rn/p. Let W be the set of implications and ∆ the set of
defaults thus obtained, then Theorem 3.7 in [4] establishes a one-to-one correspondence between
the extensions of the default theory (W,∆) and the stable models of the original logic program.

In order to apply this result to obtain an ASP-based encoding of a given default theory,
the axioms and defaults need to be of a form that allows to reverse Marek and Truszczyński’s
translation. This can be achieved with the help of the standard way of adding classical negation
to normal logic programs, which introduces additional predicate symbols “−p” for every pred-
icate p in the language. Given an action domain axiomatisation (Σ ∪ Σ∆,∆Init ∪∆Poss), this
amounts to rewriting Σ∪Σ∆ to a set of Horn implications and ∆Init ∪∆Poss to a set of defaults
of the above form. The latter are accompanied by defaults p ∧ −p:¬f/f for every atom p, with
f being a nullary predicate that does not occur elsewhere. These additional defaults translate
back to the logic programming clause f← p,−p,¬f, which is the standard way of dealing with
classical negation in ASP via so-called integrity constraints [3].

Due to lack of space we cannot give the reader an impression of the resulting answer set
program by showing the implementation of our example domain; alas, the mappings of the
effect axioms, default rules and default closure axioms to program clauses are straightforward.
Moreover, the resulting program can directly be used for sceptical query answering using a
standard off-the-shelf ASP system, such as [6]: if the ASP together with the negation of a
query formula admits no answer set, then the formula is contained in each extension of the
original default theory.

5 Discussion

We have presented an extension to a recently introduced framework for default reasoning in
theories of actions and change. The extension increases the range of applicability of the frame-
work while fully retaining its desirable properties: we can now deal with context-dependent
effects of actions as well as with actions with a potentially global effect range – all the while

62

Default Reasoning in Action Domains with Conditional, Non-Local Effect Actions Strass, Thielscher

domain descriptions have not become significantly more complex, and default extensions of
the framework still provably exist. In addition, we provided a method of expressing suitable
instances of action domains with defaults as answer set programs, thereby paving the way for
a practically usable implementation.

For a discussion of related theoretical work, we have to refer the reader to [2]. Concerning
related practical work, there is, to the best of our knowledge, only one implemented action
language that supports Reiter-style default reasoning: the Causal Calculator [1] provides a
constructor default to model static default statements. The constructor however cannot express
default prerequisites and is therefore not suitable to implement state defaults in our sense, as
we have shown earlier [2].

In the future, we will carry out a formal analysis of the meta-theoretical properties of
our extended framework; we will be concerned with further extending the approach to non-
deterministic domains; lastly and most importantly, we will focus on developing the imple-
mentation concept further with the ultimate goal of a provably correct translation from action
domain descriptions to answer set programs.

References

[1] The Causal Calculator, 1997. http://www.cs.utexas.edu/users/tag/cc/.

[2] Ringo Baumann, Gerhard Brewka, Hannes Strass, Michael Thielscher, and Vadim Zaslawski. State
Defaults and Ramifications in the Unifying Action Calculus. In Proceedings of the Twelfth Inter-
national Conference on the Principles of Knowledge Representation and Reasoning, pages 435–444,
Toronto, Canada, May 2010.

[3] Michael Gelfond. Answer Sets. In Handbook of Knowledge Representation, pages 285–316. Elsevier,
2008.

[4] V. Wiktor Marek and Miroslaw Truszczyński. Stable semantics for logic programs and default
theories. In North American Conference on Logic Programming, pages 243–256. The MIT Press,
1989.

[5] John McCarthy and Patrick J. Hayes. Some Philosophical Problems from the Standpoint of Artificial
Intelligence. In Machine Intelligence, pages 463–502. Edinburgh University Press, 1969.

[6] Potassco. Potsdam answer set solving collection, 2008. Available at
http://potassco.sourceforge.net.

[7] Raymond Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13:81–132, 1980.

[8] Raymond Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. The MIT Press, September 2001.

[9] Michael Thielscher. A Unifying Action Calculus. Artificial Intelligence, 2010. In press.

63

	Introduction
	Default Reasoning about Unconditional, Local Effect Actions
	Default Reasoning about Conditional, Non-Local Effect Actions
	Implementation
	Discussion

