
Testbed for Model-based Verification of

Cyber-Physical Production Systems

Christof J. Budnik
1
, Sebastian Eckl

2*
, and Marco Gario

1

1 Siemens Corporate Technology, Princeton, NJ, USA
2

Technical University of Munich (TUM), Munich, Germany
{christof.budnik, marco.gario}@siemens.com, sebastian.eckl@tum.de

Abstract

Cyber-physical production systems (CPPS) build a network of industrial automation

components and systems to enable individualized products at mass production costs.
Failures or vulnerabilities in CPPS can be life threatening and can cause physical

damage while hiding the effects from monitors. Thus, software verification and

validation methods need to analyze the dynamics and behavior of CPPS. In this work,

we present a hybrid testbed used in Siemens Corporate Technology. The testbed

combines a physical CPPS together with its virtual simulated counterpart, allowing us

to verify the system using runtime monitoring, model-based testing, simulation and

formal techniques.

1 Introduction

Future industrial automation is enabling new production processes where products will drive their

production by cyber-physical production systems (CPPS) without the need for human intervention

(Kephart & Chess, 2003). A CPPS needs to be able to fulfill its specified goals effectively and

efficiently under changing conditions. CPPS intrinsically combine hardware, software, networking,

and physical systems. Today, the modeling and design abstractions used for hardware and physical
systems are entirely different from those used for software, and few modeling or design languages

support mixtures of the two. This makes it harder to model, harder to design, and harder to analyze

CPPS. Nevertheless, CPPS are safety critical systems that need to provide a high-level of confidence

in their safety and functionalities under multiple operating conditions.

Field tests for CCPS provide high-fidelity information on the behavior of the system by enforcing

realistic conditions for testing, and by considering the integration of all the components in the entire

production unit. Field tests are expensive, and require a significant effort in both time and resources.

For this reason, only a limited set of potential scenarios can be tested, and hazardous situations are

*
 Worked as intern at Siemens US when the majority of this work has been achieved.

EPiC Series in Computing

Volume 48, 2017, Pages 92–99

ARCH17. 4th International Workshop on Applied
Verification of Continuous and Hybrid Systems

G. Frehse and M. Althoff (eds.), ARCH17 (EPiC Series in Computing, vol. 48), pp. 92–99

often ignored to avoid damaging costly equipment. Existing Model-, Simulation-, and Hardware-in-

the-Loop approaches rely on a virtual environment where dangerous scenarios can be safely executed.

Unfortunately, these techniques are usually limited to a specific subset of a CPPS entire functionality,

and therefore are not good candidates for testing the big picture.

In this work, we present a hybrid testbed currently in use at Siemens Corporate Technology. Our

testbed combines the advantages of both virtual and physical testing, by placing an entire CPPS
together with its virtual counterparts into the same simulation.

Our proposed testbed solution enables test engineers to:

 Test the deployed PLC software against a simulated environment, thus safely detecting

catastrophic programming issues.

 Model the test environment and link it with the behavior model. Define key test points in the

environmental model, and use these points to generate variations of the test cases stimulating

boundary conditions.

 Compare the real behavior and the expected behavior of the system under test in order to

detect discrepancies, and refine the simulation model.

 Apply formal verification techniques on more abstract models by relying on the simulation

model in order to analyze spurious counter-examples that would be otherwise hard to
validate using only the physical plant.

2 Motivation and Background

The main objective for verification is to ensure the reliable operation of the Programmable Logic

Controller (PLC) software within the CPPS. Modern PLC programming languages (such as SCL

(Berger, 2012) and Structured Text (International Electrotechnical Commission, 2013)) can be used to

provide complex control logics (in fact these are Turing complete languages). This makes PLC

software verification as difficult as more traditional (e.g., C) software verification problems. Perhaps

the most significant difference between verification of traditional software and verification of CPPS is

that the correctness of traditional software is defined with respect to a fixed and known machine

model, whereas CPPSs operate in environments that are at best partially known by the system

designer, and in many cases very difficult to capture precisely. This is particularly true for systems

that have a limited visibility of their surrounding environment like robots. Therefore, verifying a
CPPS means verifying both the PLC software, but also verifying that the final solution is operating

correctly and effectively in its targeted dynamic production environment. Moreover, the verification

needs to ensure that the behavior of such a system in response to disruptions (or failures) and changes

in the environment meets its stated objectives.

In these cases, it is common to verify that the system acts correctly given the knowledge that it

has, avoiding the problem of modelling the real environment (Chan, Chen, Mak, & Yu, 1996).

Researchers concerned with the verification of software by simulation often acknowledge the need for

software testing, but typically do not present techniques beyond what is common for all types of

software (Sargent, 2005), such as test-driven development or using code reviews. Others have focused

on using formal specifications (W. T. Tsai, 2005), as have researchers investigating the verification of

optimization software, as in compiler optimizations. However, the use of formal languages to act as

an oracle can be challenging from a practical point of view, given that the specification often needs to
be complete in order to be useful which cannot be assumed for CPPS. Additionally, the creation of a

formal specification can be fairly complex after the software has already been developed, and requires

intimate knowledge of the algorithm being implemented. Nevertheless, in the context of formal

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

93

verification, we find examples of these approaches in works that study the controller by considering a

very abstract plant in which any behavior of the input/output is possible (Lange, Neuhäußer, & Noll,

2013), (Fernández Adiego, 2015). These approaches are sufficient to find bugs in the code, but cannot

identify bugs in the design, since this requires reasoning by considering both the controller and the

plant. From a formal methods perspective the use of hybrid modeling languages does not directly

address the issue, since it is unreasonable to require the control engineer to develop a formal model
describing the plant. In our opinion, this is the biggest road block hindering the adoption of formal

methods within these production systems.

Model-based testing approaches (or MBT) are used to support test generation. Tests are

produced based on abstract test cases from high-level system specifications written in standardized

specification languages such as UML. Model-based testing in this context can be seen as a black-box

test approach. The specification and execution of test cases on a model level verification and problem

analysis is much easier and more efficient than it is for traditional, code-centric test cases. Model-

based testing approaches automate many of the testing activities, including creation of test

architectures, generation and execution of test cases. For example, Tedeso™ (former TDE/UML

(Hartmann, Vieira, & Foster, 2005)) is an extensible model-based testing tool that supports different

testing stages: from system specification, model analysis, test generation, and code and report
generation. A distinctive feature of Tedeso™ is its extensibility and configurability by means of plug-

ins. This makes it easy to integrate and extend Tedeso™ with existing tools and approaches. While

MBT approaches focus on test generation strategies and coverage algorithms, they have mostly been

focused on software or system testing, and need to be extended to support the challenges arising from

CPPS testing. In particular, we need to describe and reason about high-dimensional environment and

their dynamic behavior, define metrics for coverage criteria, and define intelligent search strategies.

3 Cyber-Physical Simulation-Based Testbed

Siemens Corporate Technology has developed a novel system testbed for cyber-physical

production systems. The testbed simplifies the co-testing of PLC software for CPPS by combining

simulation and physical monitoring. The simulation relies on a physics engine and serves two

purposes. First, it detects disastrous failures such as collisions between production units and their

environment. Second, it provides realistic data as external inputs for the system under test.

An abstracted environment is also modeled in order to capture the structure and behavior of the
real-world objects under consideration. This allows us to use model-based testing approaches to

generate different environmental conditions under which the CPPS is verified using simulation.

The goal of the testbed is to enable a staged approach to the verification of the PLC control

software. We start by verifying the CPPS in a purely simulated environment. This allows us to flush

out major issues in the control logic. Later we move to a co-verification by running the virtual and

real CPPS in parallel. Detecting different behavior enables the simulation to stop the real system and

prevent it from major damage. After this process, the CPPS is ready to be deployed, since most major

issues have been flushed out during the preceding phases, thus reducing the possibility of disastrous

failures during production.

Having an accurate simulation model of the physical plant allows us to explore the use of formal

methods techniques to the verification of higher-level properties of the CPPS. We can use the
simulation model to identify spurious counter-example traces generated, e.g. by model-checkers.

Section 4 provides a more detailed discussion on how the testbed will allow us to use formal methods.

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

94

3.1 Testbed Architecture and Setup

The testbed architecture is based on the concept of hybrid simulation, combining physical and

virtual components within the context of a distributed, embedded, real-time system to be tested.

Conceptually, the setup consists of the following parts (Figure 1):

 A PLC controller running the software application under test

 A physical test setup (plant components and physical I/O interfaces)

 A virtual test setup (simulated plant components and virtual I/O interfaces)

 A plugin for a test generation framework

Figure 1: Testbed Architecture

It is important to note that software application under test is executed on a physical PLC
controller. In principle, it would be possible to simulate this block too. However, we decided to use a

physical controller for two reasons. First, different models of the controllers have slightly different

capabilities and performances, making it extremely difficult to faithfully capture their behavior in a

simulated environment. Second, this approach allows us to seamlessly alternate between physical and

simulated environment. This reduces potential configuration errors during deployment, and makes it

possible to apply the simulation after the controller has been deployed in the field. This allows us to

leverage the co-verification approach in order to validate changes in existing plants.

The physical controlling element is interconnected with both the physical and the virtual testbed

via network. The physical test setup includes all physical actuators, sensors and I/O interfaces. The

virtual test setup implements the same plant model inside a simulator. The virtual test setup contains a

test controller component, which is responsible to send (test) instructions to the physical controlling
element via a virtual operating control (test execution engine). The test controller communicates with

a test generation framework, in order to obtain setup data and test-cases. The test controller receives

data from the physical controlling element for continuous test (setting) adaptation and comparison of

results and original expectations (feedback control).

The testbed setup hereby reflects an industrial automation system, consisting of a production line

and utilizing typical industrial components like actuators (e.g. conveyor belts, robots), sensors (e.g.

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

95

ultrasonic, induction) and associated controlling elements. Both physical and virtual components are

interconnected with controlling elements via Industrial Ethernet, a specific Ethernet standard

developed for (harsh) industrial requirements and providing protocols that allow for determinism, low

latency and real-time control to deliver data under tight time constraints. Within the industrial

environment, controlling elements are depicted in terms of PLCs, particular embedded control units

that can act as a hard real-time system, consuming sensor input and calculating actuator output within
a fixed period of time. The physical representation of the industrial automation system to be tested is

based upon selected industry training models, creating a small-scale model of a physical plant. Its

virtual counterparts are implemented in form of three-dimensional models inside a physics-based

simulator environment. Both physical and virtual sensor data can be sent to the controlling elements

and are assimilated similarly. The resulting actuator output can be visualized in real-time, either on

the simulator or on the physical plant model. Physical and virtual operating control units are both

based on SCADA (Supervisory Control and Data Acquisition) control architecture. Both, the physical

and virtual test setup act in form of I/O devices. The reference implementation of the testbed (Figure

2) contains:

 A management environment (test engineering machine)

 A physical industry training model (e.g. fischertechnik™ industry training models, I/O
device, SCADA-based Human Machine Interface (HMI))

 A virtual test environment (virtual test machine)

 An (Industrial) Ethernet switch

 A software application under test (e.g. PLC)

The management environment hosts the Windows-based Siemens IDE (Totally Integrated

Automation (TIA) Portal/STEP 7) on a separate PC workstation. The IDE is required for

programming and transferring the software applications under test to the physical controlling elements

(PLC and I/O devices). Furthermore, an abstract network definition containing controlling and data

collection elements is generated and exported using a specific interface (TIA Openness); this data is

then used as input to the test generation framework.

Figure 2. Testbed Realization

The choice of technologies used in the testbed is driven by a desire of being as close as possible to

representative of the challenges faced by control engineers using PLCs. For this reason, we chose to

use fischertechnik™ training material, real PLC hardware, and the TIA Portal IDE.

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

96

The physical industry training model consists of sensing and actuating elements typical for the

field of industrial automation, but manufactured in a much smaller scale than usually deployed on

traditional sites. As physical sensors and actuators in real industrial automation setups are mostly

implemented in a distributed manner, within the physical test setup they are also not directly

connected to the PLC itself, but rather to a distributed I/O device, which allows for remote access

from a PLC via Industrial Ethernet. Both PLC and distributed I/O device belong to the Siemens
SIMATIC product line (SIMATIC S7-1200, SIMATIC ET 200MP) and include several digital

input/output, motor control and timer modules to connect physical sensors and actuators. The physical

test setup can thus be abstracted to a form of a physical I/O device.

For connecting real-time components like PLC, distributed I/O device (physical test environment) and

virtual test environment, we use the PROFINET industrial automation protocol. The virtual test

environment is hosted on a Linux-based virtual test machine on a separate PC workstation, which in

contrast acts as a virtual I/O device. It consists of a robotic simulator (e.g. V-Rep) (Frese, 2013), a

SCADA-based HMI suite (e.g. WinCC Open Architecture), a test execution and feedback control unit

and the test controller software which supports a plugin for test generation framework.

3.2 Lessons Learned

The main challenge of the testbed arises from the combination of physical and virtual components

within the context of a distributed, embedded, real-time system. Thereby, (hard) real-time capable

hardware components (e.g. PLC) have to be connected to a PC-based test setup, which is running

software-based components that are only supporting non-real-time behavior by design. Thus, the

interaction of both worlds requires a precise adjustment of the simulation step regarding the pace of

individual physical control components and simulator elements.

Industrial automation test environments usually focus on the creation of a PC-based device that

mimics or enhances the behavior of a PLC in software. The soft PLC therefore has to be implemented

as a PROFINET IO-controller, controlling a physical system under test instead, which is connected to

an I/O device. The testbed architecture depicted in Section 3.1 swaps the test objective by switching

this premise and placing the PLC application itself under test. Therefore, it is important to implement
the virtual test environment in form of a PROFINET IO-device, which is backed by a scenario

specific simulator (e.g. robotic simulator). According to the above mentioned setup, only a simulator’s

API has to be adapted to the PROFINET software interface.

Despite the initial investment regarding analysis and evaluation of possible components and their

interactions as well as the implementation of the testbed, the possibilities of safely and automatically

testing myriad (and even hazardous) situations outweigh the effort. Combining the novel approach of

feedback-based automatic creation of simulator-specific model descriptions with the proven concept

of autonomous test case generation allows for efficient testing of CPPS at an unprecedented scale.

3.3 Model-based Test Generation Framework

Model-based testing (MBT) using Tedeso™ has been applied within Siemens business domains to

effectively automate testing (Silva Filho & Budnik, 2012). We plug in Tedeso™ as MBT solution for

test case generation. In this case the test cases are given as environmental conditions for the

simulation under which the PLC code is verified (Figure 3). With Tedeso™ as our model-based

testing framework, we first create an abstract model of the industrial automation system. Afterwards,

an ad-hoc environment generator is used to transform the abstract model into a simulator-specific

model description, which is sent to the simulator component. A code generator also translates abstract

test cases into concrete test instructions, which are performed upon individual operating control units

inside an execution engine.

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

97

Figure 3. Supported MBT Verification by the Testbed

The environmental conditions are modeled as classes where each entity of the simulation

environment can have properties such as size or max number of entities allowed and their methods of

dynamic behavior implementation. Stereo-typed notes are used to define environmental constraints of

and between simulation entities. For automated test environment generation the MBT model is

executed with a pre-generation step that solves the environmental constraints.

The task of the test generator is to resolve the constraints leading to a set of environmental

conditions which are the test cases. During test execution the physics engine is checking on the

achieved goals of the system. Such feedback can be given by the physics engine for instance for

collision detection of the system with its environment. The approach allows testing of the system
under various conditional environments in a simulated run. Current research work is focusing on

optimizing the generated test cases covering critical and exceptional scenarios from real world.

4 Integrating Formal Verification

Formal models for CPPS are difficult to express. This limits the applicability of formal

verification for CPPS. Our goal is to use the simulated environment in order to simplify the formal

description of the plant (to some extent of abstraction) by reusing information used to build the

simulation. As a second step, we plan to use the simulation in order to increase our confidence on the

correctness of the formal model.

Modern simulation frameworks (e.g., Modelica (Fritzson, 2010)) rely on libraries of components

in order to speed-up the construction of the simulation. These systems feature massive libraries of

components coming from multiple domains. By equipping these components with a simplified formal

description, it could be possible to derive a high-level formal model of the plant automatically from
the simulated model. The formal model of the plant, together with the formal model of the controller

(derived automatically from the PLC code), can then be verified using theorem proving and model-

checking techniques (Fulton, 2015), (Cimatti, Griggio, Mover, & Tonetta, 2015), (Tiwari, 2012). To

address the environmental generation issue described in Section 3.3, we already need to provide

constraints describing the formal relation between objects in the simulation. This suggests that there is

a significant amount of information coming from the simulation description that can be leveraged to

obtain a formal model. Even a very abstract model can be useful to prove high-level properties of the

system. The typical issue in this case, however, is how to validate counter-examples and identify

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

98

spurious ones, i.e., counter-examples that do not exist in the real system but only in the abstract

model. In our approach, we can rely on the simulation model to validate spurious counter-examples

and refine the formal representation accordingly. Without a simulated model, it would be much more

difficult (if not impossible), expensive and time-consuming to validate the counter-example on the

physical plant. Our second step is to use the simulation to validate the formal model. The idea is to

use the formal model to generate runtime monitors (Mitsch & Platzer, 2014). These monitors are
attached to the simulated environment and run for a massive amount of scenarios. This process will

allow us to validate the formal model, and this would not be possible if we had to execute these

monitors directly on the physical plant. Since the simulation model is aligned to the physical system,

and the formal model is aligned with the simulation model, we have a strong confidence on our

formal verification results. This allows us to gradually apply formal verification techniques, without

requiring a significant up-front investment in modeling. In particular, we can dedicate resources to

formally verify systems or components that are about to change, thus providing a strong business

argument for the application of more rigorous techniques.

Finally, our approach to model-based testing relies on a black-box view of the system. Once a

formal model of the CPPS is defined, it becomes easier to generate test-cases that lead to particular

configurations, by using model-checking techniques. Many questions still need to be addressed in
order to effectively combine formal verification and simulation techniques. Nevertheless, having a

realistic testbed will allow us to better characterize the problems, and create interesting benchmarks to

drive the development of tools.

References

Berger, H. (2012). Automating with STEP 7 in STL and SCL: SIMATIC S7-300/400 Programmable

Controllers. Wiley.

Chan, F., Chen, T., Mak, I., & Yu, Y. (1996). Proportional sampling strategy: guidelines for software

testing practitioners. Inf. Softw. Technol. 38 (12), 775–782.

Cimatti, A., Griggio, A., Mover, S., & Tonetta, S. (2015). HyComp: An SMT-based model checker

for hybrid systems. International Conference on Tools and Algorithms for the Construction

and Analysis of Systems. Heidelberg: Springer Berlin.

Fernández Adiego, B. e. (2015). Applying model checking to industrial-sized PLC programs. IEEE

Transactions on Industrial Informatics, 1400-1410.
Frese, E. R. (2013). V-REP: a Versatile and Scalable Robot Simulation Framework. International

Conference on Intelligent Robots and Systems (IROS).

Fritzson, P. (2010). Principles of object-oriented modeling and simulation with Modelica 2.1. John

Wiley & Sons.

Fulton, N. e. (2015). KeYmaera X: an axiomatic tactical theorem prover for hybrid systems.

International Conference on Automated Deduction. Springer International Publishing.

Hartmann, J., Vieira, M., & Foster, H. (2005). A UML-based approach to system testing. Innovations

in Systems and Software Engineering, 12-24.

International Electrotechnical Commission. (2013). IEC 61131-3:2013 Programmable controllers -

Part 3: Programming languages.

Kephart, J., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 41-50.
Lange, T., Neuhäußer, M., & Noll, T. (2013). Speeding Up the Safety Verification of Programmable

Logic Controller Code. Haifa Verification Conference, (pp. 44-60).

Mitsch, S., & Platzer, A. (2014). Patent No. U.S. Patent Application No. 15/026,690. U.S.

Tiwari, A. (2012). HybridSAL relational abstracter. International Conference on Computer Aided

Verification. Heidelberg: Springer Berlin.

Testbed for Model-based Verification of Cyber-physical Production Systems Budnik et al.

99

